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Supplementary Note 1. GENERALIZED DEGREE DISTRIBUTIONS OF EMPIRICAL

AND SYNTHETIC SIMPLICIAL COMPLEXES
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Supplementary Figure 1. Generalised degree distributions of random simplicial complexes

created from real world data sets (see the data processing method described in the “Methods”

section of the main text). The four panels correspond to different social contexts, namely (a) a

workplace (InVS15), (b) a conference (SFHH), (c) a hospital (LH10) and (d) a high school

(Thiers13). The generalised degrees k1 and k2 = k∆ denote respectively the number of 1-simplices

(blue) and 2-simplices (orange) incident in a node. The vertical dashed lines indicate the

corresponding average values.
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Supplementary Figure 2. Generalised degree distributions of random simplicial complexes

(RSC) generated by the model described in the main text. The generalised degrees k1 and k2 = k∆

denote respectively the number of 1-simplices (blue) and 2-simplices (orange) incident in a node.

The vertical lines compare the average values of 〈k1〉 and 〈k2〉 obtained from multiple realizations

of the model (coloured dashed lines) with the approximated values (continuous grey lines)

calculated as described in the main text.
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Supplementary Note 2. HYSTERESIS AND SYSTEM SIZE

Supplementary Figure 3. Numerical exploration of the finite size effects on the hysteresis for a

SCM of order D = 2 on synthetic random simplicial complexes (RSC). The RSCs are generated

with the procedure described in the main text, with parameters p1 and p∆ tuned in order to

produce simplicial complexes with 〈k〉 ∼ 20 and 〈k∆〉 ∼ 6. Different panels correspond to different

system sizes, namely (a) N = 500, (b) N = 1000, (c) N = 2000, and (d) N = 4000. Each panel

shows the average stationary fraction of infected individuals plotted against the rescaled infectivity

λ = β〈k〉/µ. The parameter λ∆ = β∆〈k∆〉/µ is set to λ∆ = 2.5, which corresponds to the case in

which we observe a discontinuous transition, with the formation of a a bistable region where

healthy and endemic states co-exist and a hysteresis appears. The two types of orange symbols

correspond to two different values of the initial density of infected individuals for λ∆ = 2.5, namely

ρ0 = 0.01 (circles) and ρ0 = 0.4 (squares). The case λ∆ = 0.8, in which we observe a continuous

transition with no hysteresis, is shown for reference (black squares).
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Supplementary Figure 4. Numerical exploration of the finite size effects on the hysteresis for a

SCM of order D = 2 on synthetic random simplicial complexes (RSC). The two panels refer to two

different values of the initial density of infected individuals, namely (a) ρ0 = 0.4 and (b) ρ0 = 0.01.

The dashed line corresponds to the mean-field result.
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Supplementary Note 3. CASES OF HIGHER DIMENSIONS

Case D = 3

Let us consider here a system with maximum dimension of simplices D = 3. In this case the

model has three spreading parameters β1, β2 = β∆ and β3, and the evolution equation for ρ(t)

reads

dtρ(t) = −µρ(t) + β〈k〉ρ(t)(1− ρ(t)) + β2〈k2〉ρ(t)2(1− ρ(t)) + β3〈k3〉ρ(t)3(1− ρ(t)). (1)

Finding the roots of dtρ(t) = 0 yields a polynomial of degree 3, so it is possible to write these roots,

corresponding to stable and unstable fixed points of the dynamics, as functions of the parameters

of the model. The process is however lengthy and cumbersome, and depends moreover on three

parameters, so that the representation of the whole phase diagram is not convenient.

As we want here simply to show that the phenomenology of the appearance of first order

transitions obtained in the case D = 2, is also observed in higher dimensions, we restrict ourselves

for simplicity to the case β∆ = 0, in which we will see that we can avoid writing the explicit solutions

and resort instead to a graphical solution. This case corresponds to the hypothesis that contagion

can occur only either through simple contagion or through cliques of size 4 in which 3 of the nodes

are already infectious, and the evolution equation reduces to:

dtρ(t) = −µρ(t) + β〈k〉ρ(t)(1− ρ(t)) + β3〈k3〉ρ(t)3(1− ρ(t)). (2)

Setting λ = β〈k〉/µ, λ3 = β3〈k3〉/µ and rescaling time by µ we obtain:

dtρ(t) = ρ(t)(1− ρ(t))

(
λ+ λ3ρ

2 − 1

1− ρ(t)

)
(3)

where we can define the functions f1(ρ) = λ+λ3ρ
2 and f2(ρ) = 1/(1− ρ). The sign of the temporal

evolution of the density of infectious is thus given by the sign of the difference between f1 − f2.

Note that ρ(t) is by definition between 0 and 1 so we need to consider f1 and f2 only between these

limits. In this interval, f1 is positive and increases monotonically from λ for ρ = 0 to λ+ λ3 for

ρ = 1. Function f2 is also positive and strictly increasing, with f2(0) = 1 and f2 diverging towards

+∞ as ρ→ 1−. We also note that the equation f1(ρ) = f2(ρ) yields a polynomial of degree 3, so it

has at most 3 real roots.

Let us first consider the case λ > 1. Then at ρ = 0 we have f1 > f2, and as ρ→ 1, f1 becomes

smaller than f2. Therefore, at small ρ, dtρ is positive and hence the state ρ = 0 is unstable. More

in detail, there are two possibilities:
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• either there is one single crossing point of f1 and f2, at ρ∗. Then, dtρ(t) > 0 if ρ(t) < ρ∗

and dtρ(t) < 0 if ρ(t) > ρ∗: for any ρ(t = 0) > 0, the system goes to the stationary state

ρ(t→∞) = ρ∗. This is similar to the usual SIS case with λ3 = 0: the effect of a non-zero

value of λ3 is simply to shift the value of ρ∗.

• or there are three crossing points ρ1 < ρ2 < ρ3. This occurs for certain combinations of values

of λ and λ3. Then for ρ(t) < ρ1, dtρ(t) > 0 so the absorbing state ρ = 0 is again unstable.

The state ρ2 is also seen to be unstable while there are two stable fixed points ρ1 and ρ3:

depending on the value of ρ(t = 0), the system will converge to one of these values.

Hence, for λ > 1, the system always reaches a stationary state with a finite fraction of infectious

nodes, which in some regions of the (λ,λ3) phase diagram, can depend on ρ(t = 0).

Let us now consider the more interesting case λ < 1. Then f1(ρ) < f2(ρ) both for ρ = 0 and as

ρ → 1. Hence f1 − f2 is negative both in 0 and 1, and either 0 or 2 of the roots of the equation

f1(ρ) = f2(ρ) are between 0 and 1. Hence, for ρ ∈ [0, 1], either f1 is always below f2, or the two

functions intersect in 2 points that we call ρ− and ρ+ (ρ− < ρ+):

• in the former case (f1(ρ) < f2(ρ) ∀ρ ∈ [0, 1]), dtρ(t) is always negative so the only stationary

state is the absorbing one ρ = 0;

• in the latter case, dtρ is positive for ρ(t) between ρ− and ρ+ and negative else, so that

– if ρ(t = 0) < ρ−, dtρ is negative, hence ρ(t) decreases and the system converges to ρ = 0

– if ρ(t = 0) > ρ−, the system converges towards ρ(t→∞) = ρ+ > 0.

At fixed λ < 1, the former case is obtained at small values of λ3, while the latter is obtained for λ3

large enough. The situation is illustrated in Fig. 5 for λ = 0.5. At the transition λ3 = λc3 between

these two cases, ρ− = ρ+ > 0 (the functions f1 and f2 are tangent in this point): the transition from

ρ(t→∞) = 0 for λ3 < λc3 to ρ(t→∞) = ρ+ (if ρ(t = 0) > ρ−) for λ3 > λc3 is thus a discontinuous

one, in a similar way to the case D = 2 discussed in the main text.
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Supplementary Figure 5. SCM of order D = 3, case λ = 0.5, λ2 = 0: f1(ρ) for various λ3 (<,

≈ and > λc3), and f2(ρ). f1 is below f2 both at ρ = 0 and as ρ→ 1. The two curves therefore

either do not cross (for λ3 < λc3), are tangent in ρ+ = ρ− (for λ3 = λc3) or cross in two points ρ−

and ρ+ (for λ3 > λc3).
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General D, with β1 = · · · = βD−1 = 0

For general D, there is no analytical solution for the stationary values of the density of infectious

nodes. We show here however that, if we consider that contagion can occur only through cliques

of size D + 1, i.e., if all spreading rates β1, β2, . . . , βD−1 are null, there exists a discontinuous

transition between the phase in which the spreading vanishes at low βD and the phase in which

ρ(t→∞) is finite at large βD.

The evolution equation for ρ reads

dtρ(t) = −µρ(t) + βD〈kD〉ρ(t)D(1− ρ(t)). (4)

Defining λD = βD〈kD〉/µ and rescaling time by µ we obtain

dtρ(t) = − ρ(t)
[
1− λDρD−1(t)(1− ρ(t))

]
. (5)

Defining FD(ρ) = 1 − λDρD−1(1 − ρ), we see that the sign of dtρ(t) is opposite to the sign of

FD(ρ(t)), so that we need to study the sign of the function FD(ρ) for ρ ∈ [0, 1] (as the density ρ(t)

is by definition between 0 and 1).

We have FD(0) = FD(1) = 1. Moreover, the derivative of FD is

F ′D(ρ) = λD(DρD−1 − (D − 1)ρD−2) = DλDρ
D−2(ρ− (1− 1/D)).

It is thus negative for ρ < 1− 1/D and positive for ρ > 1− 1/D: FD first decreases as ρ increases,

reaches a minimum at ρ = 1− 1/D and then increases back to 1 as ρ increases to 1. We have thus

two cases:

• if the minimum, FD(1− 1/D), is positive, then FD(ρ) > 0 for ρ ∈ [0, 1]: therefore, dtρ(t) is

always negative for any ρ(t) > 0: the density of infectious nodes can only decrease and the

contagion-free state ρ = 0 is the only stable state.

• if instead FD(1 − 1/D) < 0, then, as FD(0) = FD(1) = 1, by continuity the equation

FD(ρ) = 0 has two roots in [0, 1], which we call ρ− and ρ+ (ρ− < ρ+). FD(ρ) is positive for

ρ ∈ [0, ρ−) and ρ ∈ (ρ+, 1] and negative between the two roots. Therefore

– if ρ(t = 0) < ρ−, dtρ(t = 0) is negative, hence ρ(t) decreases and the system converges

to ρ = 0

– if ρ(t = 0) > ρ−, the system converges towards ρ(t→∞) = ρ+ > 0.
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The condition to have FD(1 − 1/D) < 0 and hence a non-trivial stationary state can be

written simply as

1− λD(1− 1/D)D−1(1/D) < 0

i.e.,

λD > λcD =
DD

(D − 1)D−1
.

Note that for λD = λcD, ρ− = ρ+ = 1− 1/D is strictly positive, showing that the transition

at λcD is discontinuous.

This shows therefore that for β1 = · · · = βD−1 = 0, we have the same phenomenology for

any D as for the case D = 2 studied on the main text: a discontinuous transition occurs at

λcD = DD

(D−1)D−1 between an absorbing state ρ = 0 and a stationary state with a non-zero

density of infectious individuals ρ+ > 0.
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Supplementary Note 4. HYPERGRAPHS AND SIMPLICIAL COMPLEXES

Hypergraphs are a generalization of the concept of graphs in which the edges, called hyperedges,

can join any number of vertices. Formally, a hypergraph H is the pair of sets (V,E), where V is

a set of vertices, and the set of hyperedges E is a subset of the power set P (V ) of V . Simplicial

complexes are therefore special kinds of hypergraphs, which contain all subsets of every hyperedge.

A simplicial complex K on the set of vertices V can indeed be seen as a hypergraph H on V if the

latter satisfies the extra requirement that, for each σ ∈ E, and for all ν 6= ∅ such that ν ⊆ σ, we

also have ν ∈ E. Such an extra requirement seems appropriate in the context of models of social

interactions considered in our work, and it also turns useful to keep the model simple and amenable

to analytical solution. However, the SCM can be straightforwardly extended to model the more

general case of complex contagion processes on hypergraphs.
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Supplementary Note 5. RESULTS ON EMPIRICAL SIMPLICIAL COMPLEXES

WITHOUT DATA AUGMENTATION

Supplementary Figure 6. SCM of order D = 2 on real-world higher-order social structures

without data augmentation. Simplicial complexes are constructed from high-resolution face-to-face

contact data recorded in a workplace (a), a conference (b), and a high school (c). The average

fraction of infected nodes in the stationary state obtained numerically is plotted against the

rescaled infectivity λ = β〈k〉/µ for λ∆ = 0.8 (black triangles) and λ∆ = 2.5 (orange squares). The

blue circles denote the simulated curve for the standard SIS model (λ∆ = 0), which does not

consider higher order effects. For λ∆ = 2.5 a bi-stable region appears, where healthy and endemic

states co-exist.
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