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Part 1 Details of the generative model of Bayesian RSA

Our generative model of fMRI data follows the general assumption of GLM. In addition,

we model spatial noise correlation by a few time series X0 shared across all voxels. The

contribution of X0 to the k-th voxel is β0·k. Thus, for voxel k, we assume that

Yk = Xβ·k +X0β0·k + εk (1)

Yk is the time series of voxel k. X is the design matrix shared by all voxels. β·k is the

response amplitudes of the voxel k to all the task conditions. εk is the residual noise in voxel

k which cannot be explained by either X or X0. We assume that ε is spatially independent
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across voxels, and all the correlation in noise between voxels are captured by the shared

intrinsic fluctuation X0.

We use an AR(1) process to model εk: for the k-th voxel, we denote the noise at time

t > 0 as εt,k, and assume

εt,k = ρkεt−1,k + ηt,k, ηt,k ∼ N(0, σ2
k) (2)

where σ2
k is the variance of the "innovation" ("shock"), the component at each time point t

that is independent from εt−1,k, and ρk is the autoregressive coefficient for the k-th voxel.

We assume that the covariance of the multivariate Gaussian distribution from which the

activity amplitudes βk are generated has a scaling factor that depends on its pseudo-SNR

sk:

β·k ∼ N(0, (skσk)
2U). (3)

This is to reflect the fact that not all voxels in an ROI respond to tasks.

We further use Cholesky decomposition to parametrize the covariance structure U : U =

LLT , where L is a lower triangular matrix. Thus, β·k can be written as β·k = skσkLαk,

where αk ∼ N(0, I). This change of parameter allows for estimating U of lower rank (if

the researcher has sufficient reason to make such a guess) by setting L as lower-triangular

matrix with a few rightmost-columns truncated. With an improper uniform prior for β0·k,

and temporarily assuming X0 is given, we have the unmarginalized likelihood for each voxel
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k:

p(Yk,β·k, β0·k|X,X0, L, σk, ρk, sk)

=p(Yk|β·k, β0·k, X,X0, σk, ρk)p(β·k|L, σk, sk)p(β0·k)

=p(Yk|skσkLαk, β0·k, X,X0, σk, ρk)p(αk)p(β0·k)

∝p(Yk|skσkLαk, β0·k, X,X0, σk, ρk)p(αk)

= exp[−1

2
(Yk − skσkXLαk −X0β0·k)

TΣ−1
εk

(Yk − skσkXLαk −X0β0·k)]

· (2π)−
nT
2 |Σ−1

εk
|
1
2 (2π)−

r
2 exp[−1

2
αTk αk]

(4)

where r ≤ nC is the rank of L.

In contrast to the full model, our null model assumes

p(Yk,β0·k|X0, σk, ρk)

=p(Yk|β0·k, X0, σk, ρk)p(β0·k)

∝p(Yk|β0·k, X0, σk, ρk)

= exp[−1

2
(Yk −X0β0·k)

TΣ−1
εk

(Yk −X0β0·k)]

· (2π)−
nT
2 |Σ−1

εk
|
1
2

(5)

For data within one run, Σ−1
εk
, the inverse matrix of the covariance of εk, is a banded

symmetric matrix which can be written as Σ−1
εk

= 1
σ2
k
(I − ρkF + ρ2

kD), where F is 1 only

at the superdiagonal and subdiagonal elements and 0 everywhere else, and D is 1 on all

diagonal elements except for the first and last one, and 0 elsewhere. For abbreviation, we

can denote Ak = A(ρk) = I − ρkF + ρ2
kD which is a function of ρk. Σ−1

εk
can be factorized as

Σ−1
εk

= 1
σ2
k
Ak. When Yk includes concatenated time series across several runs, Σ−1

εk
is a block

diagonal matrix with each block diagonal elements corresponding to one run, constructed in

the same way.
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To derive the log likelihood of L for data of all voxels in the ROI, we need to marginalizing

all other unknown parameters. Below, we marginalize them step by step.

By marginalizing β0·k, we have

p(Yk,β·k|X,X0, L, σk, ρk, sk)

∝
∫
p(Yk|skσkLαk, β0·k, X,X0, σk, ρk)p(αk)dβ0·k

=(2π)−
nT+r−n0

2 |Σ−1
εk
|
1
2 |XT

0 Σ−1
εk
X0|−

1
2 exp[−1

2
αTi αi]

· exp[− 1

2σ2
k

(Yk − skσkXLαk)TA∗
k(Yk − skσkXLαk)]

(6)

n0 is the number of components in X0. In the equation above, we denoted A∗
k = σ2

k(Σ
−1
εk
−

Σ−1
εk
X0(XT

0 Σ−1
εk
X0)−1XT

0 Σ−1
εk

) = Ak − AkX0(XT
0 AkX0)−1XT

0 Ak.

By further marginalizing αk which is equivalent to marginalizing β·k, we get

p(Yk|X,X0, L, σk, ρk, sk)

=

∫
p(Yk|skσkLαk, X,X0, σk, ρk)p(αk)dαk

∝(2π)−
nT−n0

2 |Σ−1
εk
|
1
2 |XT

0 Σ−1
εk
X0|−

1
2 |Λ∗

k|
1
2

· exp[−1

2
(

1

σ2
k

Y T
k A

∗
kYk − µ∗T

k Λ∗−1
k µ∗

k)]

(7)

where Λ∗
k = (I + s2

kL
TXTA∗

kXL)−1 and µk = sk
σk

Λ∗
kL

TXTA∗
kYk are the variance and mean of

the posterior distribution of αk, respectively.

All the steps of marginalization above utilize the property of multivariate Gaussian dis-

tribution. Next we marginalize the noise variance σ2
k. We assume an improper uniform

distribution of σ2
k in R+. It is also possible to assume a conjugate prior for σ2

k. Given that

data of at least hundreds of time points are obtained in each run to provide enough con-

straint to σ2
k, our choice does not appear to cause problem. To isolate σ2

k, using the property
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of Cholesky decomposition of Σ−1
εk
, the above equation can be written as

p(Yk|X,X0, L, σk, ρk, sk)

∝(2π)−
nT−n0

2 σ2
k
−nT−n0

2 (1− ρ2
k)

nr
2 |XT

0 AkX0|−
1
2 |Λ∗

k|
1
2

· exp[
1

2σ2
k

(s2
kY

T
k A

∗
kXLΛ∗

kL
TXTA∗

kYk − Y T
k A

∗
kYk)]

(8)

This form is proportional to an inverse-Gamma distribution of σ2
k. nr is the number of

runs in the data. Therefore, we can analytically marginalize σ2
k and obtain

p(Yk|X,X0, L, ρk, sk)

=

∫
p(Yk|X,X0, L, σk, ρk, sk)p(σ

2
k)dσ

2
k

∝(2π)−
nT−n0

2 (1− ρ2
k)

nr
2 |XT

0 AkX0|−
1
2 |Λ∗

k|
1
2 Γ(

nT − n0

2
− 1)

· [Y
T
k A

∗
kYk − s2

kY
T
k A

∗
kXLΛ∗

kL
TXTA∗

kYk
2

]1−
nT−n0

2

(9)

We did not find ways to further analytically marginalize sk or ρk. But we can numerically

marginalize them by weighted sum of (9) at nl × nm discrete grids {ρkl, skm} (0 < l < nl,

0 < m < nm) with each grid representing one area of the parameter space of (ρ, s).

p(Yk|X,X0, L)

≈
nl∑
l=1

nm∑
m=1

p(Yk|X,X0, L, ρkl, skm)w(ρkl, skm)

∝
nl∑
l=1

nm∑
m=1

(2π)−
nT−n0

2 (1− ρ2
kl)

nr
2 |XT

0 AklX0|−
1
2 |Λ∗

klm|
1
2 Γ(

nT − n0

2
− 1)

· [Y
T
k A

∗
klYk − s2

kmY
T
k A

∗
klXLΛ∗

klmL
TXTA∗

klYk
2

]1−
nT−n0

2 w(ρkl, skm)

(10)

The weights w(ρkl, skm) are the prior probabilities of the two parameters in the area

represented by {ρkl, skm}. We assume uniform prior of ρ in (-1,1). All the simulations in
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this paper used an exponential distribution as prior for s. The grids skm are each chosen at

the centers of mass of the prior distribution in the bins they represent in (0,+∞). All bins

equally divide the area under the curve of the prior distribution for s. The implementation

of our algorithm in BrainIAK includes three alternative forms of prior distributions: uniform

prior in the range of (0, 1), log normal distribution approximated by the centers of mass

of equally divided areas under its probability distribution (the same way as the exponential

distribution), and "equal" prior which means all voxels are assumed to have a single fixed

pseudo-SNR of 1.

Because we made the assumption that εk is independent across voxels. The log likelihood

for all data is the sum of the log likelihood for each voxel.

log p(Y |X,X0, L) =

nV∑
k=1

log p(Yk|X,X0, L). (11)

For the null model, the likelihood for each voxel after marginalizing β0i and σ2
k can be

similarly derived,

p(Yk|X0, ρk)

∝(2π)−
nT−n0

2 (1− ρ2
k)

nr
2 |XT

0 AkX0|−
1
2

· Γ(
nT − n0

2
− 1)[

Y T
k A

∗
kYk

2
]1−

nT−n0
2

(12)

and the total log likelihood can be calculated similarly by numerically marginalizing ρk and

summing the log likelihood for all voxels.

Part 2 Model fitting procedure

To fit the model, we need the gradient of the total log likelihood with respect to L. It can

be derived that conditional on any grid of parameter pairs {ρkl, skm}, the gradient of the
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log likelihood for voxel k against each lower-triangular element of L is the corresponding

lower-triangular element of the matrix

∂

∂L
logp(Yk|X,X0, L, ρkl, skm)

=− s2
kmX

TA∗
klXLΛ∗

klm

+
s2
km(nT − n0 − 2)

Y T
k A

∗
klYk − s2

kmY
T
k A

∗
klXLΛ∗

klmL
TXTA∗

klYk

· (I − s2
kmX

TA∗
klXLΛ∗

klmL
T )XTA∗

klYkY
T
k A

∗
klXLΛ∗

klm

(13)

where A∗
kl and Λ∗

klm are A∗
k and Λ∗

k evaluated at {ρkl, skm}. The gradient of the total log

likelihood against L after marginalizing over all grids {ρkl, skm} of all voxels is

∂

∂L
logp(Y |X,X0, L)

=

nV∑
k=1

nl∑
l=1

nm∑
m=1

p(ρkl, skm|Yk, X,X0, L)
∂

∂L
log p(Yk|X,X0, L, ρkl, skm)

(14)

p(ρkl, skm|Yk, X,X0, L) is the posterior probability of {ρkl, skm} conditional on a given L. It

can be obtained by normalizing p(Yk|X,X0, L, ρkl, skm)w(ρkl, skm) after calculating (9).

With the gradient in (14), the total log likelihood in (11) can be maximized using gradient-

based method such as Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm to search for

the optimal L (1; 2; 3; 4).

However, the derivations above have made the assumption thatX0 is given, while it is not.

The requirement for X0 should be to appropriately capture the correlation of noise across

voxels without overfitting. Therefore, at the starting of the model fitting, regular regression

of Y against X and any nuisance regressors such as head motion and constant baseline is

performed. Then the algorithm by Gavish and Donoho(5) is used to select the optimal

number of components n0 to choose X0 from the eigenvectors of the residual of regression.

Because regular regression does not shrink the magnitudes of β, their magnitudes can only be
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over-estimated. n0 thus has no risk of being over-estimated. This n0 is then fixed throughout

the model fitting. Next, the first n0 principal components of the residual of regression are

set as X̂0 to allow for calculating the marginal log likelihood in (14) and gradient ascent with

BFGS. A sufficient steps of iterations are performed to optimize L. Then β̂post, the posterior

expectations of β, are calculated with the current L̂ and with s, ρ, σ being marginalized. X̂0

is subsequently recalculated using PCA from the residuals after subtracting Xβ̂post from Y .

The alternation between optimizing L and re-estimating X̂0 is repeated until convergence.

Once we obtain L̂, the estimate of L, the estimate of the covariance structure is Û = L̂L̂T .

Converting it into a correlation matrix yields the similarity matrix by BRSA. Even though

X̂0 is estimated from data based on posterior estimation of β repeatedly during fitting, L is

still optimized for the log likelihood with all other unknown variables marginalized. Thus the

estimated Û is an empirical prior of β estimated from data. This is the reason we consider

our model as an empirical Bayesian method.

Many subcomponents of the expressions in these equations do not depend on L and thus

can be pre-computed before optimizing for L. The fixed grids of (ρ, s) further make several

subcomponents shared across voxels when evaluating (9). These all reduce the amount of

computation needed.

The fitting of the null model is similar to that of the full model except that there is no

L to be optimized.

Part 3 Model selection and decoding task-related signals

Once a model has been fitted to some data from a participant or a group of participants,

we can estimate the posterior mean of ρ, s, σ2, β and β0, conditional on the empirical prior

Û (essentially L̂), data Y , design matrix X and the estimated intrinsic fluctuations X̂0.

Below, we derive their formula and the procedure in which they are used for calculating
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cross-validated log likelihood of new data and decoding task-related signal X̂test and X̂0test

from new data in the context of fMRI decoding.

The posterior mean of these variables are

σ̂2
k(post) =

nl∑
l=1

nm∑
m=1

p(ρkl, skm|Yk, X, X̂0, L̂)

∫
σ2
kp(σ

2
k|Yk, L,X, X̂0, ρkl, skm)dσk

=

nl∑
l=1

nm∑
m=1

p(ρkl, skm|Yk, X, X̂0, L̂)
1

nT − n0 − 4

· Y T
k A

∗
klYk − s2

kmY
T
k A

∗
klXL̂Λ∗

klmL̂
TXTA∗

klYk

(15)

ŝk(post) =

nl∑
l=1

nm∑
m=1

p(ρkl, skm|Yk, X, X̂0, L̂)skm (16)

ρ̂k(post) =

nl∑
l=1

nm∑
m=1

p(ρkl, skm|Yk, X, X̂0, L̂)ρkl (17)

β̂·k(post) =

nl∑
l=1

nm∑
m=1

p(ρkl, skm|Yk, X, X̂0, L̂)s2
kmL̂ΛklmL̂

TXTA∗
klYk (18)

β̂0·k(post) =

nl∑
l=1

nm∑
m=1

p(ρkl, skm|Yk, X, X̂0, L̂)

· (X̂T
0 A

∗
klX̂0)−1X̂T

0 A
∗
kl(Yk − s2

kmXL̂ΛklmL̂
TXTA∗

klYk)

(19)

For null model, σ̂2
k(post), β̂0·k(post) and ρ̂k(post) are of similar forms except that all terms

including skm are removed and that p(ρkl, skm|Yk, X, X̂0, L̂) is replaced by p(ρkl|Yk, X̂0).

To calculate cross-validated log likelihood, we assume the posterior estimates above and

the statistical properties of X0 stay unchanged in the testing data. We use zero-mean AR(1)
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process to describe the statistical properties of X0. The AR(1) parameters estimated from

X̂0 serve as the parameters of the empirical prior for X0 in the testing data. When X0 at each

time point t is treated as a random vector X(t)
0 , the AR(1) parameters of each component

can be jointly written as the diagonal matrix V∆X0 for the variance of the innovation noise,

and diagonal matrix TX0 for the auto-regressive coefficients, both of size n0 × n0.

For model selection purpose, design matrix Xtest for the testing data should be generated

in the same manner as they are for the training data by the researcher. For full BRSA

model, Xtestβ̂post is the predicted task-related signal in Ytest. Yres = Ytest − Xtestβ̂post is

the residual variation which cannot be explained by the design matrix and the posterior

activity pattern β̂post. Null model does not predict any task-related activity, so all Ytest

constitutes residual variation Yres. In either the full model or the null model, the posterior

estimate β̂0(post) expresses their prediction about how voxels should be co-modulated by a

fluctuation, while the fluctuation time courseX0test is only predictable in terms of its variance

and temporal autocorrelation expressed by V∆X0 and TX0 . σ̂2
k(post) and ρ̂k(post) express the

models’ predictions about the variance and temporal dependency of the fluctuation in the

k-th voxel in addition to the co-fluctuation. With these parameters estimated from training

data, both the full and null models can marginalize the unknown X0test and yield their

corresponding predictive log likelihoods for the testing data Ytest. These log likelihoods are

the basis for selecting between the full and null models.

To calculate the log likelihood, we notice that the predictive model of Yres in the testing

data by both models are dynamical system models in which X0test is the latent state and

Yres is the observed data. They are slightly different from the standard dynamical system

model(6) in that not only the latent states, but also the noise, have temporal dependency(7):

X
(t)
0test ∼ N(X

(t−1)
0test TX0 , V∆X0) (20)
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Y (t)
res −X

(t)
0testβ̂0post

∼ N((Y (t)
res −X

(t)
0testβ̂0post)Diag(ρ̂post),Diag(σ̂2

post))

(21)

Where Diag(ρ̂post) and Diag(σ̂2
post) are diagonal matrices with vectors ρ̂post and σ̂2

post being

their diagonal elements, respectively.

Because a modified forward-backward algorithm from the standard approach(6) is needed

to calculate the preditive log likelihood p(Yres|β̂0post, TX0 , V∆X0 ,Diag(ρ̂post),Diag(σ̂2
post)) and

the posterior distribution of X0test, we describe the procedure below.

Define

Ĝ(X
(t)
0test) = p(X

(t)
0test|Y (1)

res , · · · , Y (t)
res ) (22)

Ĥ(X
(t)
0test) =

p(Y
(t+1)
res , · · · , Y (nT )

res |X(t)
0test, Y

(t)
res )

p(Y
(t+1)
res , · · · , Y (nT )

res |Y (1)
res , · · · , Y (t)

res )
, for t < nT (23)

and

ct = p(Y (t)
res |Y (1)

res , · · · , Y (t−1)
res ), for t > 0

c1 = p(Y (1)
res )

(24)

Therefore, the cross-validated log likelihood is

log p(Y (1)
res , · · · , Y (nT )

res |β̂0post, TX0 , V∆X0 , σ̂
2
post, ρ̂post) =

nT∑
t=1

log ct (25)

It can be derived that the posterior distribution of X(t)
0test is

γ(X
(t)
0test) = p(X

(t)
0test|Y (1)

res , · · · , Y (nT )
res ) = Ĝ(X

(t)
0test)Ĥ(X

(t)
0test) (26)
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Below, we denote the mean and covariance of Ĝ(X
(t)
0test) as µ(t)

X0
and Γ

(t)
X0
, and the mean and

covariance of γ(X
(t)
0test) as µ̃(t)

X0
and Γ̃

(t)
X0
.

µ
(t)
X0
, Γ

(t)
X0

and ct can be calculated by the forward step. µ̃(t)
X0

and Γ̃
(t)
X0

can be calculated

by the backward step. To perform model selection, only forward step is necessary.

To perform the forward step, we first note that for t = 1

X
(1)
0test ∼ N(0, V∆X0(I − T 2

X0
)−1) (27)

and

Y (1)
res ∼ N(X

(1)
0testβ̂0post,Diag(σ̂2

post)(I −Diag(ρ̂2
post))

−1) (28)

Denote VX0 = V∆X0(I − T 2
X0

)−1, we have

c1Ĝ(X
(1)
0test) = p(X

(1)
0test|Y (1)

res )p(Y (1)
res )

=p(X
(1)
0test)p(Y

(1)
res |X

(1)
0test)

=(2π)−
n0
2 |VX0|−

1
2 exp[−1

2
X

(1)
0testV

−1
X0
X

(1)
0test

T
]

· exp[−1

2

nV∑
k=1

(Y
(1)
kres −X

(1)
0testβ̂0·kpost)

2(1− ρ2
k(post))

σ2
k(post)

]

nV∏
k=1

(
1− ρ2

k(post)

σ2
k(post)

)
1
2

(29)

Ĝ(X
(1)
0test) is a multivariate normal distribution of X(1)

0test, we can find its covariance and mean

from (29):

Γ
(1)
X0

= [V −1
X0

+ β̂0post(I −Diag(ρ̂2
post))Diag(σ̂2

post)
−1β̂T0post]

−1 (30)

µ
(1)
X0

= Y (1)
res (I −Diag(ρ̂2

post))Diag(σ̂2
post)

−1β̂T0postΓ
(1)
X0

(31)

Because Ĝ(X
(1)
0test) is a normalized probability distribution, the components in (29) after
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factoring out the multivariate normal distribution Ĝ(X
(1)
0test) is c1:

c1 =(2π)−
nV
2 |VX0|−

1
2 |Γ(1)

X0
|
1
2

nV∏
k=1

(
σ̂2

k(post)

1− ρ̂2
k(post)

)−
1
2

· exp{−1

2
[Y (1)

res (I −Diag(ρ̂2
post))Diag(σ̂2

post)
−1Y (1)

res
T

− µ(1)
X0

Γ
(1)
X0

−1
µ

(1)
X0

T
]}

(32)

For any t > 1, the following relation holds:

ctĜ(X
(t)
0test)

=

∫
p(Y (t)

res |X
(t)
0test, X

(t−1)
0test , Y

(t−1)
res )p(X

(t)
0test|X

(t−1)
0test )Ĝ(X

(t−1)
0test )dX

(t−1)
0test

(33)

p(Y
(t)
res |X(t)

0test, X
(t−1)
0test , Y

(t−1)
res ) is defined by (21). p(X

(t)
0test|X

(t−1)
0test ) is defined by ( 20). Mean

and covariance of Ĝ(X
(t−1)
0test ) are calculated by the previous step for t − 1. Therefore, by

marginalizing X(t−1)
0test , we obtain

Γ
(t)
X0

= (K2 − J(K1 + Γ
(t−1)
X0

−1
)JT )−1 (34)

and

µ
(t)
X0

= [∆Y (t)
res Diag(σ̂2

post)
−1β̂T0post + (µ

(t−1)
X0

Γ
(t−1)
X0

−1

−∆Y (t)
res Diag(σ̂2

post)
−1Diag(ρ̂post)β̂

T
0post)(K1 + Γ

(t−1)
X0

)−1JT ]Γ
(t)
X0

(35)

where ∆Y
(t)
res = Y

(t)
res −Y (t−1)

res Diag(ρ̂post). J = V −1
∆X0

T TX0
+ β̂0postDiag(σ̂2

post)
−1Diag(ρ̂post)β̂

T
0post,

K1 = TX0V
−1

∆X0
T TX0

+β̂0postDiag(σ̂2
post)

−1Diag(ρ̂post)
2β̂T0post andK2 = V −1

∆X0
+β̂0postDiag(σ̂2

post)
−1β̂T0post.

Note that J , K1, K2 are all constants.
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Similarly to (32), after factoring out Ĝ(X
(t)
0test), we obtain

ct = (2π)−
nV
2 |K1 + Γ

(t−1)
X0
|−

1
2 |V∆X0|−

1
2 |Γ(t−1)

X0
|−

1
2 |Γ(t)

X0
|
1
2

nV∏
k=1

σ−1
kpost

· exp[− 1

2
µ

(t−1)
X0

Γ
(t−1)
X0

−1
µ

(t−1)
X0

T
+

1

2
µ

(t)
X0

Γ
(t)
X0

−1
µ

(t)
X0

T

− 1

2
∆Y (t)

res Diag(σ̂2
post)

−1∆Y (t)
res

T
+

1

2
(µ

(t−1)
X0

Γ
(t−1)
X0

−1

−∆Y (t)
res Diag(σ̂2

post)
−1Diag(ρ̂post)β̂

T
0post)(K1 + Γ

(t−1)
X0

)−1

(µ
(t−1)
X0

Γ
(t−1)
X0

−1
−∆Y (t)

res Diag(σ̂2
post)

−1Diag(ρ̂post)β̂
T
0post)

T ]

(36)

By calculating (34), (35) and (36) recursively with t incremented by 1 until nT , the predictive

log likelihood (25) of both the full and null models can be calculated to serve as the basis of

model selection.

To calculate the mean and variance of the posterior distribution γ(X0test
(t)) of X0test,

backward step is needed. We denote its mean as µ̂(t)
X0
, and covariance as Γ̂

(t)
X0
.

For any t < nT , it can be derived that

ct+1Ĥ(X
(t)
0test) =∫

Ĥ(X
(t+1)
0test )p(X

(t+1)
0test |X

(t)
0test)p(Y

(t+1)
res |X(t)

0test, X
(t+1)
0test , Y

(t)
res )dX

(t+1)
0test

(37)

By plugging in (26), we get

γ(X0test
(t)) =

Ĝ(X
(t)
0test)

ct+1

·
∫
γ(X0test

(t+1))

Ĝ(X
(t+1)
0test )

p(X
(t+1)
0test |X

(t)
0test)p(Y

(t+1)
res |X(t)

0test, X
(t+1)
0test , Y

(t)
res )dX

(t+1)
0test

(38)

After the marginalization in (38) and observing the terms related to X0test
(t), we get the

14



recursive relations

Γ̂
(t)
X0

= (Γ
(t)
X0

−1
+K1 − JT (Γ̂

(t+1)
X0

−1
− Γ

(t+1)
X0

−1
+K2)

−1

J)−1 (39)

and

µ̂
(t)
X0

= [µ
(t)
X0

Γ
(t)
X0

−1
−∆Y (t+1)

res Diag(σ̂2
post)

−1Diag(ρ̂post)β̂
T
0post

+ (µ̂
(t+1)
X0

Γ̂
(t+1)
X0

−1
− µ(t+1)

X0
Γ

(t+1)
X0

−1
+ ∆Y (t+1)

res Diag(σ̂2
post)

−1β̂T0post)

(Γ̂
(t+1)
X0

−1
− Γ

(t+1)
X0

−1
+K2)−1J ]Γ̂

(t)
X0

(40)

Note that γ(X0test
(nT )) = Ĝ(X

(nT )
0test), therefore µ̂(nT )

X0
= µ

(nT )
X0

and Γ̂
(nT )
X0

= Γ
(nT )
X0

. By

recursively calculating (39) and (40) with t decremented by 1 from nT − 1 until 1, the

posterior distribution of X(t)
0test given all the testing data can be calculated.

For decoding purpose, we need to obtain not only the posterior mean of intrinsic fluc-

tuations X(t)
0test, but also the task-related activity X

(t)
test. Therefore, we do not subtract a

predicted signal Xtestβ̂post based on a hypothetical design matrix from testing data Ytest. We

perform the forward-backward algorithm on Ytest directly. By replacing β̂0post in the equa-

tions from (20) to (40) with [β̂Tpost, β̂
T
0post]

T and other related terms accordingly, the posterior

mean of both X(t)
test and X

(t)
0test can be decoded just as X(t)

0test is decoded in (40).

Part 4 Performance of all methods when all voxels have

task-related signals

In the main article, we consider the scenario when not all voxels in a selected ROI respond

to the task of interest. Here we test the performance of BRSA with a simulation when all

voxels respond to a task with equal SNR. The results are displayed in in Figure 1 of S1
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Materials. The simulation procedure was mostly the same as in Figure 3 of the main article.

The only difference is that β̂ were sampled according to the covariance matrix in Figure

3A of the main article for all the voxels in the ROI (Figure 3B of the main article), and

then multiplied with values in {0.0625, 0.125, 0.25, 0.1} times the standard deviation of the

detrended noise (resting state data) in each voxel. The resulting average SNRs across voxels

are {0.017, 0.034, 0.068, 0.361}, respectively. Uniform prior of pseudo-SNR was used in BRSA

(although see next section that the choice of the prior has no impact). Repeated-measures

ANOVA on results with 2 and 4 runs of data indicates significant main effects of RSA methods

(F=178.1, p<2e-42), of amounts of data (F=53.2, p<2e-7) and of SNR levels (F=1225.8,

p<9e-60). There are also significant interactions between RSA methods and amounts of data

(F=4.7, p<1.6e-3), between RSA methods and SNR levels (F=96.2, p<4e-91) and between

amounts of data and SNR levels (F=244.2, p<1e-36), and significant interaction among

all three factors (F=44.4, p<2e-57). Post-hoc paired t-test between RSA methods show

no significant difference between BRSA and cross-run RSA with spatial whitening (t=-1.3,

p=0.19). Both BRSA and cross-run RSA with spatial whitening are significantly better than

all other methods (largest p=1.2e-10). Further repeated-measures ANOVA between BRSA

and cross-run RSA with spatial whitening shows significant interaction between methods

and amounts of data (F=4.6, p<0.04), significant interaction between methods and SNR

(F=7.0, p<4e-4) and a significant interaction among three factors (F=18.7, p<6e-9). These

results show that in cases where all voxels in an ROI have homogeneous SNR, the average

performance of BRSA is indistinguishable from cross-run RSA with spatial whitening, but

still better than all other approaches including traditional within-run RSA.
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Figure 1: Performance of BRSA and other methods when all voxels in an ROI
respond to task conditions. We used the same "noise" in simulation as in Figure 3 of the
main article, i.e., from the same ROI of the resting state fMRI data from HCP. The difference
is that task-related activity amplitudes were sampled for all voxels in the simulated ROI, and
lower SNRs were used. (A) Average covariance matrix (top) and similarity matrix (bottom)
estimated by BRSA, across different SNR levels (columns) and different numbers of runs
(rows). The average SNRs over the whole ROI are displayed at the bottom.
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Figure 1: (B) The corresponding result obtained by standard RSA based on activity
patterns estimated within runs, which are spatially whitened. (C) The corresponding result
of RSA based on cross-correlating patterns estimated from separate runs, which are spatially
whitened based on the residuals of all scanning runs. (D) Top: average correlation (mean
± std) between the off-diagonal elements of the estimated and true similarity matrices, for
each method, across SNR levels (x-axis) and amounts of data (separate plots). Bottom: The
correlation between the average estimated similarity matrix of each method and the true
similarity matrix.

Part 5 Comparison of BRSA with different assumptions

of the prior of pseudo-SNR

As many Bayesian models, certain choices of the form of the prior distributions of some pa-

rameters need to be made. In BRSR model, we implemented four types of prior distributions

for the pseudo-SNR: exponential distribution, uniform distribution, log-normal distribution

and Delta distribution (This distribution assumes pseudo-SNR s=1 for all voxels. We denote

it as "equal" assumption since it indicates all voxels have equal SNR). We believe these re-

flect the common shapes of distributions one may hypothesize about the level of SNR within

an ROI. Here we investigate the degree by which the choice of prior distribution influence

the performance of BRSA. We performed the same simulation as in Figure 3 of the main

article, but fitted BRSA model separately using each of these four types of priors. As shown

in Figure 2A of S1 Material, in this simulation where a subset of voxels contained task-

related responses, overall log normal prior performed the best and "equal" prior performed

the worst. Repeated-measures ANOVA indicate significant main effects of the form of SNR

prior (F=261.4, p<1e-37), amount of data (F=47.3, p<5e-7) and SNR level (F=594.3, p<3e-

49), and significant interactions between SNR prior and amounts of data (F=28.6, p<4e-12),

between SNR prior and SNR level (F=79.6, p<3e-62) and between amounts of data and SNR

level (F=11.4, p<4e-6), and a significant interaction among the three factors (F=44.3, p<1e-

43). Since we are mainly interested in the effect of the form of SNR prior, post-hoc paired
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t-tests were performed among them. There were significant difference between every pairs of

the comparison (the largest p=0.0015 between log normal and exponential distributions) and

the performance was log normal > exponential > uniform > "equal". This order was also

consistent with the observation that the fitted pseudo-SNRs were the most separate between

task-active and task-inactive voxels when assuming log normal prior (Figure 2C of S1 Mate-

rials). However, under all the three forms of prior distributions that allow variation of SNR

across voxels, correlations between the fitted pseudo-SNR and the empirical SNR calculated

as σ(Xβ)
σ(noise)

(Figure 2B of S1 Material) were significant. When calculated within voxels with

task-related signals, r=0.62, 0.62 and 0.56, for log normal, exponential and uniform prior,

respectively, with the largest p=4e-16. When calculated over all simulated voxels, r=0.84,

0.82 and 0.57, with p=0.

When the same comparison was made on the simulated data in Figure 1 of S1 Materials,

in which all voxels had signals added, there was no difference between any of the form of prior

distributions of pseudo-SNR, as shown in Figure 2D of S1 Materials. Repeated-measures

ANOVA shows no main effect of the form of SNR priors (F=2.3, p=0.09), no interaction

between SNR prior and amounts of data (F=0.5, p=0.7), and no interaction between SNR

prior and SNR level (F=1.8, p=0.07).

These analyses suggest that when the SNR is almost equal in an ROI, the performance of

BRSA is robust regardless of the choice of the form of the prior distribution of pseudo-SNR.

However, in cases when SNR varies in an ROI, choosing a proper form of prior can improve

its performance. This clearly demonstrates the advantage of allowing various form of priors

on pseudo-SNR.
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Figure 2: The impact of the choice of SNR on the performance of BRSA. (A) We
used the same simulated data as in Figure 3 of the main article and fitted BRSA models
assuming different assumptions of the form of prior distribution of pseudo-SNR: exponential,
uniform, log normal and "equal" (Delta distribution).
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Figure 2: (A) Top: the correlation (mean ± std) between off-diagonal elements of each
estimated similarity matrix and the true similarity matrix. Bottom: Correlation between the
average estimated similarity over the 24 simulated subjects with the true simulated one. (B)
Scatter plot of the estimated pseudo-SNR of each voxel with added task-related signals and
their corresponding empirical SNR estimated post-hoc. (C) The density of the distributions
of the fitted pseudo-SNRs of voxels with task-related signals added. (D) The same analysis
was performed on the simulated data in Figure 1 of S1Materials, where all voxels were added
with simulated task-related responses. The correlation between the off-diagonal elements of
the estimated similarity matrix with those of the true similarity matrix.

Part 6 The effect of the number of nuisance regressors

on BRSA performance

To capture the spatial noise correlation, BRSA relies on marginalizing the amplitudes of

modulation β0 in each voxel by a set of shared time courses of intrinsic fluctuation X0

(nuisance regressors). X0 in turn needs to be estimated as the first few principal components

of the residual after removing the posterior estimates of task-related activity by BRSA during

its iterative fitting procedure (see Model fitting procedure above). We used the algorithm

proposed in (5) to estimate the optimal number of principal components to be extracted as

nuisance regressors. Here we evaluate the performance of BRSA when using the number of

components selected by this algorithm, compared to the performance when choosing a fixed

number of components from a set: {0, 10, 20, 40, 60}. The simulation setting is exactly the

same as in Figure 3 of the main article. The automatically determined numbers of nuisance

regressors was 6.7±1.9, 36.8±18.3 and 85.3±23.0 (mean±std) when fitted to 1, 2 and 4 runs

of data, respectively, independent of variation in SNR levels. As shown from Figure 3 of S1

Materials, the performance degrades when no nuisance regressors was used, but is generally

similar across the choices of the number of nuisance regressors. Adding more nuisance

regressors beyond that chosen by the algorithm (5) does not further improve performance.

In fact, with small amount of data (1 run), including larger numbers of nuisance regressors
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Figure 3: The effect of the number of nuisance regressors on the performance of
BRSA. We used the same simulated data as Figure 3 in the main article, but varied the
number of nuisance regressors used in BRSA model fitting. Top: average correlation (mean±
std) between the off-diagonal elements of the estimated and true similarity matrices, when
using different number of nuisance regressors, across SNR levels (x-axis) and amounts of
data (separate plots). "optimal PCs": the number of nuisance regressors is automatically
determined. The numbers of PCs used to generate other curves are indicated in the legends
Bottom: the correlation between the average estimated similarity matrix, depending on the
number of nuisance regressors chosen.
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(such as 40 or 60) hurts the performance. This likely would also happen if we included even

larger number of nuisance regressors when fitting to larger amounts of data (2 and 4 runs).

This comparison demonstrates that the number of nuisance regressors determined by the

algorithm (5) is sufficient, and the small residual bias observed in BRSA result is not due

to the number of nuisance regressors. Future investigation may help understand and further

reduce this residual bias.

Part 7 Cross-validation with less stringent criterion

In Figure 5 of the main article we evaluated the rate of correctly accepting or correctly

rejecting the full model in different scenarios, using paired t-test between the predictive log

likelihoods of full and null model on left-out test data. When there is task-related signal in

training data but not in test data, or when neither training nor test data contain task-related

signal, t-test always correctly reject the full model, but it is also conservative when there

is task-related signal in both training and test data. Here we display the rate of correctly

accepting the full model when both data have task-related signal and correctly rejecting

the full model in the other two corresponding scenarios, using a less stringent criterion of

whether the difference between the predictive log likelihoods is larger than 0. Being able to

accept the full model more frequently at low SNR (Figure 4A of S1 Materials), it also has

small to medium false positive rate when either there is no task-related signal in the test

data (Figure 4B of S1 Materials) or when neither data contain task-related signal (Figure

4C of S1 Materials)
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Figure 4: Cross-validation performance using less stringent criterion The same
simulation was performed as in Figure 5 of the main text. But the criterion of deciding
whether to accept the full model against the null model is based on whether the total
predictive log likelihood of the full model on test data is higher than that of the null model.
(A) The rate of correctly accepting the full model when there is consistent task-related signal
in both training and test data. (B) The rate of correctly rejecting the full model when there
is task-related signal in training, but not in test data. (C) The correct rejection rate when
there is no task-related signal in either the training or test data. Shades of color indicate
the SNR level in the task-active voxels, and different groups of bars correspond to different
amounts of training data (1 or 2 runs)
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