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Supplementary Materials 

Section S1. Details of simulation methods, models, and data analysis 

Simulation models. Computer simulations use the dissipative particle dynamics (DPD) 

technique which extends the simulation scales of time and space to be appropriate to the 

study of nanoparticle−membrane systems with explicit water (29, 34, 48). The models of 

lipid, membrane, and graphene are displayed in fig. S6. Each amphiphilic lipid consists of a 

head group and two tails (29, 36). The head group is constructed by three connected 

hydrophilic beads and each tail includes three connected hydrophobic beads. 625 lipids self-

assemble into a tensionless lipid bilayer membrane spanning the simulation box. Each GO is 

modeled by arranging the hydrophobic beads on a single layer of fcc (face-centered cubic) 

lattice into a desired geometrical shape and area. Solvent particles are represented by a 

single bead. 

 

In the present work, the interaction parameter between GO and lipid tail GT is varied to 

reproduce different oxidization degrees or chemical modifications of the GO. For example, 

increasing GT  indicates a higher oxidization degree of the GO due to the reduced attraction 

between GO and lipid tails. Indeed, upon interacting with the lipid bilayer membrane, the 

GO model leads to the structures and dynamic behaviors similar with that constructed based 

on the typical structure model representing outcomes from standard oxidization processes 

(29, 51, 52) (see figs. S7, S8, S14, S15, and S19, and Movies S1 and S2). Furthermore, the 

results based on such a model are readily generalized to other 2D nanomaterials.  

 

The Young’s modulus of the GO model has been calibrated according to the experimentally 

found elasticity of graphene (27, 49, 50). Experiments on bulk graphite give about 1 TPa for 

the in-plane Young’s modulus, while the Young’s modulus of graphene varies between 0.5 



and 1.0 TPa (55). In order to have a similar Young’s modulus of our GO model, the 

modulus of the spring and the modulus of the angle bend between beads of the GO are 

selected as 1 2-700 kcal mol Å   and -1 2700 kcal mol rad   respectively
 
(49). 

 

Details of DPD simulations. In a DPD system, a set of interacting beads is considered, 

whose time evolution is governed by the following Newton’s motion equations (48) 
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Furthermore the total force if  acting on every bead can be expressed by (50)  
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ij ij ij i iF F F F F are the conservative force, the dissipative force, the random force, 

the spring force and the angle force respectively. Here ,S A

i iF F  are additional forces, which 

are introduced to represent the interactions between bonded beads. The conservative 

force C

ijF , which is derived from a soft interaction potential within the certain cutoff radius 

rc, can be given by the following equation 
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where 
ij i j r r r , 

ij ijr  r  and /ij ij ijre r . 
ija  is the maximum repulsion between bead i 

and bead j, which is related with the Flory-Huggins  -parameter (
ij ) as follow 
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where iia  is the repulsion parameter between the same type beads and 25iia  is used in our 

DPD system. 
ij will be smaller than 25 for a strong attraction between two beads while it 

will be larger than 25 for a strong bead-bead repulsion interaction. Furthermore, the 

decrease of 
ij  corresponds to the enhancement of bead attraction and vice versus. For the 

present simulations, each parameter is selected carefully based on the properties and 

interactions of different beads (27, 29, 49). 

 

The dissipative force D

ijF  and the random force C

ijF  act together as a thermostat and can be 

given by the following formulas 
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where 
ij i j v v v  and 

ij  is a random number which has zero mean and unit variance. The 

noise amplitude   is fixed at 3 and we take 
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This particular thermostat is special in that is conserved angular momentum, which leads to 

a correct description of hydrodynamics. 

 

A modified velocity-Verlet algorithm due to Groot and Warren is used to solve the motion 

equation
 
(48). In details, we take the bead mass, the cutoff radius and the temperature as 

units and define the time scale as  = Tkmr Bc /
2

. The size of our simulation box is 

320 20 20 cr 
 
and periodic boundary condition in all directions is taken into account. To 

prevent the passage of fluid beads through the GO, an additional bounce-back boundary 

condition is imposed on the GO surfaces (56). In order to assure the accurate temperature 

control of the simulation system, we set 0.008t   as the time step and select a bead 

number density of 3/rc
3
. 

 

The reduced DPD units can be converted to SI units by examining the membrane thickness 

and the lipid diffusion coefficient. In a tensionless dipalmitoylphosphatidylcholine (DPPC) 

membrane, the typical area per lipid is about 0.64 nm
 
(57). We use this value to estimate the 

physical length of our simulations and get that 
cr  is about 0.7 nm. Thereby the area of the 

planar membrane in our simulation is about 14 nm14 nm. Moreover, we relate the time 

unit   to the physical time by comparing the in-plane diffusion coefficient of lipids. A 

typical experimental result of this diffusion coefficient is 
25 μm / s (34). Thus we can get 

 =7.7 ns and the total physical time of each calculation is over 0.3 ms (510
6
 time steps). 



Double-Membrane System. To mimic the diffusion of drug beads within a cell, a double 

bilayer system is built, which divides the system into two regions: an “extracellular” region 

without drug bead and an “intracellular” region where the drug beads can be added into it 

(58). The model of double bilayer system is displayed in fig. S6. Each receptor, which will 

be targeted by the drug beads, is modeled as a cluster of frozen DPD beads grouped into a 

rigid body with fcc-arranged beads (53). The diameter of cylindrical receptor is set as R = 2 

rc, and the height is set as h=2h1+h2=2*3+4=10 rc, where h1 and h2 represent the height of 

solvophobic block and solvophilic block, respectively. Two patches of identical lipid 

membranes have a total of 1952 lipid molecules, with each membrane possessing 976 lipids. 

The double lipid membrane system is constructed to be an elongated rectangular box along z 

axis to prevent two bilayers from affecting each other. The size of the system 

is 325 25 60 cr  , with periodic boundary condition in all directions. The lower membrane is 

10 rc away from the bottom of the box while the upper membrane is 20 rc away from the 

top. Drug beads are represented by a single DPD bead. 

 

Trajectory analysis. The trajectories of persistent segments and jiggling periods are 

identified using the wavelet analysis method described elsewhere (38). Briefly, the wavelet 

analysis method comprises following three steps:  

 

Firstly, choose an appropriate wavelet. The wavelet is a weighting function which is used in 

calculating the local integral values of time series over different scales. Wavelets can take 

different forms and thereby can acquire different integral values. Typically, “Haar wavelet” 

is commonly used in the wavelet analysis. 

 

Secondly, perform the wavelet transform. The wavelet transform is mathematically defined 

as a local integral. During the wavelet transform, the time-dependent data can be 



transformed into a time- and scale-dependent representation of the original data. In practice, 

the transformation is easy to conduct using an easily accessible toolbox MATLAB. 

 

Finally, determine the scale and threshold. We must set a scale on which a threshold is used 

to decide what differences are large enough to matter. This threshold serves as the decision 

criterion for classifying the type of dynamics and identifying dynamical heterogeneity.  

 

In our simulations, we computed the Haar wavelet coefficients at a scale of 500 frames for 

all trajectories. At this scale, the wavelet transform coefficients can be clearly distinguished. 

The threshold was set according to the “universal thresholding”
19

. Combining results both 

on x and y, the separation is overlaid on the original trajectory in the inset of Fig. 2B, with 

persistent segments highlighted in red. Fig. 2D shows that the assigned persistent segments 

are super-diffusive while jiggling segments exhibit Fickian, which is reasonable physically. 

 

Statistical analysis. After identifying the persistent segments and jiggling periods from the 

origin trajectory, the angles between the neighboring persistent segments are defined as 

turning angle (fig. S10), which is statistically uncorrelated and distributed isotropically (Fig. 

2F). To calculate the length distribution of persistent segments, we use an equal number of 

data points per bin (39).  

 

To distinguish the exponential and power-law distributions, we use the following method of 

model selection to provide more evidence
24

. In this method, for a given data 

set
1 2 3, , , ,{ }nx x x xx  and considering the tail to start at a, the power-law tail has 

probability density function of
1

1( ) ( 1)a ,x xf x a      , leading to the log-likelihood 

function 
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The exponential tail has probability density function of ( )

2( ) ,x ax e xf a    , leading to the 

log-likelihood function 
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Solving for the maximum likelihood estimates analytically gives 
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where 1 2
ˆ ˆ ˆˆ,      and Ki is the number of parameters being estimated for model i. The 

Akaike weights are relative likelihoods of each model, given by 
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where
minAIC AICi i   . 

 



In our simulations, with the data sets containing at least 2000 persistent segments for 

each GT , using Akaike weights can identify the more likely model for the tails, which can 

eliminate the bias of model selection. 

 

Section S2. Details of analytical models 

Detailed deduction of the analytical model of sandwiched-GO-induced pore. We 

develop an analytical model to understand the simulation results and rationalize the four 

regimes of the membrane-pore states observed in simulations. Our model is based on the 

idea of pore formation induced by the repulsive interaction between GO and lipid tails. In 

the presence of the interaction, the membrane is no longer tensionless. Instead, the 

sandwiched GO causes an internal membrane tension, which leads to the pore formation.  

 

The energy cost of pore formation in the cell membrane is given by (59) 

 

22R RE R                                                            (12) 

 

where R is the radius of the circular pore;
   and   are the membrane tension and the line 

tension, respectively. In general, is a constant for a pure lipid bilayer. 

 

A schematic illustration regarding the GO-induced pore in the membrane is presented in 

Fig. 4a. Due to the symmetry between the inner and outer leaflets of the cell membrane, we 

only calculate one single leaflet of the membrane for simplicity. In this system, the 

interaction energy between GO and lipid tails is 2 2( )a a GT aE A KK a R  , where Ka is 

the area density of interaction energy between GO and lipid tails. With a circular pore of 



radius R emerging on the GO of side length a, 2 2

GTA a R  stands for the contacting area 

of GO with lipid tails.  

 

Therefore, GO-induced internal membrane tension is calculated as 
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where Am denotes the membrane area. 

 

After substituting Eq. (13) into Eq. (12), the energy of pore formation reads 
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The equilibrium radius of pore R0 is determined by minimization of the pore energy ER with 

respect to R 
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To determine the energy-minimum solution, we move on to calculate the second-order 

derivative of pore energy 
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Substituting R01 and R02
 
into Eq. (10), we find that
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   gives the maximum of pore energy. A straightforward 

calculation of R01 leads to
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 . Note that θ is a variable depending on Ka. 

Therefore, we obtain the relationship between the ratio of the pore area with the GO area 

and Ka (red curve in Fig. 4D), which fits the simulation results quantitatively. 

 

Furthermore, at the transition point of 
0a aK K , one finds that Eq. (15) admits repeated 

roots of 0201 / 6R R a   , which means that 
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With increasing aK  to 
0aaK K , the two roots depart from each other and 

01R , 
02R  

represent the minimum and the maximum point, respectively, as analyzed before. In fig. 

S16, we plot ER-R at different 0a aK K . It is found that, when
0>a aK K , with the increase of 

Ka, R01 increases, while R02
 
decreases. Moreover, in this figure the curves of R01 and R02 are 

presented with respect to various Ka.  

 

Rationalizing the four regimes of membrane-pore states. Now, we rationalize the four 

regimes illustrated in Fig. 5A based on the analytical model. 

 

Firstly, the boundary between state I (without pore) and state II (unstable state) is acquired 

by the simulation results (Fig. 3F). Specifically, in state I, no pore is observed in the 

simulation, while, in state II, pores begin to emerge. The difference between these two 

regimes represents the dependence of pore energy on the value of Ka, which is characterized 

by the first-order derivative  
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Here, 2 2a 0R  , leading to 0R
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 . Thus, for a given R, with the increase of Ka, the 

energy of the pore ER decreases. In other words, at the larger value of Ka, the pore is easier 

to be formed in the membrane under the disturbance of thermal energy.  



 

Secondly, we determine the boundary between state II and state III (metastable state) as 

0a aK K . Specifically, the transition point m
0 3
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0a aK K , there are repeated roots for Eq. (15), i.e., 

01 02 / 6R R a   . When 0a aK K , Eq. (15) has no real roots, namely, no minimum value 

of the pore energy exists, whereas the real roots of Eq. (15) emerge at 0a aK K . This 

transition point defines the boundary to divide state II and state III in Fig. 5A. 

 

Finally, to determine the boundary between state III and state IV (stable state), we define the 

energy barrier in the ER-R curve,
02 01( ) ( )E E R E R   , as illustrated in Fig. 4B. In a real 

system, there always exists thermal fluctuations of characteristic energy 1 kBT, which can 

lead the pore to spontaneously disappear if the energy barrier <1 BE k T . Fig. 5B shows the 

plot of E versus Ka. It is found that E is a monotonic increasing function. Namely we can 

find an intersection point at
1( )=1 a BE K k T . When

1>a aK K , >1 BE k T  is always satisfied. 

Here, Ka1 is the boundary to divide state III and state IV. 

 

In conclusion, we give the rational boundaries between the four regimes. For the boundary 

between state I and state II, it is determined by the simulation results, whereas we can prove 

that the pore is easier to be formed at larger values of Ka according to the analytical model. 

The boundary between state II and state III is given by
0=a aK K , which is obtained from 

mathematical analysis. However, due to the presence of thermal fluctuations, the pore can 

spontaneously disappear in both state II and state III. Therefore, physically, the state II and 

state III are equivalent. The boundary between state III and state IV is determined by the 



occurrence of an energy barrier of =1 BE k T . These three states (state II and state III behave 

as one state) can be overlapped well with the three diffusive dynamics, thereby explaining 

the mechanisms of Lévy walk and directional motion of the sandwiched GO. 

 

 

 

Fig. S1. Characterizations of the prepared 2D material of GO. The AFM image (a), 

height analysis (b), and size distribution data (c) of a GO showing that the lateral dimension 

of GO is ~40 nm, and the average height is less than 2 nm (1-2 layers). 

b 

a 
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Fig. S2. Cryo-TEM images of the blank liposomes, the formation process of the 

sandwiched GO superstructure, and the sandwiched structure at different detection 

angles. Cryogenic transmission electron microscopy (Cryo-TEM) images of the blank 

liposomes (a), the formation process of sandwiched GO superstructure (b) and the 

sandwiched structure at different detection angles (c). GO are indicated by the triangles. The 

darker line (with higher mass density) at 0° is still existing after a total 90° alteration of the 

detection angle, which reconfirm the sandwiched structure of GO in lipid membrane. Scale 

bars, 50 nm. 

a b 

c 



 

Fig. S3. Tomography views of the 3D map for the GO-membrane superstructure and 

the blank liposome vesicles. Tomography views of 3D map for the GO-membrane 

superstructure (a-c) and the blank liposome vesicles (d-g). a, Construction process of the 3D 

map for GO-membrane. b, Cross section of 3D density map for GO-membrane. c, The 

projection of 3D map in 0° tilt angle for GO-membrane. The lipid vesicle in the presence of 

GO nanosheet shows higher mass density as indicated by the looped zone and the arrow. d, 

Raw data. e, 3D slice of density map. Scale bar 20 nm. f, The middle layers of 3D slices of 

density map. The density is relatively homogenous for the blank lipid vesicles. g, 

Construction process of 3D map. 
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Fig. S4. A series of TEM images of the GO–cell membrane interaction and the cells 

after exposure to different dimensional materials. The GO-cell membrane interaction 

includes (a) primary contact and (b) sandwiched status in the membrane (top) and their 

zoomed image (bottom). Scale bars, 50 nm. c, Different dimensional materials include 1D 

CNT CSs Xgene 

a 

b 

c 



carbon nanotube (CNT), 2D graphene analogue (Xgene), and 3D carbon spheres (CSs). The 

Xgene is observed to be hosted inside the cell membrane, similar with that for GO. While 

the CNT and CSs are found to intimately contact with the cell membrane, no sandwiched 

superstructure is found for these two materials. Scale bar, 100 nm. 



 

        

Fig. S5. The interaction between GO and the cells. a, TEM images showing that the GOs 

are sequestered in the phagosomes after internalization through the macrophage. Scale bar, 

50 nm. b, LDH leakage data of the GO-treated nonphagocyte and macrophage. No LDH 

leakage was detected for the GO-treated nonphagocyte (left), while a little LDH leakage was 

tested for macrophage (right). This phenomenon is in line with the entry capacity of GO for 

different cell lines. c, FRAP images of corresponding cell-GO interactions. The fluidity of 

membrane lipids was found to be accelerated after GO introduction.. 
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Fig. S6. Molecular models for the individual entities used in the simulations. The model 

of amphiphilic lipid consists of a head group with three hydrophilic beads and two tails 

including three hydrophobic beads. In this lipid model, the colors of the beads stand for: 

head bead with charge +1 (green), head bead with charge -1 (pink), head bead without 

charge and tail bead (cyan). Each graphene oxide (GO) is modeled by arranging the beads 

on a single layer of fcc (face-centered cubic) lattice into a desired area (yellow). Lipids self-

assemble into a lipid bilayer membrane spanning the simulation box. Each receptor is 

modeled as a cluster of frozen DPD beads grouped into a cylindrical rigid body with fcc-

arranged beads. The solvophobic block and solvophilic block of the transmembrane receptor 

are represented by yellow and blue, respectively. Drug beads are represented by a single 

DPD bead (red). The double lipid membrane system is constructed to be an elongated 

rectangular box along z axis, which divides the system into two regions: an “extracellular” 

region without drug bead and an “intracellular” region where the drug beads can be added 

into it. For clarity, water beads are not shown. 
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Fig. S7. Translocation pathways of GO across the lipid membrane toward the 

sandwiched GO structure. a and b, Successive stages of a translocation pathways where 

the interaction parameter between GO and lipid tail, GT is: a, 1.43; and b, 15.73. The times 

of the slices are: a1, 0τ; a2, 624τ; a3, 640τ; a4, 656τ; a5, 688τ; and a6, 720τ; b1, 0τ; b2, 

620τ; b3, 640τ; b4, 664τ; b5, 800τ; and b6, 880τ. Only the x-z cross section view of the lipid 

membrane around the GO is shown in each snapshot for clarity.  
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Fig. S8. Translocation pathways of GO, with the model representing outcomes from 

standard oxidization, across the lipid membrane. a, Successive stages showing the 

detailed translocation pathway of the GO with the oxidation degree O =0.3  towards the 

sandwiched-GO structure. The times of the simulation snapshots are: a1, 0τ; a2, 100τ; a3, 

120τ; a4, 144τ; a5, 1012τ; and a6, 1264τ. b, Successive stages showing the detailed 

translocation pathway of the GO with the oxidation degree
O=0.4 towards the structure 

lying across the membrane. The times of the simulation snapshots are: b1, 0τ; b2, 1240τ; b3, 

1320τ; b4, 1480τ; b5, 1600τ; and b6, 2400τ. The colors of yellow, blue, and red indicate the 

beads of the unoxidized basal plane, the oxidized edge, and the oxidized basal plane. Only 

the x-z cross section view of the lipid membrane around the GO is shown in each snapshot 

for clarity.  
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Fig. S9. The displacement probability distributions and the translational diffusion 

coefficients of the GO sandwiched inside the membrane. a, The displacement probability 

distributions exhibit Gaussian for several representative values of time step. Averaged from 

5 million time steps, the displacement probability distributions of GO sandwiched in lipid 

bilayer are plotted logarithmically against linear displacement at GT =1.43 along x-axis 

(left) and y-axis (right). b, The translational diffusion coefficients of the GO sandwiched 

inside membrane can be well described by the SD model. Lateral diffusion coefficient D of 

the GO is plotted as a function of side length, a. The solid red line shows the data fit using 

the SD model. Vertical dashed line denotes the critical size ac for the SD fitting. This fit 

gives an estimate of the membrane surface viscosity 0.1778 Pa sm   , as well as the 
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viscosity of the surrounding water 0.03243 Pa sc   . The critical radius can be thereby 

determined as / (2 ) 8.2239 nmc m cha    . 

 

Fig. S10. A schematic diagram illustrating the definition of the turning angle between 

the neighboring persistent segments. A representative trajectory of GO exhibiting Lévy 

dynamics is presented in this figure. The color of the line denotes elapsed time with scale 

shown in the inset, and the persistent segments identified by wavelet analysis are 

highlighted by circles. The dashed circles mark jiggling periods. 
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Fig. S11. Diffusive properties of GO with χGT = 7.15. a, Displacement probability 

distributions of GO sandwiched in lipid bilayer are plotted logarithmically against linear 

displacement along x-axis. The solid lines represent the Gaussian distribution. Inset: 2D 

non-Gaussian parameter α2(t) with dramatic departure from 0 at large time. b, Normalized 

displacement autocorrelation function (DAF) C(t)/C(0) of the GO for different lag times 

(8). c, MSDs of 62 trajectories of the GO. The measurement time for each trajectory is 

40000. Inset: Relative standard deviation (RSD) of time-averaged MSDs of the GO for 

different lag times (8). d, Averaged speeds of persistent segments as a function of flight 

time. Inset: The plot of persistent length with jiggling time.  
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Fig. S12. Transition of diffusion patterns of the sandwiched GO from Brownian to 

Lévy and even directional dynamics with a membrane size of 240 40 cr . a, Typical pore 

states in cross-sectional view. The red circles display the pore induced by the sandwiched 

GO. b-d, Representative trajectories tracked for 1×10
4 

τ, when the interaction parameter 

between GO and lipid tail, GT , is: (B) 1.43; (C) 10.05; and (D) 14.3. 
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Fig. S13. Diffusive dynamics and membrane-pore states of a circular GO. a, 

Representative trajectories tracked for 4×10
4
τ, when the interaction parameter between GO 

and lipid tail, GT =12.87. Colors denote the time lapse of the trajectory. Arrows and dashed 

circles indicate respectively alternating persistent segments and jiggling periods which are 

quantitatively identified by wavelet analysis. Circular GO is also modeled by arranging the 

beads on a single layer of fcc (face-centered cubic) lattice into a desired radius of 4.9nm 

(yellow) shown in the inset. b, The probability distribution of step length, l, on log-log 

scales, showing exponential statistics at GT =2.86 but power-law statistics with slope -2 

at GT =10.01 and -1 at GT =18.59 from maximum likelihood estimation of the power-law 

tails. c and d, Representative snapshots of membrane-pore states at GT =2.86 (c) and 10.01 

(d). The red circles display the pore induced by the sandwiched GO. The color scheme of 

beads is the same as those of fig. S6. Solvent beads are not shown for clarity. 
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Fig. S14. Simulation results demonstrate various membrane-pore states and the 

mechanism of pore formation. a-d, The number of GO beads contacting solvent, N, is 

plotted as a function of time, t, at various GT : a, 1.43; b, 7.15; c, 10.01; and d, 14.3. N 

indicates the size of the pore in a leaflet of the membrane. e, QCM data showing the 

formation of DLPC bilayer (indicated by the star *) through support-induced spreading of 

lipid vesicles on the chip. 
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Fig. S15. Representative snapshots from simulations feature the sandwiched GO–

induced pores in the single leaflet of cell membranes. Typical pore states in top view 

(top) and cross-sectional view along the dashed lines (bottom) are illustrated at various GO-

lipid tail interactions GT : a, 1.43; b, 7.15; c, 10.01; and d, 14.3. The dashed squares mark 

the contour of GO; the red circles display the pore induced by the sandwiched GO. The 

color scheme of beads is the same as that of fig. S6. Solvent beads are not shown for clarity. 
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Fig. S16. The energy of the sandwiched GO–induced pore as a function of the radius of 

the pore R at 
0a aK K  2

0 B25 / n( )ma k TK  . The plots are obtained by the analytical 

model. When
0=a aK K (red curve), there are repeated roots 01 02 / 6R R a    (vertical 

dashed line) for 0R RE  , where 2 0R RE  also. When
0>a aK K , with the increase of Ka, the 

minimum value R01 increases, while the maximum value R02 decrease, as indicated by the 

dashed purple and cyan curves, respectively. The solid and hollow circles at each plot mark 

the local maximum and the local minimum of ER, namely, R02 and R01, for the 

corresponding Ka. These both types of points meet at the transition point, 

i.e., 01 02 / 6R R a   . 



 

Fig. S17. Correlation between the analytical model and simulation results. Plot of lipid 

tail-GO interaction energy, Ea, versus the number of GO beads contacting solvent N, where 

GT  is: a, 7.15 and b, 14.3. Averaged from 5 million time steps (raw data obtained from 

simulation results and shown as gray circles), the yellow crosses have the linear fitting 

indicated in each figure. 
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Fig. S18. Diffusive dynamics of lipids varies from Fickian to superdiffusive. Time 

Averaged mean square displacement 2 ( )tr   of lipids is plotted as a function of lag time on 

log-log scales with different GO-lipid tail interactions.  



 

Fig. S19. Sandwiched GO–induced pores in the single leaflet of the cell membrane for 

the GO model representing outcomes from standard oxidization processes. Typical pore 

states in top view (top) and cross-sectional view along the dashed lines (bottom) are 

illustrated at various oxidation degrees O : a, 0; b, 0.1; c, 0.2; and d, 0.3. The dashed 

squares mark the contour of GO; the red circles display the pore induced by the sandwiched 

GO. The color scheme of beads is the same as that of fig. S8. Solvent beads are not shown 

for clarity. 
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Fig. S20. The efficacy of the GO-sandwiched structure on drug delivery. CCK8 data of 

cells after exposure with GO (a) and Liposomes (b) showing that the cell viability is almost 

unchanged in the absence of drug (at present dosage). c-d, The viability of cells after 

exposure to different membrane receptor inhibitors REGO (c) and VTB (d) with the 

assistant of GO or liposome in different cancer cells. In comparison with liposome group or 

drug control, GO group shows improved cell cytotoxicity, which again demonstrated the 

superior efficacy of membrane-specific delivery. e, The correlation between the sandwiched 

structure in cell and the relative intramembrane drug amount. The mean fluorescence 

intensity (MFI) of cells is assayed by using flow cytometry, where the fluorescence is 

sourced from the sandwiched GO at an excitation of NIR laser. The drug amount in different 

treated cells is detected by using LC-MS, which are normalized to the drug control group 

(GO-free). Results show that the sandwich structures in the cell membrane is indeed in 

correlation to intracellular drug amounts, which further confirm the potential of sandwiched 

structure for biomedical delivery. f, Flow cytometry histograms of the sandwiched structure 

signal for the pristine GO and drug loaded GO. The GO’s entry into the membrane is not 

impeded by the absorbed drugs as indicated by the overlay histograms for GO and GO-Drug 

(VTB). g, Simulation of GO with drug molecules absorbed on the surface with lipid 

membrane towards the GO-sandwiched structure. The times of the slices are: g1, 0τ; g2, 

360τ; g3, 440τ; g4, 520τ; g5, 632τ; and g6, 720τ. The color scheme of beads is the same as 

that of Fig. 6D. Solvent beads are not shown. Only the x-z cross section view of the lipid 

membrane around the GO is shown in each snapshot for clarity. 



 

Fig. S21. Diffusive dynamics of a representative drug bead captured by the 

transmembrane receptor. a, Successive stages showing the detailed diffusion pathway of 

the drug beads from the sandwiched GO, where the number of drug beads are 50. The times 

of the simulation snapshots are: a1, 4 τ; a2, 12 τ; a3, 16 τ; a4, 40 τ; a5, 72 τ; and a6, 120 τ. 

b, Successive stages showing the detailed diffusion pathway of the drug beads from the 

center of the intracellular region, where the number of drug beads are 50. The times of the 

simulation snapshots are: b1, 8 τ; b2, 92 τ; b3, 192 τ; b4, 264 τ; b5, 296 τ; and b6, 336 τ. 

The color scheme of beads is the same as that of Fig. 6D, except that the representative drug 

bead, which will be captured by the transmembrane receptor, is marked in green and 

denoted by the green arrow. All the lipid beads are half-transparent for clarity. 
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Fig. S22. Probability distribution of the capturing time for the drug beads released 

from the sandwiched GO and the center of the intracellular region. a, From a 

sandwiched GO at various number of drug beads: a1, 10; a2, 20; a3, 30; a4, 40; a5, 50; and 

a6, 100. b, From the center of the intercellular region at various number of drug beads: b1, 

10; b2, 20; b3, 30; b4, 40; b5, 50; and b6, 100. 
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