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1. ISING MODEL METHODS (modified from (1)) 
 

1.1. Brief Introduction to the Ising Model. The Ising model we will work with consists of 

binary random variables (i.e. taking values ±1) called spins positioned on a 2D finite grid Λ (e.g. 

section 3.3.5 in (2)). A configuration of spins is a function σ that assigns 1 or -1 to each point 

x . The configuration space   is the set of all possible assignments of spins to points in Λ, 

i.e. all possible functions  : Λ → {1, −1}. A interaction profile  :   is a function with 

( )x  → 0 rapidly as x →∞ and  > 0. We choose  so that  (1) = 1. We furthermore place our 

finite grid Λ inside of a bigger grid Λb (b for boundary) and let σ(x) = −1 for any \bx  . In 

this way we impose a -1 boundary condition on Λ. Here Λb\Λ must “frame” Λ and its thickness 

has to be at least as wide as the effective interaction range, which in our case will be around 5. 

To be precise, if   is a n by m grid, b  will be a n+10 by m+10 grid with  situated in the 

middle of b . The Hamiltonian is  

,

[1] ( ) (| |) ( ) ( ) ( )
b bx y x

H x y x y h x    
 

         

Here the first sum is over 
b

 
instead of  . This is necessary to ensure the interaction with the 

boundary.  

In physics, h is the magnetic field. The Hamiltonian can be interpreted as the energy of the 

system. The equilibrium measure (Gibbs measure) is given by  

 1 ( )[2] ( ) HZ e         . 

The normalization constant Z is well-defined since our lattice Λ is finite, and we will not need to 

know it explicitly for our analysis. Here β is the inverse temperature. (For further information on 

the general Ising model, of which this is an instance, cf Sections 2.1 and 2.2 in (3)). 
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1.2. Dynamic Ising: Detailed Balance and the Transition Rates. Let Λ be a 2 dimensional 

integer grid of a finite size. Recall that Ω is the configuration space and let σ: Λ → {1, −1} be an 

element of Ω. One can introduce a dynamic on spin configurations so that the configuration 

space Ω becomes the state space for a Markov chain with a transition matrix P. We introduce the 

notation x
 
to mean  

( )      for    

( )    for     = 
x y

y

y x

y x







 
 

i.e. x
  
coincides with everywhere except at x, where the spin is reversed. To obtain a Glauber-

like dynamic for the Ising model, it suffices to choose a spin uniformly at random at each time 

increment and to give the probability that it flips, i.e. to give ( )xP   . y 

The condition on P that guarantees that π as in [2] is indeed the equilibrium measure for the 

Markov chain is called detailed balance, and it states that the Markov chain is reversible with 

respect to π (cf equation (1.30) and Proposition 1.19 in (2)). The equation for detailed balance is 

the following: for all  ∈ Ω and x ∈ Λ we have that 

( ) ( )[3] ( ) ( )
xx H x HP e P e           

This is equivalent to  

( ) ( )( )
[4]

( )

x
x

H H
x

P
e

P
    

 



   

 
The detailed balance equations will be satisfied for a wide variety of rates P, so we can choose 

P to be most appropriate to our CRU model. Since we know that the release channel opening rate 

is an exponential while the closing rate is a constant, we look for P so that the transition from -1 

to 1 is exponential while the transition from 1 to -1 is a constant. This indeed can be achieved 

simultaneously with the detailed balance condition. If ( ) 1x    we let 

2 ( (| |) ( ) ( ) ( ) () 2 ( (| |)) ( ) )
y yb b

x y x y h xx x y y h
e e

       
 

       
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(| |) ( )2

( ) y b

x y y h
xP Ce

 

  

 
  
 
 


  yielding that ( )xP C    to satisfy detailed 

balance. Thus, the Markov chain is given as follows. We pick a location x uniformly at random, 

and define the transition matrix P to be:  

2 ( (| |) ( ) )
          for ( ) 1[5] ( , )

                                        for ( ) 1

by
x h

x
y y

Ce xP
C x

  


 


      

  
 

Here time is continuous and the above are transition rates. In our numerical model, time is 

discrete and we take t =0.05 ms. The transition matrix with the discretized time becomes 

2 ( (| |) ( ) )
          for ( ) 1[6] ( , )

                                        for ( ) 1

by
x y y h

x tCe xP
tC x

  

  



       

   
   

and we ensure that t   is small enough so that all transition probabilities are smaller than 1. 

Letting also ( ) 1, , )( xPP       ensures that P is indeed stochastic.  

 
1.3. The CRU as an Ising Model. A numerical model of the CRU consists of a square grid of 

Ca release channels Λ and each release channel can be open or closed. We assign 1 to each open 

and -1 to each closed release channel, thus obtaining a configuration  : Λ →{1, −1}. We 

introduce the constant U to represent the spatial distance between nearest release channels. In our 

numerical model, is U = 30 nm.  

We let ψ be the 1D slice of the time-stable spatial Ca profile resulting from the opening of one 

release channel. This is sufficient to contain all the information about the Ca profile since ψ is 

rotationally symmetric. We obtain ψ from our numerical simulation. However, ψ is an immediate 

result of the environment, including current, diffusion, and buffer and is not an emergent 

property. We interpret it as a scaled interaction profile, and let   in [1] be given as 
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( ) ( ) / ( )r Ur U   , where Ur   is the distance to the open release channel. The multiplication 

by U accounts for the fact that the release channels are U units apart while spins are 1 unit apart. 

The division by ( )U  is a choice of scaling for the interaction profile function  . With this 

scaling we have (1) 1  . We choose this scaling for   so that at the nearest neighbors its value 

matches the classic Ising model, where each spin interacts with 4 neighbors with a strength of 1.  

The distance between CRUs is assumed to be too large for Ca from one CRU to influence 

another. On the other hand, Ca is diffusing out of the CRU and in this way the release channels 

in the CRU interact with the outside. The model would be identical if the CRU were 

surrounded by release channels that are always closed. In this way, the boundary condition of 

the CRU model is equivalent to a negative boundary condition of the Ising model.  

We will compute the analogues of inverse temperature β and the magnetic field h in our 

CRU model as functions of initial model parameters. They play the exact same role in the 

mathematical description of our CRU model as they do in the Ising model even though they do 

not carry the same physical meaning. We will note that β is an increasing function of the 

concentration of Ca inside the junctional SR and we vary the SR Ca in our numerical model to 

test the predictions of the CRU Ising model.  

 
1.4. Relating [Ca] and the Ising Hamiltonian. Let us introduce the set 

 2( ) : : | | 0 for some S x s s x y y       . We can rewrite both the local [Ca] at x (we 

denote it [Ca](x)) and the exponent in the -1 to 1 transition in P in terms of a sum over ( )S x . 

Given a configuration of open and closed release channels   and a given release channel at a 

point x, let NUs be the number of open RyRs at a distance Us from x. If the release channel at x is 

closed, we can approximate [Ca]
 
at x by  
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( )

[7] [ ]( ) ( ) Us
s S x

Ca x Us N


   

We similarly rewrite P. We introduce the following notation: Ts(x) := total number of spins at 

distance s from x; Ls(x) := number of -1 spins at distance s from x; Ns(x) := number of +1 spins at 

distance s from x; and we have Ns(x) + Ls(x) = Ts(x).  

Henceforth in this section, let us fix a site x ∈ Λ and suppress the dependence on x in 

Ts, Ls, Ns, and S for ease of notation. Then we can rewrite the expression in the exponent of the 

Ising -1 to +1 transition probability in [5] in the following way:  

[8] (| |) ( ) ( )( ) ( )(2 )
b

s s s s
y s S s S

x y y s N L s N T   
  

        

.5
2 ( ) ( ) 2 ( ) 2 ( )s s s s

s S s S s S

s N s T s N s ds    


  

        

 

In the last approximate equality, we have replaced ( ) s
s S

s T

 by  where the factor 

of 2π is due to the fact that ( ) s
s S

s T

 is approximately a 2D integral of a rotationally symmetric 

function. We observe that the first term in the final expression in [8] is a scalar multiple of the 

total Ca [Ca] (x) as given in [7]. 

 
1.5. Crucial Parameters and the Spark Termination Criterion. We want to solve for the 

analogues of h and β in the CRU model. We again fix a site x ∈ Λ and suppress the dependence 

on x in [Ca] and S for ease of notation. From experimental data we fit the exponential λe
γ[Ca] 

to 

the Ising transition rate from -1 to +1 in [5]: 

2 ( (| |) ( ) )[ ] y b
x y y hCae Ce

   
   

 
Then we replace the LHS using [7] and the RHS using the expression derived in [8] to obtain  

.5
2 ( )

s
s ds 


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[9a]   .5
2 (2 ( ) 2 ( )ds )( ) sUs s Ss S s

s N s hUs N
e Ce

      
    

     .5
4 ( ) 2 4 ( ( ) )ss s S

s h s N
Ce e

    
 

    
 
Since we wish the above equality to hold for any configuration, we must equate the 

coefficients of ( )s S s
s N to obtain  

 
[9b]      β = γψ(U)/4.  

 

Next we equate the coefficients in front of 
4 ( ( ) )ss S

s N
e

 


to obtain  

 .5
4 ( ) 2

r
s dr h

Ce
  

 
   

yielding that  

.5

1
[10] ln 2 ( )

2 r
h r dr

C

  
 

   
    

 

Rewriting h in terms of the Ca profile ψ we obtain  

  
/2

2 ( )
[11] ln 2

( ) ( )r U

r
h dr

U C U U

 
 

   
    

Since h is the analogue of the magnetic field in the CRU model, the emergent behavior of release 

channels can be predicted based on h. During termination all the release channels begin in an 

open state (analogous to +1). The Ca diffusion out of CRU is equivalent to a negative boundary 

condition. We can hence deduce the signal termination criterion: If h< 0, then the spark will 

terminate and this termination is mathematically identical to reversal of polarity in 

ferromagnetism. Mathematically, this phase transition follows from the Lee-Yang theorem. On 

the other hand, if h> 0, the spark will not terminate.  

 

  



The Ising configuration energy is

E(σ) = −h
∑
x∈Λ

σ(x)−
∑

x,y∈Λ

φ(|x− y|)σ(x)σ(y) (1)

Let ε(σ(x)) be the contributions involving spin x to this energy:

ε(σ(x)) = −hσ(x)− σ(x)
∑
y∈Λ

φ(|x− y|)σ(y) = −σ(x)(h+
∑
y∈Λ

φ(|x− y|)σ(y))

We then replace the contributions from σ(y) by their mean values:

ε(σ(x)) = −σ(x)(h+
∑
y∈Λ

φ(|x− y|)〈σ(y)〉) = −hmfσ(x)

where

hmf = h+ 2πm

∫
s>0.5

φ(s)ds (2)

and m = 〈σ(y)〉. Then we replace the energy in (1) by the energy of non-interacting
spins each experiencing a field with magnitude hmf . In this approximation we know
the single-spin Boltzmann distribution:

P (σ(x)) =
e−βεmf (σ(x))∑

σ(x)=±1 e
−βεmf (σ(x))

=
eβhmfσ(x)

eβhmf + e−βhmf
(3)

We now must ensure that the approximation is self-consistent. The mean value
of magnetization predicted by (3) should match the mean value used in (2). We
obtain the equation:

m =
∑

σ(x)=±1

P (σ(x))σ(x) =
eβhmf − e−βhmf

eβhmf + e−βhmf
= tanh(βhmf ) (4)

yielding the mean field equation for magnetization

m = tanh(βh+ 2βπm

∫
s>0.5

φ(s)ds)

Setting h = 0, we note that for low β the equation

m = tanh(2βπm

∫
s>0.5

φ(s)ds)

has only one solution and for high beta it has 3 solutions. The transition happens
when

d

dm
tanh(2βπm

∫
s>0.5

φ(s)ds)|m=0 ≥ 1

Using a Taylor expansion of tanh near 0, we obtain that 2βπ
∫
s>0.5

φ(s)ds ≥ 1
yielding that the critical β is

β∗ =
1

2π
∫
s>0.5

φ(s)ds
≈ 0.0784

���ESTIMATESOFCRITICAL β

1. Lower bounds using mean field approach

This calculation closely follows the lecture notes of Prof. Martin Evans from
University of Edinburgh .

2.1. Lower bound estimate using mean field approach
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2.2. Upper bound estimate using classical 4-neighbor Ising beta critical 
 

We can obtain an upper bound on β* by comparing with the classical nearest neighbor 

Ising model with  

0.5
( ) 12.7586

3.19
4 4

s
s ds

J


  
 

i.e. the total quantity of interactions in our model divided between for nearest neighbors. In the 

classical Ising model 

0.441
c

J

kT
  

for these formulae cf for example (6.2.2) and (6.2.16) of Baxter (5). Since β* = 1/(kTc), 

dividing the (5) by J = 3.19, we obtain an upper bound for beta critical of 0.138. 
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Fig. S1. A schematic representation of CRU function in cardiac cells in Stern numerical model that 
describes collective behavior of RyR ensemble in a CRU during spark activation and termination.  
A: Illustration of geometry and Ca fluxes in the model. Modified from Maltsev et al. (1).  Each RyR 
operates in 2 states: open and closed, with no time-dependent inactivation, coupled gating, or allosteric 
interactions. A lattice of 9x9 RyRs separated from each other by U=30 nm is embedded on a JSR that 
features calsequestrin and a diffusive connection with a free SR (FSR) that is equipped with a Ca pump. 
A 15 nm dyadic space features Ca buffers and a diffusive connection to the cytoplasm. The model 
simulates intradyadic local Ca dynamics on a nanoscale, with a voxel size =10x10x15 nm (xyz). 
Individual RyRs release Ca and interact via CICR. The dyadic space includes physiological Ca buffers 
and the released Ca diffuses to JSR border to reach the cytoplasm that has a fixed [Ca] of 100 nM. B: 
Diffusional connection between junctional SR (JSR) to free SR (FSR) determining JSR refilling with Ca. 
The connection is made through a tube of local FSR, whose length and diameter are chosen to match the 
observed steady-state diffusion resistance (characterized by time constant τfill) and the observed volume 
fraction of FSR. For the standard parameters and a true half-sarcomere length of 1 μm, the effective SR 
tube length is 1.995 μm. From Stern et al. (6). In the numerical simulations, the boundary condition for 
Ca at the edge of the couplon was determined by adding, to the background cytosolic Ca (100 nM), the 
product of the flux of Ca leaving the couplon and an estimated diffusion resistance between the boundary 
and “infinity” in the cytosol.  The diffusion resistance estimate was originally determined from analytical 
computations in cylindrical coordinates assuming a central source and numerical integration of the 
diffusion equation in rectangular coordinates using PDEase (Macsyma Corp, Arlington, MA). 
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Fig. S2. Construction of an exact mapping between a CRU described by Stern model and the Ising 
model of interacting spins.  
A, A steady-state spatial Cadyad profile at various CaJSR when one RyR is open in the center of 9x9 grid at 
r=0. B, Representative Cadyad(t) when one RyR is open in the center of the grid: at the open RyR and its 
closest neighbor. C, The exponential relation of RyR opening rate vs. Cadyad. All previous models fit a 
power function to original data obtained in lipid bilayers. Here we fit an exponential (red line) to the same 
data points (original data and power fit are reproduced from Laver et al. (7). Thus, we replaced the 
quadratic opening rate in original Stern model with the exponential opening rate from this fit.   
Modified from Maltsev et al. (1). 
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Fig. S5: Leaky operation of RyRs in subcritical regime neglecting any remaining interactions with 
each other. 
A: Steady-state open probability (Po) is given as balance between opening (λ) and closing (C) rates as Po= 
(λ/C)/(1 + λ/C). B: The probability that all 81 RyRs become closed. 
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Fig. S6: Supercritical β regime: Phase transition in a CRU of 9x9 RyRs via h reversal as CaJSR is 
clamped at various levels in Stern model.  
A: Calculation of h as a function of CaJSR, using modified Equation 11 in supplement (indicated in the 
inset). In this equation, ψ(U, CaJSR) is interaction profile ψ(r, CaJSR) taken for r = U = 30 nm shown by 
vertical arrow in Online Figure IIA. In turn, β was calculated as β=γψ(U, CaJSR). B: Evolution of RyR 
ensemble at various CaJSR levels after all RyRs are set in the open state at time 0. RyRs stay mainly closed 
at CaJSR below 0.12 mM, but become mainly open above 0.12 mM. The sharp transition in the numerical 
model behavior is in line with the Ising model prediction of the phase transition at 0.12 mM on h reversal. 
Modified from Maltsev et al.(1).  
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Table S1 – Relationship between the abstract Ising model and ion channels and CRU parameters  
 

Abstract 
Ising model 
parameters 

Equations Release channel (RyR) 
parameters 

CRU  
parameters 

Inverse 
temperature 

β   

Equation [9b] in the supplement  
 

β=γψ(U)/4 
 

γ is opening rate exponent in 
ko=λ*exp(γ*Cadyad)  (Fig. S2C) 
 
λ is opening rate scaling factor, 
i.e. a virtual rate at Cadyad =0 
 
The single channel conductance*,  
in Stern spark model 
UIC=0.35pA, i.e. iRyR at resting 
CaJSR,rest=1 mM 
 
 

U=30 nm is the distance 
between neighboring 
RyRs 
 
ψ(r, CaJSR, UIC) is the 
interaction profile†‡, i.e. 
Cadyad at distance r from 
open channel with a 
given CaJSR and single 
channel conductance (i.e. 
UIC in the Stern model).  

Magnetic 
field  

h  

Equation [11] in the supplement 
 

/2

2 ( )
ln 2

( ) ( )r U

r
h dr

U C U U

 
 

   
  

 

Notes:  
* The single channel conductance is present in the equations implicitly via ψ 
† ψ also depends on the CRU size (it tends to decrease for very small CRUs due to boundary effects).  
‡The present study does not provide an analytical formula for ψ; rather it was a read-off from numerical model 
simulations (Fig. S2A).  
 

 
 
Table S2 –  Independence of Ca release flux via neighboring RyRs, i.e. minor effect of driving force 
reduction due to open neighboring RyRs. See Figure S3. 
 

Condition 
[Ca] at the nearest 
closed RyR, μM 

[Ca] at RyR#2, 
μM 

 

Open RyR#1 4.904 8.234 

Open RyR#2 8.66 22.256 
Open RyR#1 and RyR#2 

(independent) 13.564 30.49 
Open RyR#1 and RyR#2 

(real) 13.094 28.701 
Difference of independent 

and real 0.47 1.789 

relative change in % 3.465 5.867 
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Table S3 - Supplemental calculations & results (median extinction times) for the main text Figure 2.  
 
Pairs of γ and λ values (highlighted) were constructed to have h=0 in a CRU with 9x9 RyRs. This is a copy of Excel 
spreadsheet; each column is explained below:  
C: closing rate C=0.117 ms-1= const. 
CaJSR: CajSR=100 µM=const. 
(U): the value of interaction profile at the distance of the nearest RyR neighbor;  (r) is given in Figure S2A, i.e. 
we take here the  value at r=1 for the 0.1 mM CaJSR curve (red line). 

Int0.5toInf =
.5

( )
r

r dr
 . The integral is calculated for interaction profile (r), that is the red line in Figure S2A. 

The integral is taken from r=0.5 to infinity (to the end of the grid, that is 4.33 in our case).  
 
SpaceInt=2**int0.5toInf/(U). This is the normalized 2d integral in Equation [10] of the supplement.  
γ: independent variable here, it varies from 0.02 to 0.15 1/µM. 
β=(U) *γ/4, i.e. Equation 9b in the supplement. 
λ=C*exp(-2*β*SpaceInt). This is the solution of the Equation [10] in the supplement for h=0. Each λ value was 
calculated for each γ (independent variable).  

.5

1 1
ln 2 ( , ) ln

2 2JSRr
h r Ca dr SpaceInt

C C

  
 

         
     = 0 

extin time: Median extinction time for 100 sparks simulated with parameters in each row. 
h=ln(λ/C)/(2*β)+SpaceInt: analog of magnetic field that must be 0. We calculated h just to make sure that it is 
indeed 0. 
 

 
 
 
  

C CaJSR  (U) int0.5toInf SpaceInt γ β λ extin time h

1/ms mkM mkM mkM NoDim 1/mkM NoDim ms‐1 ms NoDim

0.117 100 7.47087 15.1703 12.7586 0.02 0.0373544 4.51E‐02 >10000 0

0.117 100 7.47087 15.1703 12.7586 0.03 0.0560315 2.80E‐02 >10000 0

0.117 100 7.47087 15.1703 12.7586 0.04 0.0747087 1.74E‐02 >10000 0

0.117 100 7.47087 15.1703 12.7586 0.05 0.0933859 1.08E‐02 >10000 0

0.117 100 7.47087 15.1703 12.7586 0.053 0.098989 9.36E‐03 >10000 0

0.117 100 7.47087 15.1703 12.7586 0.055 0.1027245 8.51E‐03 7397.46 0

0.117 100 7.47087 15.1703 12.7586 0.058 0.1083276 7.37E‐03 2473.98 0

0.117 100 7.47087 15.1703 12.7586 0.06 0.1120631 6.70E‐03 1110.41 0

0.117 100 7.47087 15.1703 12.7586 0.07 0.1307402 4.16E‐03 188.308 0

0.117 100 7.47087 15.1703 12.7586 0.08 0.1494174 2.58E‐03 97.4777 0

0.117 100 7.47087 15.1703 12.7586 0.09 0.1680946 1.60E‐03 78.6526 0

0.117 100 7.47087 15.1703 12.7586 0.1 0.1867718 9.96E‐04 69.4714 0

0.117 100 7.47087 15.1703 12.7586 0.11 0.2054489 6.19E‐04 no data 0

0.117 100 7.47087 15.1703 12.7586 0.12 0.2241261 3.84E‐04 no data 0

0.117 100 7.47087 15.1703 12.7586 0.13 0.2428033 2.38E‐04 no data 0

0.117 100 7.47087 15.1703 12.7586 0.14 0.2614805 1.48E‐04 no data 0

0.117 100 7.47087 15.1703 12.7586 0.15 0.2801576 9.19E‐05 56.0243 0
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Table S4 – Values of h for the results in Figure 3 (main text).  
 

JSR [Ca], mM h 

0.0125 -100 

0.025 -44 

0.0375 -25 

0.044 -20 

0.05 -16 

0.0625 -10 

0.075 -7 

0.1 -2 
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