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Sensitive Periods for the Effect of Childhood Adversity on DNA Methylation:   
Results from a Prospective, Longitudinal Study 

 
Supplement 1 

 

Sample and Procedures 

Data came from the Avon Longitudinal Study of Parents and Children (ALSPAC), a 

prospective, longitudinal birth cohort of children born to mothers who were living in the county 

of Avon, England (120 miles west of London) with estimated delivery dates between April 1991 

and December 1992 (1-3).  ALSPAC was designed to increase knowledge of the pathways to 

health across the lifespan, with an emphasis on genetic and environmental determinants. 

Approximately 85 percent of eligible pregnant women agreed to participate (N=14,541), and 99% 

of eligible live births (n=14,062) who were alive at one year of age (n=13,988 children) were 

enrolled. Response rates to data collection have been good (75% have completed at least one 

follow-up).  Ethical approval for the study was obtained from the ALSPAC Ethics and Law 

Committee and the Local Research Ethics Committee.  More details are available on the ALSPAC 

website, including a fully searchable data dictionary: 

http://www.bristol.ac.uk/alspac/researchers/access/.  The ARIES mother-child pairs were 

randomly selected out of those with complete data across at least five waves of data collection. 

The ALSPAC sample is comprised of predominately White (94.6%) children; the ARIES 

subsample used in this study is racially homogenous (97.23% White in the analytic sample). As 

genetic data were not available for one-eighth of the analytic sample, we inferred ancestry 

information using an epigenome-wide DNAm data based principal component analysis (4), which 

has been shown to reliably capture population structure even in the absence of genetic data. After 

adjusting for sex and cell counts, we found no apparent outlier or pattern of population 

http://www.bristol.ac.uk/alspac/researchers/access/
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stratification (Figure S10). In light of these findings, adjustment for self-reported race/ethnicity as 

a covariate should be sufficient to address issues with respect to population stratification and allow 

us to maximize the statistical power of the analyses. 

 

Measures 

Exposure to Adversity 

Caregiver physical or emotional abuse.  Exposure to physical or emotional abuse was 

determined through mailed questionnaires administered separately to the mother and the mother’s 

partner.  Children were coded as having been exposed to physical or emotional abuse if the mother, 

partner, or both responded affirmatively to any of the following items assessed over six time-points 

(8 months, 1.75 years, 2.75 years, 4 years, 5 years, and 6 years): 1) your partner was physically 

cruel to your children; 2) you were physically cruel to your children; 3) your partner was 

emotionally cruel to your children; 4) you were emotionally cruel to your children.  Participants 

were informed that all of their responses were confidential, and reports of caregiver physical or 

emotional abuse were not reported to child welfare agencies, consistent with the lack of mandatory 

reporting laws in the UK (5, 6). 

Sexual or physical abuse.  Exposure to sexual or physical abuse was determined through 

an item asking the mother to indicate whether or not the child had been exposed to either sexual 

or physical abuse from anyone.  This question was included at six time-points: child ages 1.5 years, 

2.5 years, 3.5 years, 4.75 years, 5.75 years, and 6.75 years.  As noted above, reports of sexual or 

physical abuse were not reported to child welfare agencies.  

Maternal psychopathology.  Maternal psychopathology was determined using data from: 

1) the Crown-Crisp Experiential Index (CCEI), which includes separate subscales for anxiety and 
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depression (7, 8) ; 2) the Edinburgh Postnatal Depression Scale (EPDS) (9); and 3) a question 

asking about suicide attempts in the past 1.5 years.  These measures were collected from mothers 

at five time-points: child ages 8 months, 1.75 years, 2.75 years, 5 years, and 6 years of age.  

Consistent with prior ALSPAC studies (10) and previous cut-points established in the literature 

(see below), we coded children as exposed to maternal psychopathology if one or more of the 

following criteria occurred: 1) the mother had a CCEI depression score greater than 9 (8); 2) 

mother had a CCEI anxiety score greater than 10 (8); 3) mother had an EPDS score greater than 

12 (9); or the 4) mother reported a suicide attempt since the time of the last interview.   

One adult in the household.  Mothers indicated the number of adults (>18 years of age) 

living in the household at five time-points: when the child was 8 months, 1.75 years, 2.75 years, 4 

years, and 7 years.  Children were coded as exposed if there were fewer than two adults in the 

household.  

Family instability.  Mothers indicated whether the child had: 1) been taken into care; 2) 

been separated from their mother for two or more weeks; 3) been separated from their father for 

two or more weeks; or 4) acquired a new parent.  These items were completed at six time-points: 

when children were ages 1.5 years, 2.5 years, 3.5 years, 4.75 years, 5.75 years, and 6.75 years.  

Children were coded as exposed if at least two of these events occurred at a single time point.  

Although being placed in foster care versus being separated from parents could reflect 

fundamentally different experiences of family instability, these four events were combined to 

create a binary measure of exposure because: 1) the prevalence of being taken into care or 

acquiring a new parent was too low for these experiences to be examined as separate measures; 2) 

separation from caregivers, especially in early life, can result in behavioral changes (11) and has 

been found to have a profound effect on development (12).  
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Financial stress.  Mothers indicated the extent to which the family had difficulty affording 

the following: 1) items for the child; 2) rent or mortgage; 3) heating; 4) clothing; 5) food.  Each of 

the 5 items was coded on a Likert-type scale (1=not difficult; 2=slightly difficult; 3=fairly difficult; 

4=very difficult).  These items were completed at five time-points: when children were ages 8 

months, 1.75 years, 2.75 years, 5 years, and 7 years.  Children were coded as exposed if their 

mothers reported at least fair difficulty for three or more items at each time point; this cut-point 

corresponds to response option 3 on a 4-point scale, with a higher score reflecting more difficulty.  

Neighborhood disadvantage.  At four time-points, when children were 1.75 years, 2.75 

years, 5 years, and 7 years of age, mothers indicated the degree to which the following were 

problems in their neighborhood: 1) noise from other homes; 2) noise from the street; 3) garbage 

on the street; 4) dog dirt; 5) vandalism; 6) worry about burglary; 7) mugging; and 8) disturbance 

from youth.  Response options to each item were: 2=serious problem, 1=minor problem, 0=not a 

problem or no opinion.  Items were summed, yielding scores ranging from 0-16.  Children with 

scores of eight or greater, which generally corresponded to the 95th percentile, were classified as 

exposed to neighborhood disadvantage.  

 

DNA Methylation   

 As described elsewhere (13), DNAm was measured at 485,000 CpG dinucleotide sites 

across the genome using the Illumina Infinium Human Methylation 450K BeadChip microarray, 

which captures DNAm variation at 99% of RefSeq genes (17 CpG sites per gene, on average). 

Bisulfite treatment of DNA extracted from cord blood and peripheral blood leukocytes was 

performed using the Zymo EZ DNA MethylationTM kit. The arrays were scanned using an 

Illumina iScan and initial quality review was assessed using GenomeStudio (version 2011.1).   
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 The proportion of molecules methylated at each interrogated CpG site on the array was 

detected using the Illumina 450K BeadChip assay. The estimated level of DNA methylation at 

each CpG site was expressed as a ‘beta’ value (β), defined as the ratio of the intensity measured 

by the methylated probe and the sum of the overall intensity and a recommended offset value 𝛼𝛼 = 

100 (β = intensity of the Methylated allele (M) / intensity of the Unmethylated allele 

(U) + intensity of the Methylated allele (M) + 100). The β value ranges from 0 (no methylated 

dinucleotides observed) to 1 (all dinucleotides methylated). The preprocessing analyses were 

performed using R (version 3.0.1). Background correction and subset quantile normalization 

within each time point were applied to the raw methylation β-values following the pipeline 

developed by Touleimat and Tost (14) to remove or minimize the effects of variation due to 

technical artifacts. Additionally, a post-hoc correction for white blood cell heterogeneity was 

performed, as cell heterogeneity may confound DNA methylation measurement yet whole blood 

cell counts were not obtained for the majority of ALSPAC samples. The estimateCellCounts 

function in the minfi Bioconductor package implemented in R (15) was used to estimate the 

fraction of different cell types (CD8 T cells, CD4 T cells, NK cells, B cells, monocytes, and 

granulocytes).  

  To minimize potential confounding by batch effects, all samples in ARIES were distributed 

across slides semi-randomly (to represent all time points on each array). A laboratory information 

management system (LIMS) was built to record the batch variables as well as the quality control 

(QC) metrics from the standard control probes for each sample. The QC procedure consisted of 

excluding samples with average probe P-value ≥0.01 from further analysis, scheduling repeat 

assay for those failed samples, and comparing genotype probes with the same individual’s SNP-

chip data to correct any sample mismatches. For the last step, if no genome-wide SNP data were 
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available for that individual yet a sex-mismatch based on X-chromosome methylation was present, 

the sample was flagged.  

 

Data Analysis 

Overview of the Structured Life Course Modeling Approach (SLCMA)  

Our analyses were based on a structured life course modeling approach (SLCMA), which 

was originally developed by Mishra (16) and later extended by Smith (17, 18) to analyze repeated, 

binary exposure data across the life course.  The goal of the SLCMA is to identify the single life 

course theoretical model (or potentially more than one life course theoretical model working in 

combination) that explains the most outcome variation (R2).  Table S8 summarizes the life course 

theoretical models tested in this study, using exposure to abuse as an example.  

As summarized in text, the SLCMA is performed in two stages.  In the first stage, a set of 

encoded variables are entered into the LARS variable selection procedure (19).  Thus, for each 

subject, exposure to the ith adversity (i = 1,2, …, 7, denoting the seven types of adversity mentioned 

in Measures) was encoded based on three theoretical models:  

Sensitive period. The sensitive period hypothesis tests if the presence of exposure at a 

specific time point explains the most variance in the outcome. Formally, for the jth time point of 

assessment (j = 1, 2, ..., Ji,  Ji ≥ 4, the value of J is dependent on the type of adversity as described 

in the Measures section above),      

HSP,ij = bij, where bij =  �0, no exposure to the ithadversity at the jth timepoint 
1, exposure to the  ithadversity at the jth timepoint  

 

 Accumulation. The accumulation hypothesis tests whether the total impact of the ith 

adversity reported across all time periods explains the most variance in the outcome. The variable 

is formally defined as:  



Dunn et al.  Supplement 

7 

Haccumulation,i = �bij

Ji

j=1

 

Recency. The recency hypothesis is defined by a weighted sum of exposure across all time 

periods. It tests if temporal proximity to the adverse events explains the most variance in the 

outcome. The variable is formally defined as:    

Hrecency,i = � bij

Ji

j=1

 ×  ageij 

 

Covariates 

Beyond the technical adjustments described earlier, we additionally controlled for the 

following variables, measured at child birth: child race/ethnicity (0=non-White; 1=White); child 

birth weight; number of previous pregnancies (between 0-3+); maternal age (0=ages 15-19, 

1=ages 20-35, 2=age>35); parent social class (i.e. the highest social class of either parent: 

1=foreman; 2=manager; 3=supervisor; 4=lending hand; 5=self-employed; 6=none of these); and 

sustained maternal smoking during pregnancy (0=non-smoker; 1=smoker in two or more 

trimesters, including the third trimester) (20).  Given that we were modeling maternal 

psychopathology explicitly as an adversity exposure, that polygenic risk scores for mood disorders 

have been found to poorly predict maternal depression in ALSPAC (21), and applications of 

polygenic risk scores have not yet been widely incorporated into epigenetic analyses, we did not 

adjust for maternal genomic liability to psychopathology in our analyses. 

Correction for Multiple Testing 

 To assess the sensitivity of our results to a Bonferroni-correction threshold (p<1x10-7), we 

additionally used a more liberal false discovery rate threshold (FDR q<0.05). This allowed an 
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analysis of the distribution of theoretical models chosen across FDR-significant sites. With this 

larger number of sites, we sought to determine whether the distribution of theoretical models 

selected differed between these FDR-significant (q<0.05) sites and the background, estimated as 

the non-FDR significant sites (q>0.05).  Additionally, an expanded set of genes annotated to all 

sites surpassing a more liberal threshold (FDR q<0.05) increased our power to test for enrichment 

of regulatory elements and biological processes (Gene Ontology (GO) terms). 

 

Sensitivity Analyses 

 To evaluate the sensitivity of our results to specific analytic strategies, we conducted four 

sensitivity analyses.  First, we evaluated the LARS variable selection procedure by examining later 

steps of the LARS procedure (additional theoretical models chosen) for the top CpG sites. For each 

top site, we calculated the variance explained by additional steps, and assessed the significance of 

the increase with a covariance test at each step. 

 Second, because some adversities exist prenatally and could affect methylation in utero, 

we assessed methylation at birth in umbilical cord blood at the top CpG sites. Sample collection, 

laboratory procedures, and quality control are described elsewhere (13). Methylation beta values 

were normalized (14), corrected for cell count heterogeneity (22), and Winsorized (23) to remove 

outliers following the quality control for age 7 DNAm as described above. At each top CpG site, 

we tested the predictive value of the theoretical model chosen at age 7 on methylation at birth with 

linear regression, controlling for the same covariates as described previously. We used a 

Bonferroni correction to adjust the alpha level for multiple testing. 

 Third, because methylation can be influenced by genetic variation, we assessed whether 

any of our top sites were affected by methylation quantitative trait loci (mQTLs), using a recently 
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published database of mQTLs of the ARIES dataset (mQTLdb: (24)). We downloaded the list of 

mQTLs at age 7, and filtered the data to our top CpG sites. Children were genotyped using the 

Illumina HumanHap550 quad chip; imputation was performed to the 1000 Genomes (phase 1, 

version 3, release Dec 2013) reference population using IMPUTE v2.2.2 (25). Variants were 

filtered by minor allele frequency (MAF>0.01), Hardy-Weinberg equilibrium (HWE>5x10-7), and 

imputation quality (info>0.8); subjects were filtered by missing genotype rate (missingness<3%) 

and cryptic relatedness (r<0.1). For each top CpG site with 5 or fewer associated SNPs, we 

included minor allele dosages as additional covariates in a linear regression testing the theoretical 

model chosen, controlling for the same covariates as described previously. For each top CpG site 

with more than 5 associated SNPs, we filtered SNPs by call rate (>97%) and ran a principal 

components analysis among all SNPs associated with each CpG. The top 5 principal components 

were used as covariates to represent genetic variation in downstream analyses.  

 Fourth, as not all CpG sites on the epigenome are variable, we restricted the analyses to 

variable CpG sites using an empirical data reduction approach (26). We removed CpG sites with 

less than 5% change in beta between the 10th and 90th percentile and were left with 292,686 variable 

probes, resulting in a more liberal Bonferroni corrected p-value threshold of p<1.71x10-7. The new 

threshold would allow us to identify 10 additional probes, all of which were already included in 

the list of 380 probes after FDR correction as presented in Table S3. We have added a footnote in 

Table S3 to highlight the 10 additional hits passing the less stringent p-value threshold. 

 

Epigenome-Wide Association Study (EWAS) with Exposed vs. Unexposed to Adversity 

 To evaluate the loss or gain of information when using a simpler versus more complex 

analytic approach, we also performed seven EWASs (one for each type of adversity) to evaluate 
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the association between lifetime exposure to adversity before age 7 (coded as ever versus never 

exposed) and DNAm across all CpG sites.  The EWAS results were then compared to the SLCMA 

to determine if the two approaches yielded similar or distinct conclusions regarding the number of 

significant loci detected. 

Analyses that compare the outcome of DNAm between exposed and unexposed groups 

assume that the true relationship between exposure and outcome does not depend on the timing or 

amount of exposure. When this assumption is not valid, for example under a true sensitive period, 

accumulation or recency model, then such analyses will be underpowered when compared with 

the analyses presented in the main paper. To illustrate this, we will first present a summary of the 

proof showing how regression of the outcome on exposed vs. unexposed suffers when the true 

underlying relationship is a sensitive period model, accompanied by explanations in the context of 

the current study. The summary is followed by a mathematical proof that shows in details how the 

test statistics are derived. 

Suppose that the outcome Y depends on the exposures 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝐽𝐽 through the sensitive 

period linear model 

𝑌𝑌𝑖𝑖 = 𝛽𝛽0 + 𝛽𝛽1𝑋𝑋𝑠𝑠𝑠𝑠 + 𝜀𝜀𝑖𝑖,  𝜀𝜀𝑖𝑖 ∼ 𝑁𝑁(0,𝜎𝜎2). 

Regression of Y on 𝑋𝑋𝑠𝑠  (i.e., fitting the correct sensitive period model) will give an average 

regression coefficient of 𝛽𝛽1. 

 Now let 𝑋𝑋𝑎𝑎𝑎𝑎𝑎𝑎 be the variable indicating exposure at any of the measurement occasions, so 

𝑋𝑋𝑎𝑎𝑎𝑎𝑎𝑎 = �0 if 𝑋𝑋1 = 𝑋𝑋2 = ⋯ = 𝑋𝑋𝐽𝐽 = 0
1 otherwise.

 

Regression of Y on 𝑋𝑋𝑎𝑎𝑎𝑎𝑎𝑎  (i.e. fitting an exposed vs. unexposed model) will give an average 

regression coefficient of  
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𝑝𝑝𝑠𝑠
𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎

𝛽𝛽1 

where 𝑝𝑝𝑠𝑠 and 𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎 are the prevalences of 𝑋𝑋𝑠𝑠 and 𝑋𝑋𝑎𝑎𝑎𝑎𝑎𝑎 respectively. Since 𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎 ≥ 𝑝𝑝𝑠𝑠, this average 

regression coefficient will be smaller than that found by fitting the correct sensitive period model.  

As an example, family instability had a prevalence of 4% in very early childhood, but an 

overall prevalence of 16%. The size of the regression coefficient from an exposed vs. unexposed 

analysis will be, on average, 0.25 times the size of the regression coefficient estimated for the very 

early childhood sensitive period model. 

 The average R2 resulting from regression of Y on 𝑋𝑋𝑎𝑎𝑎𝑎𝑎𝑎 will be 

𝑅𝑅𝑠𝑠2
𝑝𝑝𝑠𝑠/(1 − 𝑝𝑝𝑠𝑠) 

𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎/(1 − 𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎)
 

where 𝑅𝑅𝑠𝑠2 is the average R2 resulting from regression of Y on 𝑋𝑋𝑠𝑠. The above odds ratio will always 

be smaller than 1, since the odds of 𝑋𝑋𝑠𝑠 will be smaller than the odds of 𝑋𝑋𝑎𝑎𝑎𝑎𝑎𝑎.  

For family instability in very early childhood, where the odds were 0.04 and 0.19 

respectively, the R2 from the exposed vs. unexposed will be 0.21 times that of the R2 for the very 

early childhood sensitive period model. 

 The average standardized test statistic resulting from regression of Y on 𝑋𝑋𝑎𝑎𝑎𝑎𝑎𝑎 will be 

𝑧𝑧𝑠𝑠�
𝑝𝑝𝑠𝑠/(1 − 𝑝𝑝𝑠𝑠) 

𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎/(1 − 𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎)�
𝜎𝜎2

𝜎𝜎2 + 𝛽𝛽12𝑝𝑝𝑠𝑠(𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎 − 𝑝𝑝𝑠𝑠)/𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎
 

where 𝑧𝑧𝑠𝑠 is the average standardized test statistic resulting from regression of Y on 𝑋𝑋𝑠𝑠. Note that 

both the fractions inside the square roots will always be smaller than 1.  

For the family instability in very early childhood sensitive period, we estimated 𝛽𝛽1 = 0.08 

and 𝜎𝜎2 = 0.0003, leading to a test statistic of 𝑧𝑧𝑠𝑠 = 4.71 and a p-value of 2.5 x10-6. However, the 
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test statistic for the exposed vs. unexposed model drops to 2.06, with an associated p-value of 

approximately 0.04. 

Simulation studies (17) have shown that LARS can select the correct sensitive period on 

80% of occasions, in samples smaller than ours with greater correlation between exposures. The 

power lost through having to choose the correct sensitive period is less substantial than the drop 

in regression coefficient, test statistic, and R2 typically associated with fitting an exposed vs. 

unexposed model instead of the correct sensitive period model. 

 

Theorem:  

Let 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝐽𝐽 denote the J exposure variables, Y denote the outcome that depends on 

the exposure through the sensitive period linear model 𝑋𝑋𝑠𝑠 . Let 𝑋𝑋𝑎𝑎𝑎𝑎𝑎𝑎  be the variable indicating 

exposure at any of the measurement occasions, so 

𝑋𝑋𝑎𝑎𝑎𝑎𝑎𝑎 = �0 if 𝑋𝑋1 = 𝑋𝑋2 = ⋯ = 𝑋𝑋𝐽𝐽 = 0
1 otherwise.

 

The average standardized test statistic resulting from regression of Y on 𝑋𝑋𝑎𝑎𝑎𝑎𝑎𝑎 (𝑧𝑧𝑎𝑎𝑎𝑎𝑎𝑎) will be larger 

than the standardized test statistic resulting from the true sensitive period model (𝑧𝑧𝑠𝑠), i.e., the 

Exposed vs. Unexposed analysis will be underpowered.    

  

Proof:  

We assume that the true underlying model is  

𝑌𝑌𝑖𝑖 = 𝛽𝛽0 + 𝛽𝛽1𝑋𝑋𝑠𝑠𝑠𝑠 + 𝜀𝜀𝑖𝑖,  𝜀𝜀𝑖𝑖 ∼ 𝑁𝑁(0,𝜎𝜎2). 

Fitting the ever exposed vs. unexposed model,  

 𝑌𝑌�𝑖𝑖 = 𝛽̂𝛽0,𝑎𝑎𝑎𝑎𝑎𝑎 + 𝛽̂𝛽𝑎𝑎𝑎𝑎𝑎𝑎𝑋𝑋𝑎𝑎𝑎𝑎𝑦𝑦𝑖𝑖,   

On average,  
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� 𝑋𝑋𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖 𝑌𝑌𝑖𝑖
𝑖𝑖

 = 0 𝛽𝛽0 𝑛𝑛𝑛𝑛�𝑋𝑋𝑎𝑎𝑎𝑎𝑎𝑎 = 0� + 1 𝛽𝛽0 𝑛𝑛𝑛𝑛�𝑋𝑋𝑎𝑎𝑎𝑎𝑎𝑎 = 1 & 𝑋𝑋𝑠𝑠 = 0� + 1 (𝛽𝛽0 + 𝛽𝛽1) 𝑛𝑛𝑛𝑛(𝑋𝑋𝑠𝑠 = 1)

 = 0 𝛽𝛽0 𝑛𝑛�1 − 𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎� + 1 𝛽𝛽0 𝑛𝑛�𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎 − 𝑝𝑝𝑠𝑠� + 1 (𝛽𝛽0 + 𝛽𝛽1) 𝑛𝑛𝑝𝑝𝑠𝑠
= 𝑛𝑛�𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝛽𝛽0 + 𝑝𝑝𝑠𝑠𝛽𝛽1�.

 

Therefore on average,  

𝛽̂𝛽𝑎𝑎𝑎𝑎𝑎𝑎  =   
∑ 𝑋𝑋𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖 𝑌𝑌𝑖𝑖/𝑛𝑛 − (∑ 𝑋𝑋𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖/𝑛𝑛)(∑ 𝑌𝑌𝑖𝑖/𝑛𝑛)𝑖𝑖𝑖𝑖𝑖𝑖

∑ 𝑋𝑋𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖
2 /𝑛𝑛 − �∑ 𝑋𝑋𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖𝑖𝑖 �2𝑖𝑖

 

 =  
𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎 𝛽𝛽0 + 𝑝𝑝𝑠𝑠𝛽𝛽𝑖𝑖 − 𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎(𝛽𝛽0 + 𝑝𝑝1𝛽𝛽1) 

𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎 − 𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎2

=  
𝑝𝑝𝑠𝑠
𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎

𝛽𝛽1.

  

The residuals resulting from this regression are given by 

𝑌𝑌𝑖𝑖 − 𝑌𝑌�𝑖𝑖 = 𝛽𝛽0 + 𝛽𝛽1𝑋𝑋𝑠𝑠𝑠𝑠 + 𝜀𝜀𝑖𝑖 − 𝛽𝛽0 −
𝑝𝑝1
𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎

𝛽𝛽1𝑋𝑋𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖

 = 𝜀𝜀𝑖𝑖 + 𝛽𝛽1 �𝑋𝑋𝑠𝑠𝑠𝑠 −
𝑝𝑝𝑠𝑠
𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎

𝑋𝑋𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖� .
 

The sum of squares of residuals will average 

��𝑌𝑌𝑖𝑖 − 𝑌𝑌�𝑖𝑖�
2

𝑖𝑖

 = ��𝜀𝜀𝑖𝑖2 + 2𝜀𝜀𝑖𝑖𝛽𝛽1 �𝑋𝑋𝑠𝑠𝑠𝑠 −
𝑝𝑝𝑠𝑠
𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎

𝑋𝑋𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖� + 𝛽𝛽12 �𝑋𝑋𝑠𝑠𝑠𝑠 −
𝑝𝑝𝑠𝑠
𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎

𝑋𝑋𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖�
2

�
𝑖𝑖

 

 = 𝑛𝑛𝜎𝜎2 + 𝛽𝛽12��𝑋𝑋𝑠𝑠𝑠𝑠 −
𝑝𝑝𝑠𝑠
𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎

𝑋𝑋𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖�
2

𝑖𝑖

 = 𝑛𝑛𝜎𝜎2 + 𝛽𝛽12 �02 𝑛𝑛𝑛𝑛�𝑋𝑋𝑎𝑎𝑎𝑎𝑎𝑎 = 0� +
𝑝𝑝𝑠𝑠2

𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎2  𝑛𝑛𝑛𝑛�𝑋𝑋𝑎𝑎𝑎𝑎𝑎𝑎 = 1 & 𝑋𝑋𝑠𝑠 = 0� +
�𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎 − 𝑝𝑝𝑠𝑠�

2

𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎2  𝑛𝑛𝑛𝑛(𝑋𝑋𝑠𝑠 = 1)�

 = 𝑛𝑛𝜎𝜎2 + 𝛽𝛽12 �0 𝑛𝑛𝑝𝑝𝑠𝑠 +
𝑝𝑝𝑠𝑠2

𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎2 𝑛𝑛�𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎 − 𝑝𝑝𝑠𝑠� +
�𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎 − 𝑝𝑝𝑠𝑠�

2

𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎2 𝑛𝑛𝑝𝑝𝑠𝑠� 

 = 𝑛𝑛𝜎𝜎2 + 𝑛𝑛𝛽𝛽1 
2 𝑝𝑝𝑠𝑠�𝑝𝑝𝑎𝑎𝑎𝑎𝑦𝑦 − 𝑝𝑝𝑠𝑠�

𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎
.

 

Hence the average R2 will be 
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 1 −
∑ �𝑌𝑌𝑖𝑖 − 𝑌𝑌�𝑖𝑖�

2
𝑖𝑖

∑ (𝑌𝑌𝑖𝑖 − 𝑌𝑌�𝑖𝑖)2𝑖𝑖
 

=  1 −
𝑛𝑛𝜎𝜎2 + 𝑛𝑛𝛽𝛽12𝑝𝑝𝑠𝑠�𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎 − 𝑝𝑝𝑠𝑠�/𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎

𝑛𝑛𝜎𝜎2 + 𝑛𝑛𝛽𝛽12𝑝𝑝𝑠𝑠(1 − 𝑝𝑝𝑠𝑠)  

=  
𝛽𝛽12𝑝𝑝𝑠𝑠�1 − 𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎�/𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎

𝛽𝛽12𝑝𝑝𝑠𝑠�1 − 𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎�/𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎 + 𝜎𝜎2

 

The average standard error of the regression coefficient will be 

 �
∑ �𝑌𝑌𝑖𝑖 − 𝑌𝑌�𝑖𝑖�

2
𝑖𝑖 / 𝑛𝑛

𝑛𝑛 𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎�1 − 𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎�
 

=  �
𝜎𝜎2 + 𝛽𝛽12𝑝𝑝𝑠𝑠�𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎 − 𝑝𝑝𝑠𝑠�/𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎

𝑛𝑛 𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎�1 − 𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎�
.

  

Leading to the average standardized test statistic of  

𝑧𝑧𝑎𝑎𝑎𝑎𝑎𝑎  =   
𝑝𝑝𝑠𝑠
𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎

𝛽𝛽1 �
𝜎𝜎2 + 𝛽𝛽12𝑝𝑝𝑠𝑠�𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎 − 𝑝𝑝𝑠𝑠�/𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎

𝑛𝑛 𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎�1 − 𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎�
�  

= 𝛽𝛽1𝑝𝑝𝑠𝑠�
1 − 𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎
𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎

�
𝑛𝑛

𝜎𝜎2 + 𝛽𝛽12𝑝𝑝𝑠𝑠�𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎 − 𝑝𝑝𝑠𝑠�/𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎
.

 

For comparison, the residuals resulting from regression of Y on 𝑋𝑋𝑠𝑠  are 𝜀𝜀𝑖𝑖 , which have sum of 

squares 𝑛𝑛𝜎𝜎2, leading to an average R2 of 

𝑅𝑅𝑠𝑠2 =
𝛽𝛽𝑠𝑠2𝑝𝑝𝑠𝑠(1 − 𝑝𝑝𝑠𝑠)

𝛽𝛽𝑠𝑠2𝑝𝑝𝑠𝑠(1 − 𝑝𝑝𝑠𝑠) + 𝜎𝜎2
, 

an average standard error of �𝜎𝜎2/𝑛𝑛, and an average standardized test statistic of 

𝑧𝑧𝑠𝑠 = 𝛽𝛽1�
𝑛𝑛𝑝𝑝𝑠𝑠(1 − 𝑝𝑝𝑠𝑠)

𝜎𝜎2
. 

Therefore, 

𝑧𝑧𝑎𝑎𝑎𝑎𝑎𝑎 =  𝑧𝑧𝑠𝑠�
𝑝𝑝𝑠𝑠/(1 − 𝑝𝑝𝑠𝑠) 

𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎/(1 − 𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎)�
𝜎𝜎2

𝜎𝜎2 + 𝛽𝛽12𝑝𝑝𝑠𝑠(𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎 − 𝑝𝑝𝑠𝑠)/𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎
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Since 𝑝𝑝𝑠𝑠/(1−𝑝𝑝𝑠𝑠) 
𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎/(1−𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎)

< 1 and 𝑝𝑝𝑠𝑠/(1−𝑝𝑝𝑠𝑠) 
𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎/(1−𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎)

< 1, we have shown that 𝑧𝑧𝑎𝑎𝑎𝑎𝑎𝑎 < 𝑧𝑧𝑠𝑠.  

 

Sensitivity Analysis Examining Baseline Parent Social Class as a Confounder 

In the current study, baseline parent social class was included as a covariate in the primary 

analysis. Parent social class, which captures job industry and rank, is related to other indicators of 

socioeconomic status, but likely has distinct effects on health across the life course (27).  In the 

current sample, parent social class was only modestly correlated (r ≤0.45) with other aspects of 

socioeconomic status, such as financial stress and neighborhood disadvantage.  Inclusion of parent 

social class thus allowed us to control for potential confounding effects of the social class into 

which children are born. 

As there is concern that adjusting for baseline parent social class as a covariate may not be 

appropriate given that it conceptually overlaps with some of the childhood adversity types in the 

current study (in particular, the measure of financial stress and neighborhood disadvantage), we 

report here on results from: 1)  our investigation into the definition of confounding from the causal 

inference literature, 2) our investigation in the theoretical and empirical literature to understand 

the nature of socioeconomic status and its effects on childhood adversity and DNAm , and 3) 

additional statistical analyses to compare results with and without adjusting for baseline parent 

social class. In the narrative below, we summarize what we learned through these processes.  We 

hope that these insights will be useful to make explicit our thinking and help guide future research 

efforts, including attempts to replicate these study findings.  
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The Definition of Confounding  

A confounder is traditionally defined as a variable that meets the following three criteria, 

as determined through either bivariate or multivariate tests of association: 1) it is associated with 

the exposure; 2) it is associated with the outcome given the exposure; 3) it does not lie on the 

causal pathway between the exposure and the outcome. 

In the past decade, researchers in the field of causal inference (see for example: (28-30)) 

have questioned whether relying purely on these three associational criteria is sufficient to evaluate 

confounding.  These concerns have been raised following instances when a true confounder has 

failed to satisfy the three associational criteria noted above, or when a variable meets these three 

associational criteria should not be adjusted for.  Causal inference experts have therefore proposed 

alternative strategies for determining the extent to which a third variable could be a potential 

confounder, which are intended to be used alongside the three associational criteria highlighted 

above. Some of these alternative strategies draw from things that cannot be directly tested through 

association analyses, such as greater use of causal diagrams and critical examination of theoretical 

evidence.  Other alternative definitions are based on evaluating bias before and after adjustment 

for a potential confounding variable (29).      

 Related to this last strategy, another property central to the concept of confounding is 

collapsibility.  In other words, when a potential confounder is removed from the analysis, does the 

association between the outcome and exposure remain the same?  Or, is the exposure-outcome 

relationship invariant to the inclusion of the potential confounder? Whenever collapsibility fails, 

meaning where the results are not the same before and after adjusting for the potential confounder, 

it suggests that the exposure-outcome relationship may be confounded.     
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 As summarized in the sections that follow, we considered the theoretical evidence 

regarding whether parent social class should be treated as a confounder and investigated whether 

the results were collapsible before and after the inclusion of baseline parent social class as a 

covariate.  

 

Theoretical Evidence   

Theoretical evidence is critical to justify the inclusion of covariates.  Here, we briefly 

review the literature on links between socioeconomic status (SES) and exposure to childhood 

adversity as well as the associations between SES and DNA methylation.  As shown below, the 

major take-home from this in-depth literature review is that baseline SES, including indicators of 

parent social class – as it is commonly measured in UK-based sample and was examined here (31, 

32), is a plausible suspect for confounding the relationship between exposure to other types of 

childhood adversity and DNAm and that the estimate of these types of adversity on DNAm may 

be biased without adjusting for baseline SES.  Furthermore, not all measures of SES perform the 

same in terms of their association with DNAm, suggesting that each different facet of the construct 

of SES needs to be considered on its own. 

 First, it is known from decades of literature that different dimensions of SES, including 

parent social class, are associated with childhood adversity. This literature has documented that 

children who experience adversity – including child maltreatment, parental psychopathology, 

parental substance use, or family disruption – are more likely to be poor, and to be raised by 

mothers who have less education, receive public assistance, and live in disadvantaged 

neighborhoods.  Moreover, some dimensions of child SES that are linked to these specific types 

of childhood adversity, such as parental education or parent social class (as defined by parent 
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employment), tend to be more fixed or stable across time.  Other dimensions tend to be less stable, 

such as indicators of financial stress or neighborhood disadvantage, which varies as a function of 

access to specific resources at different time-points in life or the occurrence of major life events 

leading to change in individual circumstances.  It has been argued (33-35) that this temporal 

variation requires the separate consideration of different domains of SES, as they each could have 

different links to health outcomes.  In the current study, controlling for baseline parental social 

class would help tease apart the effects of subjective levels of poverty or neighborhood 

disadvantage experienced by the participants throughout development from a less variable status 

of social disadvantage as captured by baseline social class. Therefore, there is theoretical ground 

for suspecting the existence of an SES-adversity exposure relationship. 

 Secondly, there has been growing evidence documenting associations between different 

indicators of SES and DNA methylation. Specifically, Swartz et al. (36) found that methylation 

marks associated with SES (defined as a composite score of education levels and income) may be 

an underlying mechanism for changes in depression-related brain functions. Several studies also 

found differential methylation patterns for individuals with lower geographical index of 

deprivation or education levels (37, 38). Furthermore, Stringhini et al. (39) showed that indicators 

of SES (parental occupational position) were associated with DNAm of genes involved in 

inflammation. These findings suggest that this relatively fixed aspect of SES (distinctive from the 

perceived economic or environmental hardship as measured by financial stress or neighborhood 

disadvantage in our sample) may induce DNAm changes, thereby supporting the potential SES-

outcome link.  In fact, prior longitudinal studies examining the effects of SES on DNAm also 

adjusted for baseline SES to control for risk factors prior to exposure or a more stable dimension 

of SES (40).   
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Results Before and After Adjusting for Baseline SES 

To evaluate the collapsibility principle, we examined the magnitude of change in our 

primary results (meaning of the 38 identified loci) before and after the inclusion of parent social 

class as a covariate. As presented in the main analyses (Table 1), methylation differences at 38 

CpG sites were found to be associated with exposure to childhood adversity (p < 1x10-7).  

After removing baseline parent social class as a covariate, 38 CpG sites were again 

identified (Table S7).  However, they were not identical sites to those 38 that were originally 

identified. Specifically, 31 CpGs were shared between the two sets of results and the same life 

course hypotheses were identified for these. Moreover, the Stage 2 beta estimates, corresponding 

standard errors, and R2 values were also effectively unchanged (relative difference, as defined by 

(θSES−θno SES)
θno SES  

, was under 6% for all sites for all three parameters: β, SE, and R2). This comparison 

indicated that for these 31 sites, the results were largely consistent before and after including parent 

social class, thus the results were largely collapsible.   

Importantly, however, the results overall were not entirely collapsible.  There were seven 

loci dropped from the original results, and another seven new sites added after no longer adjusting 

for parent social class.  These 14 sites were dispersed across different adversity types.  For 

example, the seven sites that only appeared after adjusting for parent social class were capturing 

DNAm differences resulting from five different types of adversity (physical or sexual abuse, 

maternal psychopathology, one adult in the household, family instability, and financial 

stress/poverty).  The finding that 20% of the identified sites in each analysis did not overlap 

suggests that baseline parent social class may potentially confound the relationships between 

childhood adversity and DNAm differences at some loci.   
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 We then dug deeper into the pattern of findings related to the 14 loci that were not shared 

by the two sets of results (i.e., the seven hits that were dropped from the original analysis and the 

seven hits that were added in the revised analysis). The discrepancy in results appears to be 

attributed to the potential positive and negative confounding by baseline parent social class.  

Positive confounding refers to a scenario where the observed association is biased away from the 

null in the presence of an unadjusted confounder, whereas negative confounding refers to the 

opposite: the unadjusted association is biased towards the null. Whether the confounding is 

positive or negative depends on the directions of the confounder-exposure and confounder-

outcome associations. As SES may be associated with both hyper- and hypo- methylation, both 

types of confounding are possible in epigenetic studies. When the unadjusted estimate is biased 

away from the null (positive confounding), including the confounder may result in those CpG sites 

being dropped as significant.  When the unadjusted estimate is biased towards the null (negative 

confounding), the inclusion of the confounder may lead to new discoveries. Since adjusting for 

baseline parent social class led to both new additional hits being identified and unadjusted hits 

being removed, both types of confounding may be present in our analyses given that the directions 

of effects between parent social class and DNAm are CpG site-specific.  

 To better understand the specific pattern of these associations, we additionally examined 

the associational criteria presented earlier. Of the 14 sites that were not shared by the results before 

and after adjusting for parent social class, two of these CpG sites (thus 15% of the loci) were 

associated with baseline parent social class (cg15577126, family instability, F=3.21, p=0.007; 

cg01370449, sexual or physical abuse, F=4.28, p=0.0007). However, the effect estimates in 

epigenetic studies are known to be small and the models may be under powered to detect such 

associations, thus there could be even more significant loci linked to parent social class at baseline. 
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We are hoping to replicate the analyses in larger studies where we are more sufficiently powered 

to test whether the small, albeit important, effects of parent social class on DNAm exist or not.  

Testing the associations between the life course hypotheses encoding childhood adversity 

identified at these 14 loci and baseline parent social class, we found that 7 of the 12 (58%) unique 

life course hypotheses were associated with baseline parent social class (chi-squared test p<0.05). 

Taken together, these association tests may provide evidence for the presence of confounding 

induced by baseline SES.  However, as we discussed above, confounding cannot be determined 

purely based on associational criteria and the results should be interpreted with this notion in mind.  

 Based on a careful review of the theoretical evidence for SES being a confounder as well 

as an investigation of differences in results before and after including SES, we concluded that the 

more conservative approach would be to adjust for baseline parent social class as a covariate.  This 

decision is supported based on prior research literature and our finding that the results shifted with 

the exclusion of this variable. However, results at most of the identified hits (more than 80% among 

both the Bonferroni corrected 38 loci and 380 FDR corrected loci) remained invariant, suggesting 

that the inclusion of SES did not cause a substantial change in the findings. While some loci are 

sensitive to potential bias induced by SES and should not be neglected, the patterns of results are 

largely stable. The fact that the same number of top hits were identified in these two sets of 

analyses is reassuring and shows that we did not intentionally overfit the model and include parent 

social class purely based on its impact on the statistical significance of findings.  

 

 

 

 



Dunn et al.  Supplement 

22 

Exploring the Biological Significance of the Findings 

Correlation Between Blood and Brain Tissue 

 To examine the relevance of methylation at our top sites to psychopathology, we examined 

the correlation between methylation in peripheral blood tissue and that of the brain using a publicly 

available database of methylation in 122 adults (42). We retrieved Pearson r correlation values 

between methylation in blood and four brain regions: prefrontal cortex (PFC), entorhinal cortex 

(EC), superior temporal gyrus (STG), and cerebellum (CER). 

 

Enrichment of Regulatory Elements 

To assess potential functional relevance of methylation changes at CpG sites associated 

with exposure to adversity, we examined the enrichment of regulatory elements annotated to FDR-

significant loci. We obtained annotations of gene promoters, enhancers, and CpG Islands (CGIs) 

for all CpG sites from the IlluminaHumanMethylation450kanno.ilmn12.hg19 package in 

R/Bioconductor. We compared the proportion of annotations between the FDR-significant sites 

and all autosomal sites tested with chi-squared goodness-of-fit tests. We also tested for enrichment 

of DNase I hypersensitivity sites (DHS) and histone marks (H3K27ac, H3K4me3, H3K4me1, 

H3K9ac, and H3K36me3) for FDR-significant sites using data from all tissues and cell types in 

the Roadmap Epigenomics Project (43) and ENCODE (44) using eFORGE 1.2 (45). eFORGE 

performs an overlap analysis by selecting 1000 sets of CpGs matched for gene relationship and 

CpG island relationship annotation and calculating a confidence interval of expected enrichment. 

The resulting p-values for each tissue and cell type were then corrected with Benjamini-Yekutieli 

multiple testing correction (45). 
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Biological Processes Potentially Affected by Adversity 

 To identify common biological processes shared by these genes, we performed a functional 

clustering analysis in DAVID 6.8 (46), which identifies Gene Ontology (GO) biological process 

terms that are enriched for genes annotated to the FDR-significant sites.  CpG sites were annotated 

to the nearest gene (located in the gene body or within 300 kb of a transcription start site, TSS) 

using the FDb.InfiniumMethylation.hg19 package in R/Bioconductor (46).  DAVID calculates an 

enrichment score for each functional cluster, which is the negative log of the geometric mean of 

the p-values of all GO terms within the cluster. The p-value for each GO term is derived from a 

modified Fisher’s exact test, which tests whether the GO term is overrepresented among genes in 

the gene set as compared to a background of all autosomal genes tagged by the Illumina Human 

Methylation 450K BeadChip microarray. 

To assess the selective constraint of these genes, we downloaded the gene constraint 

metrics from the Exome Aggregation Consortium (ExAC) and calculated the difference in the 

probability of intolerance to Loss-of-Function variation (pLI) in genes annotated to the FDR-

significant loci as compared to genes annotated to the rest of the autosomal loci. The significance 

of this difference was tested with a permutation test. The FDR-significant gene label was permuted 

among all genes 10000 times and the difference in pLI was calculated; the number of permutations 

in which the absolute value of the difference in means was greater than the absolute value of the 

observed difference in means was recorded as the empirical p-value. 
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Supplementary Tables and Figures 
 
 

Table S1. Distribution of covariates in the total sample (N=971) and among those exposed to any adversity (N=650) 

  Total Sample Exposure to any adversity 

 % N % N chi-squared p-value 

Sex 0.562 0.453 

Males 49.85 484 48.92 318   
Females 50.15 487 51.08 332   

Race 4.811 0.028 

White 2.78 26 3.7 23   
Non-White 97.22 909 96.3 599   

Age of Mother at Child's Birth 4.52 0.104 

Ages 15-19 0.93 9 1.38 9   
Ages 20-35 89.54 865 88.92 578   
Age 36+ 9.52 92 9.69 63   

Parental Social Class 13.327 0.021 

Foreman 17.92 174 17.23 112   
Manager 38.83 377 37.38 243   
Supervisor 20.91 203 20 130   
Lending Hand 5.56 54 5.54 36   
Self-Employed 1.85 18 2.15 14   
None of these 14.93 145 17.69 115   

Number of Previous Pregnancies 4.703 0.195 

0 46.8 439 46.26 291   
1 36.67 344 35.61 224   
2 12.69 119 13.51 85   
3+ 3.84 36 4.61 29   

Birth Weight (g) 0.697 0.874 

<3000 13.33 127 13.84 89   
3000 - 3499 36.31 346 35.61 229   
3500 - 3499 35.15 335 35.15 226   
>= 4000 15.22 145 15.4 99   

Sustained Smoking During Pregnancy 10.522 0.001 

Yes 89.23 820 86.81 533   
No 10.77 99 13.19 81     

Note. The chi-squared statistics and p-values in bold indicate that the tests reached statistical significance at α = 0.05.  
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Table S2. Tetrachoric correlations among time-points within adversities 

Caregiver physical or emotional abuse (N=787)   Maternal psychopathology (N=760) 
Age 8 mo 1.75 2.75 4 5 6  Age 8 mo 1.75 2.75 5 6  
8 mo 1 --- --- --- --- ---  8 mo 1 --- --- --- ---  
1.75 0.82 1 --- --- --- ---  1.75 0.67 1 --- --- ---  
2.75 0.69 0.77 1 --- --- ---  2.75 0.56 0.67 1 --- ---  

4 0.62 0.7 0.78 1 --- ---  5 0.61 0.6 0.65 1 ---  
5 0.58 0.58 0.69 0.66 1 ---  6 0.44 0.53 0.57 0.71 1  
6 0.45 0.46 0.5 0.56 0.67 1         
               

Sexual or physical abuse (by anyone) (N=769)   Family instability (N=769) 
Age 1.5 2.5 3.5 4.75 5.75 6.75  Age 1.5 2.5 3.5 4.75 5.75 6.75 
1.5 1 --- --- --- --- ---  1.5 1 --- --- --- --- --- 
2.5 0.44 1 --- --- --- ---  2.5 0.74 1 --- --- --- --- 
3.5 0.02 0.32 1 --- --- ---  3.5 0.48 0.6 1 --- --- --- 

4.75 0.33 0.44 0.69 1 --- ---  4.75 0.27 0.41 0.28 1 --- --- 
5.75 0.4 0.51 0.61 0.49 1 ---  5.75 0.24 0.21 0.34 0.52 1 --- 
6.75 0.28 0.42 0.25 0.4 0.56 1  6.75 0.28 0.37 0.11 0.61 0.58 1 

               
One adult in the household (N=726)   Financial stress (N=846) 

Age 8 mo 1.75 2.75 4 7   Age 8 mo 1.75 2.75 5 7  
8 mo 1 --- --- --- ---   8 mo 1 --- --- --- ---  
1.75 0.9 1 --- --- ---   1.75 0.71 1 --- --- ---  
2.75 0.78 0.93 1 --- ---   2.75 0.59 0.67 1 --- ---  

4 0.64 0.82 0.91 1 ---   5 0.53 0.54 0.59 1 ---  
7 0.54 0.75 0.81 0.79 1   7 0.36 0.4 0.38 0.56 1  

               
Neighborhood disadvantage (N=771)          

Age 1.75 2.75 5 7           
1.75 1 --- --- ---           
2.75 0.74 1 --- ---           

5 0.71 0.8 1 ---           
7 0.67 0.75 0.89 1           

Cell entries are correlation values indicating the strength of each pairwise association between exposure at two time points, with 0=unexposed and 1=exposed 
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See Supplemental Table S3 in Supplement 2.  
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Table S4. Results of sensitivity analysis examining differential methylation at birth for all Bonferroni-significant CpG sites 

CpG site Adversity First hypothesis chosen by 
LARS procedure 

Birth DNAm in 
unexposed group 

(beta) 

Birth DNAm in 
exposed group 

(beta) 

Beta SE P Directions of 
effect (birth, 

age 7) 

cg10713431 Caregiver physical or 
emotional abuse 

(N=643) 

middle childhood (age 6) 0.117 0.121 0.00497 0.0031 0.1116 ++ 
cg12023170 middle childhood (age 6) 0.058 0.057 -0.00132 0.0032 0.6787 -+ 
cg19825600 middle childhood (age 6) 0.283 0.246 -0.03488 0.0214 0.1037 -- 
cg01370449 Sexual or physical 

abuse (by anyone) 
(N=630) 

very early childhood (age 2.5) 0.2 0.225 0.01823 0.0217 0.4006 ++ 
cg06430102 very early childhood (age 2.5) 0.902 0.902 0.00043 0.0226 0.9848 +- 
cg19170021 early childhood (age 4.75) 0.767 0.759 0.00015 0.0277 0.9958 ++ 
cg05072819 early childhood (age 5.75) 0.041 0.051 0.01205 0.004 0.0029 ++ 
cg05936516 middle childhood (age 6.75) 0.105 0.1 -0.00009 0.008 0.9911 0+ 
cg04583813 Maternal 

psychopathology 
(N=618) 

very early childhood (age 8 mo.) 0.866 0.871 0.00359 0.0101 0.7228 +- 
cg08171937 very early childhood (age 2.75) 0.016 0.017 0.00051 4.00E-04 0.2503 ++ 
cg10666628 very early childhood (age 2.75) 0.019 0.019 -0.00012 4.00E-04 0.7789 -+ 
cg17806989 early childhood (age 5) 0.971 0.97 -0.00157 0.0049 0.7487 -- 
cg08337366 One adult in the 

household (N=638) 
very early childhood (age 8 mo.) 0.926 0.914 -0.01153 0.013 0.3744 -- 

cg10192047 very early childhood (age 8 mo.) 0.016 0.015 -0.00111 0.0017 0.5249 -+ 
cg26990406 very early childhood (age 8 mo.) 0.827 0.835 0.00992 0.0449 0.8251 +- 
cg24468070 very early childhood (age 1.75) 0.026 0.024 -0.00154 0.0054 0.7734 -+ 
cg03397307 very early childhood (age 2.75) 0.026 0.035 0.01011 0.0025 1.00E-04 ++ 
cg11631610 Financial stress 

(N=694) 
very early childhood (age 8 mo.) 0.94 0.943 0.00514 0.0105 0.623 +- 

cg06783003 very early childhood (age 1.75) 0.865 0.865 0.00321 0.0102 0.7528 ++ 
cg01050704 early childhood (age 5) 0.018 0.019 0.0011 6.00E-04 0.0496 ++ 
cg02006977 early childhood (age 5) 0.015 0.015 -0.00034 6.00E-04 0.553 -+ 
cg21299458 early childhood (age 5) 0.097 0.113 0.01361 0.0077 0.0795 ++ 
cg19219503 middle childhood (age 7) 0.878 0.879 0.00496 0.0154 0.7482 +- 
cg11714846 accumulation 0.896 0.896 -0.00013 0.0022 0.9515 -- 
cg21924472 recency 0.73 0.746 0.00062 9.00E-04 0.4711 ++ 
cg24996440 recency 0.575 0.597 0.00343 0.0014 0.0129 ++ 
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CpG site Adversity First hypothesis chosen by 
LARS procedure 

Birth DNAm in 
unexposed group 

(beta) 

Birth DNAm in 
exposed group 

(beta) 

Beta SE P Directions of 
effect (birth, 

age 7) 

cg00928478 Neighborhood 
disadvantage (N=629) 

very early childhood (age 1.75) 0.021 0.02 -0.00085 6.00E-04 0.1744 -- 
cg01954337 very early childhood (age 1.75) 0.053 0.055 0.00322 0.0023 0.1639 ++ 
cg04996689 very early childhood (age 1.75) 0.032 0.032 0.00072 0.0018 0.6794 ++ 
cg12069925 very early childhood (age 1.75) 0.042 0.042 -0.00014 0.0016 0.9303 -+ 
cg14522055 very early childhood (age 1.75) 0.031 0.031 0.00047 0.0012 0.7035 ++ 
cg19157140 very early childhood (age 1.75) 0.014 0.014 0.00064 5.00E-04 0.2422 ++ 
cg21740964 very early childhood (age 1.75) 0.15 0.152 0.00508 0.0042 0.2262 ++ 
cg24826892 very early childhood (age 1.75) 0.016 0.016 0.00018 7.00E-04 0.7923 ++ 
cg08546016 early childhood (age 5) 0.048 0.047 -0.00254 0.003 0.4041 -+ 
cg12412390 middle childhood (age 7) 0.029 0.03 0.00069 0.0017 0.6822 ++ 
cg18311384 Family instability 

(N=630) 
very early childhood (age 2.5) 0.019 0.019 -0.00067 9.00E-04 0.4595 -+ 

cg27637303 very early childhood (age 2.5) 0.195 0.209 0.0114 0.0182 0.5308 ++ 
To assess the degree of differential methylation present at birth, we performed regression analysis on methylation in umbilical cord blood at the top CpG sites. The hypothesis associated 
with DNAm at age 7 was significantly associated with DNAm at birth for one CpG site (bold value, p<0.05/38 = 0.00132). The direction of the effect of exposure to adversity on DNAm 
at birth was the same as that on DNAm at age 7 in the majority of CpG sites (24 of 37 sites in which the first hypothesis chosen was not significantly associated with methylation at 
birth), suggesting that there may be insufficient power to detect effects of later exposure to adversity on DNAm at birth.  Birth DNAm = unadjusted DNA methylation (beta values) in 
umbilical cord blood averaged within group; Beta, SE, P = parameter estimate, standard error, and p-value of regression coefficient of first hypothesis chosen; Directions of effect = 
sign of regression coefficient for the effect of the first hypothesis chosen on methylation in blood from the umbilical cord and from age 7. "0" indicates that the magnitude of effect 
(absolute value of the beta coefficient) was below 0.0001. 
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See Supplemental Table S4-extension in Supplement 2.  
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Table S5. Results of sensitivity analysis examining differential methylation at age 7 after controlling for genotypes, for all Bonferroni-significant CpG sites linked to mQTLs 
CpG Adversity First hypothesis chosen by LARS procedure Number of 

mQTL SNPs  
N' Beta SE P Directions of effect (age 7, age 

7 controlling for genotype) 

cg10713431 Caregiver physical or 
emotional abuse (N=719) 

middle childhood (age 6) . . . . . . 
cg12023170 middle childhood (age 6) 95 559 0.0107 0.0025 1.89E-05 ++ 
cg19825600 middle childhood (age 6) . . . . . . 
cg01370449 Sexual or physical abuse (by 

anyone) (N=703) 
very early childhood (age 2.5) 101 510 0.0775 0.0187 3.95E-05 ++ 

cg06430102 very early childhood (age 2.5) . . . . . . 
cg19170021 early childhood (age 4.75) 8 632 0.0833 0.0216 1.30E-04 ++ 
cg05072819 early childhood (age 5.75) 218 423 0.009 0.0036 1.30E-02 ++ 
cg05936516 middle childhood (age 6.75) . . . . . . 
cg04583813 Maternal psychopathology 

(N=691) 
very early childhood (age 8 mo.) 6 632 -0.025 0.0048 2.76E-07 -- 

cg08171937 very early childhood (age 2.75) . . . . . . 
cg10666628 very early childhood (age 2.75) . . . . . . 
cg17806989 early childhood (age 5) . . . . . . 
cg08337366 One adult in the household 

(N=710) 
very early childhood (age 8 mo.) 1 644 -0.0337 0.0065 2.57E-07 -- 

cg10192047 very early childhood (age 8 mo.) . . . . . . 
cg26990406 very early childhood (age 8 mo.) . . . . . 

 

cg24468070 very early childhood (age 1.75) 40 600 0.0231 0.0044 2.64E-07 ++ 
cg03397307 very early childhood (age 2.75) 1 625 0.0048 0.001 3.09E-06 ++ 
cg18311384 Family instability (N=703) very early childhood (age 2.5) . . . . . . 
cg27637303 very early childhood (age 2.5) 27 612 0.0669 0.0174 1.36E-04 ++ 
cg11631610 Financial stress (N=774) very early childhood (age 8 mo.) 1 580 -0.0174 0.0068 1.05E-02 -- 
cg06783003 very early childhood (age 1.75) . . . . . . 
cg01050704 early childhood (age 5) 1 712 0.0023 5.00E-04 5.52E-06 ++ 
cg02006977 early childhood (age 5) 1 617 0.0019 5.00E-04 2.17E-04 ++ 
cg21299458 early childhood (age 5) 2 522 0.0461 0.008 1.49E-08 ++ 
cg19219503 middle childhood (age 7) . . . . . . 
cg11714846 accumulation . . . . . . 
cg21924472 recency . . . . . . 
cg24996440 recency . . . . . . 
cg00928478 Neighborhood disadvantage 

(N=702) 
very early childhood (age 1.75) 1 608 -0.0021 5.00E-04 1.04E-05 -- 

cg01954337 very early childhood (age 1.75) 2 612 0.0094 0.0019 5.06E-07 ++ 
cg04996689 very early childhood (age 1.75) . . . . . . 
cg12069925 very early childhood (age 1.75) . . . . . . 
cg14522055 very early childhood (age 1.75) . . . . . . 
cg19157140 very early childhood (age 1.75) . . . . . . 
cg21740964 very early childhood (age 1.75) 5 614 0.014 0.003 5.02E-06 ++ 
cg24826892 very early childhood (age 1.75) . . . . . . 
cg08546016 early childhood (age 5) 6 627 0.0061 0.0013 2.65E-06 ++ 
cg12412390 middle childhood (age 7) . . . . . . 

To assess the degree of differential methylation attributable to genetic variation, we conducted a sensitivity analysis testing the effect of the hypothesis chosen by the first stage of the LARS on DNAm after controlling for 
known mQTLs. After controlling for genotypes at mQTL SNPs, the direction of the effect of exposure to adversity on DNAm did not change. Number of mQTL SNPs = number of SNPs associated with methylation at 
CpG site identified by Gaunt et al. 2015; N' = number of subjects included in analysis (i.e. with non-missing genotype data); Beta, SE, P = parameter estimate, standard error, and p-value of regression coefficient of first 
hypothesis chosen, after controlling for genotype; Directions of effect = sign of regression coefficient for the effect of the first hypothesis chosen on methylation in blood at age 7 (unadjusted) and at age 7 controlling for 
genotype (adjusted). 
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Table S6. Correlation of methylation between blood and four brain regions (data from Hannon et al. 2015) 

CpG site Adversity First hypothesis chosen by LARS 
procedure 

Correlation with brain methylation, by region 
        PFC          EC         STG         CER 

cg10713431 Caregiver physical or 
emotional abuse 

(N=719) 

middle childhood (age 6) 0.367 0.397 0.319 0.395 
cg12023170 middle childhood (age 6) 0.389 0.385 0.508 0.598 
cg19825600 middle childhood (age 6) 0.250 0.149 0.316 0.162 
cg01370449 Sexual or physical 

abuse (by anyone) 
(N=703) 

very early childhood (age 2.5) 0.402 0.409 0.413 0.090 
cg06430102 very early childhood (age 2.5) -0.131 -0.047 -0.025 -0.132 
cg19170021 early childhood (age 4.75) 0.043 -0.188 -0.114 -0.038 
cg05072819 early childhood (age 5.75) 0.740 0.744 0.833 0.754 
cg05936516 middle childhood (age 6.75) -0.014 0.049 0.003 -0.129 
cg04583813 Maternal 

psychopathology 
(N=691) 

very early childhood (age 8 mo.) 0.008 -0.153 0.044 0.033 
cg08171937 very early childhood (age 2.75) -0.169 0.204 -0.074 0.099 
cg10666628 very early childhood (age 2.75) -0.005 -0.015 0.103 -0.026 
cg17806989 early childhood (age 5) 0.011 0.278 0.305 -0.017 
cg08337366 One adult in the 

household (N=710) 
very early childhood (age 8 mo.) -0.068 0.120 0.180 0.028 

cg10192047 very early childhood (age 8 mo.) 0.116 -0.079 -0.141 -0.020 
cg26990406 very early childhood (age 8 mo.) 0.146 0.015 0.387 -0.114 
cg24468070 very early childhood (age 1.75) 0.120 0.083 0.116 0.001 
cg03397307 very early childhood (age 2.75) -0.182 0.046 -0.122 0.048 
cg18311384 Family instability 

(N=703) 
very early childhood (age 2.5) -0.054 0.086 -0.077 -0.104 

cg27637303 very early childhood (age 2.5) 0.197 -0.045 0.033 0.174 
cg11631610 Financial stress 

(N=774) 
very early childhood (age 8 mo.) -0.034 -0.037 0.071 -0.001 

cg06783003 very early childhood (age 1.75) -0.022 -0.196 0.010 -0.055 
cg01050704 early childhood (age 5) -0.023 -0.012 0.039 -0.081 
cg02006977 early childhood (age 5) 0.044 0.179 -0.221 -0.019 
cg21299458 early childhood (age 5) 0.293 0.251 0.252 -0.005 
cg19219503 middle childhood (age 7) -0.007 0.180 0.230 0.098 
cg11714846 accumulation -0.011 -0.272 -0.060 -0.024 
cg21924472 recency 0.285 0.431 0.378 0.192 
cg24996440 recency 0.118 0.174 0.148 -0.164 
cg00928478 Neighborhood 

disadvantage (N=702) 
very early childhood (age 1.75) -0.084 0.051 0.139 -0.067 

cg01954337 very early childhood (age 1.75) 0.008 -0.067 0.077 0.023 
cg04996689 very early childhood (age 1.75) 0.057 0.042 -0.175 -0.172 
cg12069925 very early childhood (age 1.75) 0.277 0.108 -0.061 0.256 
cg14522055 very early childhood (age 1.75) -0.107 0.031 0.022 -0.025 
cg19157140 very early childhood (age 1.75) 0.088 0.153 -0.032 0.105 
cg21740964 very early childhood (age 1.75) 0.410 0.455 0.449 0.445 
cg24826892 very early childhood (age 1.75) 0.086 0.038 0.131 -0.074 
cg08546016 early childhood (age 5) -0.078 0.069 -0.249 -0.096 
cg12412390 middle childhood (age 7) 0.158 0.295 -0.072 0.043 
To examine the relevance of methylation at our top sites to psychopathology, we examined the correlation in methylation in peripheral blood with that of 
four brain regions: prefrontal cortex (PFC), entorhinal cortex (EC), superior temporal gyrus (STG), and cerebellum (CER). 
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Table S7. Sensitivity analysis results of the Structured Life Course Modeling Approach (SLCMA) in ARIES, with annotation to the closest gene, for the Bonferroni-significant CpG sites (p<1x10-7), without adjusting for baseline social class   

CpG site Adversity First hypothesis chosen by LARS 
procedure 

DNAm 
in 

unexpo
sed 

 
 

DNAm in 
exposed 
group 
(beta) 

Increases 
in R2 

P Beta 
(effect 

estimate) 

SE Lowe
r 95% 

CI 

Upper 
95% 
CI 

Chr Coordinate 
(bp) 

Nearest 
gene 

Distance 
to nearest 
gene (bp) 

cg10713431 Caregiver physical 
or emotional abuse 

(N=719) 

middle childhood (age 6) 0.132 0.139 0.024 5.91E-08 0.008 0.0019 0.004 0.012 20 43933204 MATN4 0 
cg12023170a middle childhood (age 6) 0.074 0.086 0.038 2.86E-10* 0.013 0.0023 0.008 0.017 1 23751761 TCEA3 499 
cg19825600a,b middle childhood (age 6) 0.458 0.384 0.028 1.77E-08 -0.073 0.0158 -0.104 -0.042 2 3704501 ALLC 1283 
cg02106682✝ Sexual or physical 

abuse (by anyone) 
(N=703) 

very early childhood (age 2.5) 0.216 0.252 0.030 6.84E-08 0.033 0.0066 0.020 0.046 7 27184461 HOXA-
 

0 
cg06430102 very early childhood (age 2.5) 0.926 0.862 0.039 4.13E-10* -0.060 0.0103 -0.080 -0.039 19 1151960 SBNO2 0 
cg16691821a✝ early childhood (age 3.5) 0.089 0.124 0.028 9.12E-08 0.035 0.0074 0.020 0.049 1 2375627 PEX10 31616 
cg19170021 early childhood (age 4.75) 0.734 0.827 0.028 6.28E-08 0.093 0.0209 0.052 0.134 17 79077169 BAIAP2 0 
cg05072819a early childhood (age 5.75) 0.040 0.053 0.031 2.54E-08 0.014 0.0027 0.009 0.019 3 20081367 KAT2B 155 
cg05936516 middle childhood (age 6.75) 0.128 0.153 0.031 7.18E-08 0.025 0.0047 0.016 0.035 5 114507066 TRIM36 0 
cg04583813 Maternal 

psychopathology 
(N=691) 

very early childhood (age 8 mo.) 0.900 0.878 0.032 3.57E-08 -0.023 0.0045 -0.032 -0.014 10 560323 DIP2C 0 
cg08216050a,b✝ very early childhood (age 8 mo.) 0.964 0.968 0.026 7.89E-08 0.004 0.0008 0.002 0.005 16 704013 WDR90 0 
cg08171937 very early childhood (age 2.75) 0.016 0.017 0.032 6.79E-10* 0.001 0.0003 0.001 0.002 12 49454761 RHEBL1 3705 
cg17806989 early childhood (age 5) 0.981 0.975 0.032 1.55E-08 -0.006 0.0012 -0.008 -0.004 13 25338287 RNF17 12 
cg08337366a One adult in the 

household  
(N=710) 

very early childhood (age 8 mo.) 0.934 0.906 0.031 2.45E-08 -0.032 0.0065 -0.045 -0.020 19 6371622 ALKBH7 820 
cg10192047 very early childhood (age 8 mo.) 0.016 0.019 0.029 1.12E-08* 0.003 0.0007 0.002 0.005 19 18722754 TMEM59

 
926 

cg24468070 very early childhood (age 1.75) 0.038 0.058 0.031 7.94E-09* 0.022 0.0044 0.013 0.031 19 54976501 CDC42E
 

0 
cg03397307 very early childhood (age 2.75) 0.025 0.030 0.030 8.42E-09* 0.005 0.0010 0.003 0.007 12 3862423 CRACR2

A 
56 

cg05502103a,b✝ Family instability 
(N=703) 

early childhood (age 3.5) 0.750 0.626 0.029 6.36E-08 -0.133 0.0283 -0.189 -0.078 7 588936 PRKAR1
 

0 
cg15577126✝ early childhood (age 4.75) 0.227 0.291 0.029 7.68E-08 0.061 0.0124 0.037 0.086 2 218932178 RUFY4 0 
cg11631610 Financial stress 

(N=774) 
very early childhood (age 8 mo.) 0.949 0.923 0.028 5.75E-09* -0.027 0.0056 -0.038 -0.016 19 11322739 DOCK6 0 

cg01050704a early childhood (age 5) 0.017 0.019 0.027 1.92E-08 0.002 0.0005 0.001 0.003 19 59084995 MZF1-
 

0 
cg21299458 early childhood (age 5) 0.110 0.147 0.035 1.55E-11* 0.038 0.0070 0.024 0.052 22 20779896 SCARF2 0 
cg19219503 middle childhood (age 7) 0.922 0.889 0.029 1.05E-09* -0.034 0.0070 -0.048 -0.020 10 37414802 ANKRD3

 
0 

cg11714846 accumulation 0.923 0.915 0.023 4.44E-08 -0.005 0.0011 -0.007 -0.003 1 230419534 GALNT2 1658 
cg21924472 recency 0.756 0.770 0.028 9.36E-09* 0.003 0.0006 0.002 0.004 4 139600734 LINC004

 
255235 

cg24996440 recency 0.566 0.585 0.027 2.01E-08 0.005 0.0009 0.003 0.006 2 3583570 RNASEH
 

9119 
cg00928478 Neighborhood 

disadvantage 
(N=702) 

very early childhood (age 1.75) 0.020 0.018 0.028 1.22E-08* -0.002 0.0005 -0.003 -0.001 10 99078824 FRAT1 196 
cg01954337 very early childhood (age 1.75) 0.050 0.059 0.029 3.39E-08 0.008 0.0018 0.005 0.012 11 3819010 NUP98 0 
cg04996689 very early childhood (age 1.75) 0.029 0.035 0.027 3.61E-08 0.006 0.0011 0.003 0.008 5 52285560 ITGA2 0 
cg12069925 very early childhood (age 1.75) 0.042 0.048 0.030 2.34E-09* 0.007 0.0014 0.004 0.009 17 11900858 ZNF18 72 
cg14522055 very early childhood (age 1.75) 0.030 0.035 0.028 4.63E-08 0.005 0.0011 0.003 0.007 15 64338757 DAPK2 235 
cg19157140 very early childhood (age 1.75) 0.014 0.016 0.037 3.48E-11* 0.002 0.0004 0.001 0.003 7 766323 PRKAR1

 
0 

cg21740964 very early childhood (age 1.75) 0.160 0.173 0.025 6.32E-08 0.014 0.0028 0.008 0.019 6 3849331 FAM50B 299 
cg22396033✝ very early childhood (age 1.75) 0.022 0.025 0.027 9.89E-08 0.003 0.0006 0.002 0.004 1 156862233 PEAR1 1288 
cg24826892a very early childhood (age 1.75) 0.016 0.018 0.030 7.46E-09* 0.003 0.0006 0.002 0.004 11 71159390 DHCR7 0 
cg08546016 early childhood (age 5) 0.050 0.056 0.028 1.12E-08* 0.006 0.0012 0.004 0.008 17 72776238 TMEM10

 
0 

cg04007726a✝ middle childhood (age 7) 0.883 0.858 0.029 5.35E-08 -0.025 0.0053 -0.036 -0.015 10 80981129 ZMIZ1 0 
cg12412390 middle childhood (age 7) 0.038 0.046 0.030 6.11E-08 0.008 0.0016 0.005 0.011 4 96469286 UNC5C 0 
DNAm = unadjusted DNA methylation (beta values) averaged within group; Increase in R2 = increase in R2 explained by first hypothesis chosen after accounting for covariates; P = p-value of covariance test assessing significance of increase in 
R2 explained; Beta, SE, Lower 95% CI, Upper 95% CI = parameter estimate, standard error, and lower and upper limits of 95% confidence interval of regression coefficient of first hypothesis chosen; Chr, Coordinate = chromosome and position 
of CpG site; Nearest gene, Distance to nearest gene = Gene symbol of and distance in bases to nearest gene from CpG site (as measured from transcription start site). 
a In potentially noisy probe list of Naeem et al. 2014 (i.e., cross-reactive probes, probes with SNPs/INDELs/repeat regions, probes affected by unknown factors).    
b In potentially noisy probe list of Chen et al. 2013 (i.e., cross-reactive probes, probes with SNPs). 
*significant at p < 1.43x10-8 , a more stringent p-value threshold that accounted for the testing of seven types of adversity (1x10-7 / 7=1.43x10-8). 
✝ Not identified in the main analysis presented in Table 1.  
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Table S8. Description of theoretical models used in the analysis, using exposure to abuse as an example 
Lifecourse model tested Definition Variables Specific variables entered into the LARs model 
Accumulation Sum of the total number of time periods of 

exposure to a specific adversity. To test 
whether the number of time periods of 
exposure explains the most variance in 
DNAm.  

1 abuse_accumulation=count of the number of time periods exposed to abuse 
(range 0-6) 

Sensitive period A single time-point at which there can be 
exposure to adversity. To test if a single 
adversity experience at a specific time-point 
explains the most variance in DNAm. 

6 abuse_period1=exposed (1) vs. unexposed (0) at time period 1 (8 months) ; 
abuse_period2= exposed (1) vs. unexposed (0) at time period 2 (1.75 years); 
abuse_period3= exposed (1) vs. unexposed (0) at time period 3 (2.75 years); 
abuse_period4= exposed (1) vs. unexposed (0) at time period 4 (4 years);  
abuse_period5= exposed (1) vs. unexposed (0) at time period 5 (5 years);  
abuse_period6= exposed (1) vs. unexposed (0) at time period 6 (6 years) 

Recency Sum of the total number of time periods of 
exposure to a specific type of adversity, with 
each time period weighted by the age in years 
of the child during exposure. To test if 
temporal proximity to adversity events 
explains the most variance in DNAm.  

1 abuse_recency= abuse_period1 exposed (1) vs. unexposed (0)*(0.67) + 
abuse_period2 exposed (1) vs. unexposed (0) *(1.75) + abuse_period3 
exposed (1) vs. unexposed (0) *(2.75) + abuse_period4 exposed (1) vs. 
unexposed (0) *(4) + abuse_period5 exposed (1) vs. unexposed (0) *(5) + 
abuse_period6 exposed (1) vs. unexposed (0) *(6) 

In this study, accumulation was defined as the sum of the total number of time periods of exposure to a given adversity.  Although accumulation is sometimes 
operationalized as the total number of distinct adversity types experienced (and in this case, is often referred to as “cumulative risk”), we defined accumulation in 
the manner we did for the following reasons.  First, research on the effects of multiple adversities or “cumulative risks” in general has been well-covered by prior 
literature on “adverse childhood experiences” (e.g., 47, 48, 49).  One of the unique contributions of the current study is its attention to differences between adversity 
types and their associations with DNAm changes.  Secondly, accumulation models that do not account for adversity type or duration offer little promise for 
identifying optimal intervention targets, given that they treat all adverse experiences as equal.  Finally, there is no unified definition of cumulative risk (50-52), and 
there have been multiple calls in the field for measures that capture exposure features like developmental timing and duration (50, 53).  Our operationalization, 
then, represents one attempt at capturing accumulation through the lens of duration. 
 
The recency hypothesis, in turn, assumes a linear increase in the effect of exposure over time, and weights more recent exposures more heavily than more distal 
ones (18).  Unlike the last sensitive periods model, which captures only exposure to a given adversity within that specific time period, the recency model accounts 
for and weights all time periods of exposure.    
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Figure S1. Prevalence of exposure to adversity by time period 

 
Time periods are very early childhood (I, before 3), early childhood (PS, ages 3-5), middle childhood (MC, ages 6-7), and total 
exposed at any time (T).  As shown, age at exposure to adversity varied by the type of adversity. Family instability and neighborhood 
disadvantage were more common in very early childhood and early childhood (before age 4), whereas one adult in the household 
and financial stress were more common later in middle childhood 
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Figure S2. Frequency each theoretical model (sensitive period or additive) was chosen first by the LARS variable selection 
procedure, for all CpG sites and types of adversities tested 

 
These figures display the percent of CpG sites for which methylation was best predicted by each of the theoretical models, after 
controlling for covariates. The distribution of hypotheses for FDR-significant CpG sites (FDR q< 0.05) was significantly different 
than that for the remaining CpG sites tested (FDR q> 0.05) for financial stress (𝜒𝜒2=16.92, p=0.002), and neighborhood 
disadvantage (𝜒𝜒2=40.79, p<0.0001). Sensitive period models were more often selected than additive models for family instability 
and neighborhood disadvantage, while the opposite was true for financial stress. 
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Figure S3. Circos plot of 380 FDR-significant sites 

 
The effects of adversity on methylation were distributed throughout the genome. Outer rings: 
points represent genomic locations of all FDR-significant CpG sites, colored by adversity type 
(as above). Inner links: lines connect loci associated with the same adversity type and theoretical 
model, colored by theoretical model (grey=very early childhood, blue=early childhood, 
green=middle childhood, yellow=accumulation, red=recency). 
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Figure S4. Manhattan plots displaying the only significant CpG site (cg02431672) associated with 
exposure to abuse identified by the EWAS approach 
 

 
In this Manhattan plot, the x-axis is the chromosomal position for each CpG site and the y-axis is the 
-log10 p-value for the association between exposure to adversity and DNAm values at each CpG site.  
The dashed line shows the epigenome-wide significance level, with each CpG site above the line 
representing a statistically significant association (p<1x10-7). As shown, only one CpG site was 
identified by the EWAS approach to be significantly affected by exposure to sexual or physical abuse. 
No locus was identified to be affected by other types of adversity. 
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Figure S5. Results of analyses exploring additional steps of the LARS procedure 

 
The CpG sites associated with adversity were detected by examining the first step of the 
LARS variable selection procedure.  The first step of the LARS identified the single 
theoretical model that explained the most variation in DNAm at a given CpG site.  
However, it is possible that additional theoretical models could have been chosen by the 
LARS at the second step and beyond.  We therefore evaluated this possibility by calculating 
the variance explained by additional steps of the LARS and assessed the significance of 
the increase with a covariance test at each step.  Panel A:  Additional steps of the LARS 
procedure explained marginally more variance in methylation (R2).  Panel B:  However, 
the significance of the increase in variance explained (covariance test p-value) did not 
surpass a nominal significance threshold (red dotted line: p=0.05) for any of the 38 top 
CpG sites, suggesting that there was little evidence that examining more than the first step 
of the LARS procedure would add more information. 
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Figure S6. Average methylation values over time, from birth to age 7, in ARIES 

 
 
Because some adversities could have been present prenatally and could affect methylation in utero, 
we assessed methylation at birth in umbilical cord blood at the top CpG sites.  At each top CpG 
site, we tested the predictive value of the theoretical model chosen at age 7 on methylation at birth 
with linear regression, controlling for the same covariates as described previously. We used a 
Bonferroni correction to adjust the alpha level for multiple testing.  These plots display two 
illustrative examples of DNAm values over time.  Panel A:  Methylation that was different at birth 
among those exposed vs. unexposed to postnatal adversity.  Panel B:  Methylation that was not 
different at birth among those exposed vs. unexposed to postnatal adversity. 
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Figure S7. Genomic locations of FDR-significant CpG sites (n=380) as compared to all 
other autosomal CpG sites tested 

 
These plots display the proportion of FDR significant CpG sites (n=380) vs. all other CpG 
sites tested annotated to specific genomic regions.  As shown, the 380 FDR-significant 
CpG sites (a) were enriched for promoter regions and depleted for enhancer regions and 
(b) differed by location relative to CpG islands. 
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Figure S8. Enrichment of Gene Ontology (GO) term clusters for the 380 FDR-significant 
CpG sites 

 
The 380 FDR-significant CpG sites were annotated to 365 genes. The plot displays 
enrichment scores (-log(P)) taken from 15 (out of 158 clusters) of GO biological process 
terms that corresponded to these 365 genes.  As shown, 11 GO term clusters were enriched 
at a nominally significant level (red dashed line=1.3, the negative logarithm of p=0.05).  
These results suggest that the top 11 GO term clusters, including positive regulation of 
developmental growth, axon development, and neuron apoptotic process, were more likely 
to be represented among genes annotated to FDR-significant CpG sites than chance 
(average enrichment p<0.05). 

 
  



Dunn et al.  Supplement 

42 

Figure S9. Genes annotated to the FDR-significant sites were more highly constrained than 
genes annotated to the remaining autosomal CpG sites tested 

 
Violin (rotated kernel density) plots of constraint scores (pLI) for genes annotated to FDR-
significant sites and the remaining CpG sites tested. pLI = probability of a gene being 
intolerant to Loss-of-Function variation.  Black points represent mean pLI values per gene 
set. Genes annotated to FDR-significant sites were more highly constrained than the rest 
of the autosomal genes tested (permutation p=0.0001), indicating a greater importance of 
these genes, on average, to survival and reproduction over human evolution. 

 
  



Dunn et al.  Supplement 

43 

Figure S10. Principal components of ancestry information inferred based on epigenome-
wide DNA methylation data 

 
Scatter plots showing patterns of ancestry inferred using an epigenome-wide DNAm data 
based principal component analysis (4). The method has been shown to reliably capture 
population structure even in the absence of genetic data. The same quality control procedure 
was performed following the guidelines provided by Rahmani et al. (4) and 473,864 CpGs 
were used in the principal component analysis, adjusting for sex and cell counts. Red dots 
indicate children who were self-reported to be non-white. As shown in these plots, we found 
no apparent outlier or pattern of population stratification; the principal components of self-
reported white and nonwhite children seemed to be well blended.  
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