Supporting Information

Phosphodiesterase-4 inhibition attenuates murine ulcerative colitis via interfering with mucosal immunity

Heng Li^{1,2}, Chen Fan¹, Chunlan Feng¹, Yanwei Wu¹, Huimin Lu^{1,2}, Peilan He³, Xiaoqian Yang³, Fenghua Zhu³, Qing Qi¹, Yuanzhuo Gao^{1,2}, Jianping Zuo^{2,3}*, Wei Tang^{1,2}*

1 Laboratory of Anti-inflammation, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China

2 School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China

3 Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China

* Correspondence. Wei Tang and Jianping Zuo, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China. E-mail address: tangwei@simm.ac.cn and jpzuo@simm.ac.cn

DSS-induced colitis and drug treatment

Wide-type male C57BL/6J mice (8 weeks, 22-24g) were purchased from Shanghai Lingchang Biotechnology Co., Ltd. (Certificate No.2013-0018, China). The mice were housed under specific pathogen-free conditions with 12 h of light/12 h of dark cycle, 22±1 °C and 55±5% relative humidity. All mice were fed standard laboratory chow and water ad libitum and allowed to acclimatize in our facility for one week before any experiments started.

Mice were randomly divided into 5 groups, consisting of normal mice, normal mice treated with 50 mg·kg⁻¹ apremilast, vehicle (DSS only), vehicle treated with 50 mg·kg⁻¹ or 10 mg·kg⁻¹ apremilast. Ulcerative colitis was induced by administration of 3% DSS for 7 days and further drinking water taken for another 4 days. During the treatment, weight loss, stool consistency and fecal blood, as indicators of disease activity index (DAI), were monitored by 3 investigators who were blinded to the experimental conditions. The DAI scores were calculated as the sum of the weight loss, stool consistency and rectal bleeding score shown in Table1. On day 11, mice were anesthetized with an intraperitoneal injection of 4% chloral hydrate. The spleen and colon were isolated for further measurement.

Figure S1. Apremilast dose-dependently attenuated DSS-induced ulcerative colitis without inflammation in control mice. (A) The percentage of body weight change during treatment. (B) The score of stool consistency and occult blood and DAI based on the criteria in Table1. (C) Spleen index calculated by spleen weight (mg)/body weight. (D) Colon length. (E) Representative colon images. (F) Fluorescence imaging with FITC-dextran administration and (G) serum fluorescence intensity. Data were shown as means±SEM; n=9 per group. *p<0.05, significantly different from vehicle group.

Figure S2. Flow cytometry analysis of ROS production from CD3⁺CD4⁺ (A), CD3⁺CD8⁺ (B), CD3⁻CD19⁺ (C) cells in spleen and mesenteric lymph nodes. Colitis was induced with 3% DSS as described in Methods. Splenocytes and mesenteric lymph node cells were isolated and labeled with fluorescent antibodies. Data correspond to experiments conducted on 8 mice.

Figure S3. The gating strategy of flow cytometry. FSC-A plus SSC-A was used to identify the total cells for analysis. FSC-A plus FSC-W were used to identify the singlets. Subsequently, CD45⁺FVD^{int} cells were considered as living leukocytes for the further analysis.

Figure S4. Baseline proliferation and cytokines release from $CD4^+$ T cell and whole MLN cells. $CD4^+$ T cells (A, and B), purified from MLNs, and whole MLN cells (C, and D) were cultured to measure the basal proliferation and cytokines levels in accord with Figure 5. Data were shown as means±SEM; n=8 per group.

Figure S5. Effect of apremilast on cAMP elevation in BMDMs and macrophages. BMDMs and RAW264.7 cells were incubated with the indicated concentrations (10, 1, or 0.1 μ M) of apremilast for 30 min. cAMP levels in BMDMs (A) and RAW264.7 cells (B) were detected by ELISA. Data were shown as means±SEM of three independent experiments.

Figure S6. The percentage of knockdown for PKA C- α .

Gene	Sequence 5'-3'		
β-actin	Forward	GGCTGTATTCCCCTCCATCG	
	Reverse	CCAGTTGGTAACAATGCCATGT	
Tnf-α	Forward	CCCTCACACTCAGATCATCTTCT	
	Reverse	GCTACGACGTGGGCTACAG	
Ifn-γ	Forward	GCCACGGCACAGTCATTGA	
	Reverse	TGCTGATGGCCTGATTGTCTT	
II-1β	Forward	GCAACTGTTCCTGAACTCAACT	
	Reverse	ATCTTTTGGGGTCCGTCAACT	
II-2	Forward	TGAGCAGGATGGAGAATTACAGG	
	Reverse	GTCCAAGTTCATCTTCTAGGCAC	
Il-6	Forward	TAGTCCTTCCTACCCCAATTTCC	
	Reverse	TTGGTCCTTAGCCACTCCTTC	
Il-10	Forward	GCTCTTACTGACTGGCATGAG	
	Reverse	CGCAGCTCTAGGAGCATGTG	
Il-12p40	Forward	TGGTTTGCCATCGTTTTGCTG	
	Reverse	ACAGGTGAGGTTCACTGTTTCT	
Il-17a	Forward	TTTAACTCCCTTGGCGCAAAA	
	Reverse	CTTTCCCTCCGCATTGACAC	
II-23	Forward	ATGCTGGATTGCAGAGCAGTA	
	Reverse	ACGGGGCACATTATTTTAGTCT	
Inos	Forward	AAGTCAAATCCTACCAAAGTGA	
	Reverse	CCATAATACTGGTTGATGAACT	
Cox-2	Forward	GGGTGTGAAGGGAAATAAGG	
	Reverse	TCTCCACCAATGACCTGAT	
Nlrp3	Forward	ATTACCCGCCCGAGAAAGG	
	Reverse	TCGCAGCAAAGATCCACACAG	
Asc	Forward	CTTGTCAGGGGATGAACTCAAAA	
	Reverse	GCCATACGACTCCAGATAGTAGC	
Caspase-1	Forward	ACAAGGCACGGGACCTATG	
	Reverse	TCCCAGTCAGTCCTGGAAATG	
II-18	Forward	GACTCTTGCGTCAACTTCAAGG	
	Reverse	CAGGCTGTCTTTTGTCAACGA	

Table S1. Sequences of primers used for quantitative real-time PCR

_

Zo-1	Forward	GCCGCTAAGAGCACAGCAA	
	Reverse	TCCCCACTCTGAAAATGAGGA	
E-cadherin	Forward	CAGGTCTCCTCATGGCTTTGC	
	Reverse	CTTCCGAAAAGAAGGCTGTCC	
Occludin	Forward	TTGAAAGTCCACCTCCTTACAGA	
	Reverse	CCGGATAAAAAGAGTACGCTGG	
Mmp2	Forward	CAAGTTCCCCGGCGATGTC	
	Reverse	TTCTGGTCAAGGTCACCTGTC	
Mmp3	Forward	ACATGGAGACTTTGTCCCTTTTG	
	Reverse	TTGGCTGAGTGGTAGAGTCCC	
Mmp9	Forward	CTGGACAGCCAGACACTAAAG	
	Reverse	CTCGCGGCAAGTCTTCAGAG	
Ccr2	Forward	ATCCACGGCATACTATCAACATC	
	Reverse	CAAGGCTCACCATCATCGTAG	
Ccr4	Forward	GGAAGGTATCAAGGCATTTGGG	
	Reverse	GTACACGTCCGTCATGGACTT	
Ccr5	Forward	TTTTCAAGGGTCAGTTCCGAC	
	Reverse	GGAAGACCATCATGTTACCCAC	
Ccr6	Forward	CCTGGGCAACATTATGGTGGT	
	Reverse	CAGAACGGTAGGGTGAGGACA	
Ccr9	Forward	CTTCAGCTATGACTCCACTGC	
	Reverse	CAAGGTGCCCACAATGAACA	
Cxcr2	Forward	ATGCCCTCTATTCTGCCAGAT	
	Reverse	GTGCTCCGGTTGTATAAGATGAC	
Cxcr3	Forward	TACCTTGAGGTTAGTGAACGTCA	
	Reverse	CGCTCTCGTTTTCCCCATAATC	
Icam	Forward	GTGATGCTCAGGTATCCATCCA	
	Reverse	CACAGTTCTCAAAGCACAGCG	
Ip-10	Forward	CCAAGTGCTGCCGTCATTTTC	
	Reverse	GGCTCGCAGGGATGATTTCAA	
Kc	Forward	CTGGGATTCACCTCAAGAACATC	
	Reverse	CAGGGTCAAGGCAAGCCTC	
Mcp-1	Forward	TTAAAAACCTGGATCGGAACCAA	
	Reverse	GCATTAGCTTCAGATTTACGGGT	

Mdc Forward AGGT		AGGTCCCTATGGTGCCAATGT	
	Reverse	CGGCAGGATTTTGAGGTCCA	
Mig	Forward	TCCTTTTGGGCATCATCTTCC	
	Reverse	TTTGTAGTGGATCGTGCCTCG	
Mip-1a	Mip-1a Forward TTCTCTGTACCATGA		
	Reverse	CGTGGAATCTTCCGGCTGTAG	
Mip-1β	Forward	TTCCTGCTGTTTCTCTTACACCT	
	Reverse	CTGTCTGCCTCTTTTGGTCAG	
Mip-3a	Forward	ACTGTTGCCTCTCGTACATACA	
	Reverse	GAGGAGGTTCACAGCCCTTTT	
Rantes	Forward	GCTGCTTTGCCTACCTCTCC	
	Reverse	TCGAGTGACAAACACGACTGC	
Osm	Forward	ATGCAGACACGGCTTCTAAGA	
	Reverse	TTGGAGCAGCCACGATTGG	
Osmr	Forward	CATCCCGAAGCGAAGTCTTGG	
	Reverse	GGCTGGGACAGTCCATTCTAAA	
Fap	Forward	GTCACCTGATCGGCAATTTGT	
	Reverse	CCCCATTCTGAAGGTCGTAGAT	
Pdpn	Forward	ACCGTGCCAGTGTTGTTCTG	
	Reverse	AGCACCTGTGGTTGTTATTTTGT	
Col1a1	Forward	GCTCCTCTTAGGGGCCACT	
	Reverse	CCACGTCTCACCATTGGGG	
Pde4a	Forward	GAACCGGGAACTCACACACC	
	Reverse	GTACTCTGAGACCTGGTTTCCT	
Pde4b	Forward	CGCAGGGAGTCGTTCCTCTA	
	Reverse	CTCCTGTGGTCGCACACTTG	
Pde4c	Forward	TCCGAGAGCCAGTGGATTCT	
	Reverse	CCTTGAGTTCCAATCGTGAAGAC	
Pde4d	Forward	TTTTGCCAGTGCAATACATGATG	
	Reverse	CAGAGCGAGTTCCGAGTTTGT	

Antibody	Source	Vendor	Catalog No.
anti-Occludin	Rabbit	Thermo Fisher Scientific	71-1500
anti-ZO-1	Rabbit	Proteintech	21773-1-AP
anti-α Tubulin	Mouse	Proteintech	HRP-66031
anti-SOCS3	Rabbit	Proteintech	14025-1-AP
anti-PDE4D	Rabbit	Proteintech	12918-1-AP
anti-PDE4C	Rabbit	Proteintech	21754-1-AP
anti-PDE4A	Rabbit	Proteintech	16226-1-AP
anti-E-cadherin	Rabbit	Cell Signaling Technology	3195
anti-PDE4B	Rabbit	Cell Signaling Technology	72096
anti-Rap1A/Rap1B	Rabbit	Cell Signaling Technology	4938
anti-Epac1	Mouse	Cell Signaling Technology	4155
anti-EPAC2	Mouse	Cell Signaling Technology	4156
anti-p-CREB	Rabbit	Cell Signaling Technology	9198
anti-CREB	Mouse	Cell Signaling Technology	9104
anti-PKA C-α	Rabbit	Cell Signaling Technology	5842
anti-p-stat3	Rabbit	Cell Signaling Technology	98543
anti-p-IκBα	Mouse	Cell Signaling Technology	9246
anti-p-p38	Rabbit	Cell Signaling Technology	9215
anti-IĸBa	Rabbit	Cell Signaling Technology	4812
anti-p-NF-кВ	Rabbit	Cell Signaling Technology	4806
anti-p65	Rabbit	Cell Signaling Technology	4764
anti-p-SAPK/JNK	Rabbit	Cell Signaling Technology	4671
anti-p-Akt	Rabbit	Cell Signaling Technology	4056
anti-SAPK/JNK	Rabbit	Cell Signaling Technology	9252
anti-p38	Rabbit	Cell Signaling Technology	8690
anti-HMGB1	Rabbit	Cell Signaling Technology	6893
anti-p44/42	Rabbit	Cell Signaling Technology	4695
anti-p-p44/42	Rabbit	Cell Signaling Technology	4377
anti-Akt	Rabbit	Cell Signaling Technology	9272
anti-Stat5	Rabbit	Cell Signaling Technology	94205
anti-p-Stat5	Rabbit	Cell Signaling Technology	9351
anti-Stat4	Rabbit	Cell Signaling Technology	2653

Table S2. Antibodies for immunoblotting

anti-p-Stat4	Rabbit	Cell Signaling Technology	5267	
anti-MyD88	Rabbit	Cell Signaling Technology	4283	
anti-Stat6	Rabbit	Cell Signaling Technology	9362	
anti-p-Stat6	Rabbit	Cell Signaling Technology	56554	
anti-Stat1	Rabbit	Cell Signaling Technology	9172	
anti-p-Stat1	Rabbit	Cell Signaling Technology	7649	
anti-Stat3	Rabbit	Cell Signaling Technology	4904	
anti-p85	Rabbit	Cell Signaling Technology	4257	
anti-p-p85	Rabbit	Cell Signaling Technology	4228	
anti-p-mTOR	Rabbit	Cell Signaling Technology	5536	
anti-p-MEK1/2	Rabbit	Cell Signaling Technology	2338	
anti-p-ΙκΒα	Rabbit	Cell Signaling Technology	2859	
anti-mTOR	Rabbit	Cell Signaling Technology	2983	
anti-MEK1/2	Rabbit	Cell Signaling Technology	8727	
 anti-IkB-α	Rabbit	Cell Signaling Technology	9242	