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Supplementary Note 1: Honeycomb Strip and Hidden Points of SU(2) Symmetry

In this work, we studied the KT model as defined by the Hamiltonian of Eq. (1) in the
main text on a two-leg honeycomb strip using numerical exact diagonalization (ED) and
density matrix renormalization group (DMRG). The KT model defined on this geometry is
particularly suited to infer the physics of the 2D honeycomb limit because it supports two
points of hidden SU(2) symmetry that are also present in this limit. These points of hidden
SU(2) symmetry are revealed by transforming the KT Hamiltonian via a six-sublattice
transformation dubbed 7g'.

Supplementary Figure 1(a) depicts the two-leg honeycomb geometry, which can be con-
sidered as a strip of the honeycomb lattice. Periodic boundary conditions (PBC) on the
two-leg cluster are imposed by (i) connecting the outward vertical z-bonds as shown by blue
dashed lines in 1(a) and (ii) connecting the ends of the legs, i.e. members of the slashed
bonds are identified. The six-sublattice convention is defined according to labels on the sites
in Supplementary Figure 1.

We now define 7g as

s (1)
sublattice 1: (5%,8Y,5%) — ( §%, SY, S§%),
sublattice 2: (5%,8Y,8%) — (—§x7—§z,—5y),
sublattice 3: (5%,8Y,8%) — (S, 5%, §%),
sublattice 4: (5%,8Y,5%) — (=S¥, —5% —5%),
sublattice 5: (5%,8Y,5%) — ( §Z, gx, §y),
sublattice 6: (5%,8Y,5%) — (=57, —5Y, —5%)

The above transformation reveals two points of hidden SU(2) symmetry. When K =T" > 0,
we see that H — jZ(j,k) §j ~§k, with J = — K. Similarly, K =T < 0 gives rise to an antifer-
romagnetic SU(2) point with the same J. We also note that an equivalent 7g transformation
can be defined on the C3-symmetric (i.e. under cyclic permutations x — y — z — x) honey-
comb cluster with the sublattices shown in Supplementary Figure 1(b). Periodic boundary
conditions on the C3-symmetric honeycomb cluster are imposed by identifying protruding
bonds of the same type on opposite sides of the cluster.

It is important to note that the boundary conditions in these clusters allow for a consistent
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Supplementary Figure 1. Cluster Geometries — Clusters with NV = 24 sites used in the ED
calculations. The bond types v = x,y, 2 in the Hamiltonian are shown as red, green, and blue
bonds, respectively, and labelled around one site. The six-sublattice convention used for Tg is
indicated by the numbers on each site. (a) Two-leg honeycomb geometry depicted as a strip of
the honeycomb lattice. Periodic boundary conditions are imposed by (i) connecting protruding z
bonds vertically depicted by blue dashed lines, and (ii) identifying the slashed bonds at the left and
right ends of the legs. (b) Cs-symmetric honeycomb cluster, where periodic boundary conditions

are imposed by identifying protruding bonds on opposite ends of the cluster.

definition of the 7g transformation, and thus support points of hidden SU(2) symmetry
present in the infinite honeycomb lattice. For this reason, the two-leg and Cs-symmetric

honeycomb clusters described here are suitable choices.



Supplementary Note 2: Role of I'

In addition to components of the spin-spin correlators, the spin structure factor S(q) can
be used to distinguish the KI'SL from ZZ magnetic order and the KSL. In Supplementary
Figure 2 we show S(q) at g = T" and M as a function of I'/K at h = 0 calculated in the
Cs-symmetric honeycomb cluster with ED for different values of IV. As a negative 1" is
introduced, M-point correlations quickly dominate over q = I" outside of the KSL as shown
in 2(a-c). The emergence of peaks in S(q) at @ = M indicate the onset of ZZ magnetic
order due to IV, and sharpen as the magnitude of I"” increases?’. The KSL phase is also
seen to shrink, pushing it towards the pure K limit indicated by xr in 2(d-f). Beyond
a critical value of I', ~ —0.1, the KSL phase is destroyed entirely in favour of ZZ order.
Inclusion of subdominant FM nearest-neighbour Heisenberg (J) and dominant AFM third
neighbour Heisenberg (J3) also tends to promote ZZ magnetic order alongside the FM T".
If the combined effect of I'-J-J3 is too large, the KSL phase may be completely destroyed.
Observation of the thermal Hall effect in a-RuCl;s suggests that the combined effect of these

terms is small, but quantifying this is left as future work.
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Supplementary Figure 2. Role of I — Zero-field values of (a-c) the spin structure factor S(q) at
q =M, T and (d-f) xr,x as a function of I'/ K calculated with ED on the C3-symmetric honeycomb
cluster for different values of IV. With a finite FM I", the KI'SL is replaced by ZZ magnetic order as
discussed in the main text. ZZ order is characterized by dominant M-point correlations which grow
with the magnitude of I/, while I'-point correlations are favoured in the KSL. At the same time,

peaks in xr,x show that the KSL phase space shrinks until it disappears entirely at I, ~ —0.1.

Supplementary Note 3: Plaquette Expectation Values

In the pure Kitaev limit the W), operators are conserved quantities, and the ground state
is characterized by W, = +1 on all plaquettes. Although this is no longer true with finite A,
I, or I, (W,) is still a quantity which can distinguish the KSL from the nearby ZZ order. We
therefore seek an analytic expression for (W,) in the relevant magnetically ordered states.
First, we start with a FM arrangement of spins, where the moment on each site points along
the [111] direction with state |1111). The moments are then uniformly rotated through polar
angles (6, ¢), where 6 is defined from the [111] axis and ¢ from the [112] axis. With ¢ = 0,

6 corresponds to the tilting angle of the field in the 4¢* plane considered in the main text.
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Expectation value of the plaquette operator in this state is found to be

3cos(#) + 5 cos(30) — 4v/2sin(0) cos(3¢) ) 2 | 5

<WP>FM (0,p) = ( 243

This vanishes unless the moment direction involves all three spin components, and is maxi-
mized along the [111] (6 = 0) and symmetry-related directions. Similarly, a collinear AFM
product state ansatz for the zig-zag magnetic order yields the same plaquette expectation
but with an overall negative sign. While the expression for (I, )p,, becomes exact in the
limit of high fields, the ZZ counterpart is not exact due to the product state ansatz. However,

the overall sign of (IW),) is correctly captured within this approximation.

Supplementary Note 4: Effect of a Magnetic Field Perpendicular to the 4¢* Plane

For completeness, we have also investigated the K-I'-I'"-h model under a magnetic field in
the [110] direction perpendicular to the 4¢* plane. Components of the spin-spin correlators
in the I'/K-h plane are shown in Supplementary Figure 3 as calculated with DMRG in
the two-leg honeycomb cluster for [Y = —0.1. Phase boundaries determined by peaks in
the magnetic and I'/ K susceptibilities are shown as red lines. The most striking difference
from other field directions is the immediate instability of the KSL. This contrasts the 24-
site honeycomb cluster studied with ED, where we have found that the KSL region for a
[110] field is similar to that of the [112] direction. These observations are consistent with a
mirror symmetry of the model which prevents a finite thermal Hall conductivity®, but the
phase boundary found with DMRG is an artifact of the strip geometry. As with the other
directions considered, the ZZ magnetic order extends to finite field at larger I'/| K.
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Supplementary Figure 3. Magnetic Field in the [110] Direction — (a) (S7S¢) and (b) (S7Sf)
evaluated at k—j = 50 is shown as a function of I'/ K and [110] field strength for I' = —0.1. These
are obtained with DMRG in the two-leg honeycomb cluster with N = 200 and OBC. Smooth
curves fitted to singular features in either xj; or xr,x are drawn as red lines. Unlike magnetic fields
in the 4¢* plane, the KSL phase is immediately unstable to a magnetic field in the [110] direction
for the two-leg honeycomb strip, indicated by the phase boundary in red at h = 0. ZZ magnetic
order extends to finite field, until it is destroyed in favour of the polarized state. The (S*S?*) (=
(SYSY)) correlations tend to a finite value in high fields, while (S*S%) correlations tend to zero

because the field lies in the Xy plane.
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