
Study omitted	RR (95% CI)
Dietary iron intake (highest vs. lowest)	
Negri et al. 1996	• 1.05 (0.91–1.20
Cade et al. 1998	1.03 (0.92–1.16
Levi et al. 2001	1.01 (0.88–1.15
Adzersen et al. 2003	1.03 (0.90–1.17
Michels et al. 2006	1.04 (0.91–1.18
Kabat et al. 2007	1.02 (0.87–1.19
Kallianpur et al. 2008	0.99 (0.87–1.12
Ferrucci et al. 2009	0.98 (0.86–1.11
Moore et al. 2009	1.02 (0.89–1.16
Kabat et al. 2010	1.01 (0.86–1.19
Diallo et al. 2016	0.99 (0.88–1.12
All studies combined	1.01 (0.89–1.15
Supplemental iron intake (yes vs. no)	
Ewertz and Gill 1990	1.01 (0.91–1.13
Hong et al. 2007	1.00 (0.89–1.12
Ferrucci et al. 2009	● 1.14 (0.89–1.45
All studies combined	1.02 (0.91–1.13
Total iron intake (highest vs. lowest)	
Hong et al. 2007	0.96 (0.78–1.18
Ferrucci et al. 2009	0.88 (0.78–0.98
Bradshaw et al. 2013	0.97 (0.81–1.16
Farvid et al. 2014	1.08 (0.92–1.26
All studies combined	0.97 (0.82–1.14
Heme iron intake (highest vs. lowest)	
Kabat et al. 2007	— 1.15 (1.05–1.26
Kallianpur et al. 2008	— 1.10 (1.04–1.16
Ferrucci et al. 2009	→ 1.13 (1.03–1.24
Farvid et al. 2014	1.13 (1.02–1.26
Diallo et al. 2016	1.13 (1.04–1.23
Inoue-Choi et al. 2016	● 1.14 (1.01–1.28
All studies combined	1.12 (1.04–1.22
	I
0.75 1	1.5

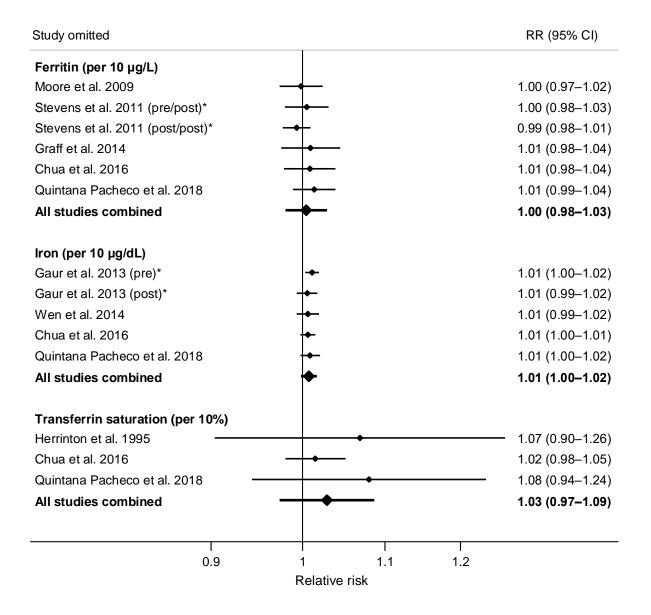

Fig. S5 Sensitivity analysis investigating the influence of individual studies on the pooled effect estimates in the *highest vs. lowest* meta-analyses of dietary, supplemental, total, and heme iron intake in relation to breast cancer risk. The dots and horizontal lines represent the pooled relative risks and corresponding 95% confidence intervals when each study is omitted. The diamonds and thick horizontal lines represent the pooled relative risks and corresponding 95% confidence intervals when each study is omitted. The diamonds and thick horizontal lines represent the pooled relative risks and corresponding 95% confidence intervals when all studies are combined (i.e., none omitted).

Fig. S6 Sensitivity analysis investigating the influence of individual studies on the pooled effect estimates in the *linear dose-response* meta-analyses of dietary, total, and heme iron intake in relation to breast cancer risk. The dots and horizontal lines represent the pooled relative risks and corresponding 95% confidence intervals when each study is omitted. The diamonds and thick horizontal lines represent the pooled relative risks and corresponding 95% confidence intervals when each study is omitted. The diamonds and thick horizontal lines represent the pooled relative risks and corresponding 95% confidence intervals when all studies are combined (i.e., none omitted).

Fig. S7 Sensitivity analysis investigating the influence of individual studies on the pooled effect estimates in the *highest vs. lowest* meta-analyses of serum/plasma ferritin, iron, and transferrin saturation in relation to breast cancer risk. The dots and horizontal lines represent the pooled relative risks and corresponding 95% confidence intervals when each study is omitted. The diamonds and thick horizontal lines represent the pooled relative risks and corresponding 95% confidence intervals when each study is omitted. The diamonds and thick horizontal lines represent the pooled relative risks and corresponding 95% confidence intervals when all studies are combined (i.e., none omitted). *Stevens et al. 2011 reported separate estimates for premenopausal (pre/post) and postmenopausal (post/post) ferritin levels in relation to postmenopausal breast cancer risk; Gaur et al. 2013 reported separate estimates for premenopausal (post) breast cancer.

Fig. S8 Sensitivity analysis investigating the influence of individual studies on the pooled effect estimates in the *linear dose-response* meta-analyses of serum/plasma ferritin, iron, and transferrin saturation in relation to breast cancer risk. The dots and horizontal lines represent the pooled relative risks and corresponding 95% confidence intervals when each study is omitted. The diamonds and thick horizontal lines represent the pooled relative risks and corresponding 95% confidence intervals when each study is omitted. The diamonds and thick horizontal lines represent the pooled relative risks and corresponding 95% confidence intervals when all studies are combined (i.e., none omitted). *Stevens et al. 2011 reported separate estimates for premenopausal (pre/post) and postmenopausal (post/post) ferritin levels in relation to postmenopausal breast cancer risk; Gaur et al. 2013 reported separate estimates for premenopausal (post) breast cancer.