Human Metabolic Phenotypes Diversity and its Association with Diet and Blood Pressure Elaine Holmes^{1*}, Ruey Leng Loo^{1,2*}, Jeremiah Stamler³, Magda Bictash^{1,2}, Ivan K. S. Yap^{1,2}, Queenie Chan², Tim Ebbels¹, Maria De Iorio², Ian J. Brown², Kirill A. Veselkov¹, Martha L. Daviglus³, Hugo Kesteloot⁴, Hirotsugu Ueshima⁵, Lian Zhao⁶, Jeremy K. Nicholson¹ and Paul Elliott² ¹Biomolecular Medicine, Division of Surgery, Oncology, Reproductive Biology and Anaesthetics (SORA), Faculty of Medicine, Imperial College London, South Kensington Campus, London SW7 2AZ, UK ²Department of Epidemiology and Public Health, Imperial College London, St Mary's Campus, London, W2 1PG, UK ³Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA ⁴Department of Public Health, Division of Epidemiology, Akademisch Ziekenhuis St Rafael, Leuven B-3000, Belgium ⁵Department of Health Science, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan ⁶ Department of Epidemiology, Fu Wai Hospital and Cardiovascular Institute, Chinese Academy of Medical Sciences, Beijing 100037, PRC. #### *CONTRIBUTED EQUALLY TO THE WORK Joint corresponding authors: email: j.nicholson@imperial.ac.uk and p.elliott@imperial.ac.uk ### **Supplementary Information** INTERMAP exclusion criteria Of 4,895 individuals initially surveyed, 215 were excluded as follows: 110 persons who did not attend all 4 study visits, 7 individuals for whom the diet data were considered unreliable, 37 persons for whom the calorie intake from any 24-hour dietary recall was less than 500 kcal/d (2,100 kJ/d) or was greater than 5,000 kcal/d (21,000 kJ/d) for women or greater than 8,000 kcal/d (33,600 kJ/d) for men, 37 individuals for whom 2 complete urine samples were unavailable, and 24 persons with other data that were incomplete, missing, or indicating a protocol violation. Therefore, 4,680 participants (2,359 men and 2,321 women) were included in INTERMAP. One urine specimen was lost and the ¹H NMR urinary spectra were unusable from one or both of the first and second urine specimens for 49 participants, leaving a total of 4,630 available for the metabonomic study (Supplementary Fig. 1a). ### Sample Preparation for NMR spectroscopy Urine samples were allowed to thaw at room temperature and centrifuged at 3000 rpm for 5 minutes to remove any debris. An aliquot of urine (500 μ L) was mixed with phosphate buffer solution (250 μ L of 0.2 M Na₂HPO₄/0.2M NaH₂PO₄, pH 7.4 \pm 0.5) in an Eppendorf to minimise variations in chemical shift values in the acquired ¹H NMR spectra due to pH differences. The resulting solution was left to stand for 10 min. The buffered urine samples were then centrifuged at 6-8000 rpm for 5 min to remove any particulates. Supernatant (750 μ L) was removed to which sodium 3-trimethylsilyl-(²H₄)-1-propionate (TSP) in D₂O (75 μ L) (final concentration 0.1 mg/mL) was added. D₂O provided a deuterium lock signal and TSP the chemical shift reference (δ 0.0). Each sample (825 µL) was placed into a 96-well plate for analysis and the remaining sample refrozen. Samples were mixed and the 96-well plate was left to stand for 10 minutes before centrifuging at 4,000 rpm for 10 minutes thus removing any precipitate from the solution. ¹H NMR spectroscopic analysis of urine samples and spectral quantification of selected metabolites Conventional ¹H NMR spectra of the urine samples were acquired using a Bruker (Bruker Biospin, Rheinstetten, Germany) Avance 600 spectrometer operating at 600.29 MHz in flow-injection mode. Samples were automatically delivered to the spectrometer using a Gilson 215 robot incorporated into the BEST (Bruker Efficient Sample Transfer) system. The 1D ¹H NMR spectra of urine were acquired using a standard onedimensional pulse sequence with water pre-saturation (NOSEYPR1D, recycle delay- $90^{\circ}-t_{1}-90^{\circ}-t_{m}-90^{\circ}$ -acquisition; XWIN-NMR 3.5) during both the recycle delay (2 s) and mixing time (t_m, 150 ms). The 90° pulse length was adjusted to approximately10 µs and t_1 was set to 3 µs, providing an acquisition time of 2.73 s and a total pulse repetition time of 4.88 s. For each sample, 64 free induction decays (FIDs) were collected into 32K data points using a spectral width of 20 ppm. The FIDs were multiplied by an exponential weighting function corresponding to a line broadening of 0.3 Hz and data were zero-filled to 64K data points prior to Fourier Transformation (FT). Four metabolites (alanine, δ 1.48; formate, δ 8.45; hippurate, δ 7.87 and NMNA, δ 4.44) were quantified via integration of signals relative to the creatinine CH₂ signal (δ 4.06) using externally standardised values for creatinine measured using the Jaffé reaction¹. Mean T_1 values were measured for each analyte and appropriate relaxation saturation factors calculated and applied across the whole data set. Integrations were also corrected for the minor suppression of the creatinine CH_2 signal resulting from keto-enol mediated partial deuteration (measured empirically from standard creatinine measurements in D_2O/H_2O solutions). Technical errors and reliability estimates of quantified metabolites Technical errors for the four quantified metabolites, alanine, formate, hippurate and *N*-methylnicotinate, estimated from 8% split specimens, ranged from 11-12% for *N*-methylnicotinate to 24-27% for hippurate (Supplementary Table 4). Reliability for mean of the two 24 h urinary excretion values, estimated as percentage of the theoretical univariate regression coefficient (**Methods**), was 78.0% for alanine, 70.2% formate, 67.3% hippurate, 72.0% *N*-methylnicotinate. Correlation analysis relating NMR and ion exchange chromatography data for alanine, and NMR and gas chromatography mass spectrometry data for hippurate, gave Spearmen-r_s correlation coefficients of 0.93 and 0.91 respectively (**Methods**). Descriptive characteristics of East Asian and western countries East Asian countries are characterized by low Keys dietary lipid score^{2, 3}, high dietary salt, low dietary K⁺ and high dietary Na⁺/K⁺ ratio (China particularly); high prevalence of smoking (for men), low average serum total, non-HDL and LDL cholesterol, high upward slope of BP with age, high prevalence rates of adverse BP levels in middle and older age (despite normal average body mass index)⁴; low CHD and high stroke death rates (markedly reduced in Japan in recent decades)⁵. In contrast, the UK and USA (like other western countries) have high Keys dietary lipid score, high intakes of total, saturated and trans fats and cholesterol; high average body mass index, high serum total, non-HDL and LDL cholesterol; high CHD mortality rates (persisting in the recent data despite substantial declines) with relatively low stroke death rates⁵. Data on serum cholesterol were obtained from the MONICA⁶ and INTERLIPID/INTERMAP studies⁷ (Supplementary Table 5). Data on mortality are published in Zhou *et al.*⁶ and Rosamond *et al.*⁸ (Supplementary Table 6). We used the extensive INTERMAP database to provide data on dietary intakes, 24 h urinary sodium and potassium excretion, and body mass index for China, Japan, UK and USA (Supplementary Figs. 8 and 9). Definitions of multivariate model statistics R² and Q² R^2 is defined as the proportion of variance in the data explained by the model. Q^2 is defined as the proportion of variance in the data predictable by the model under cross validation. These quantities are derived in more detail below. Each O-PLS-DA model regresses a set of X data (NMR spectra) against a response variable Y (dummy class matrix). For each model, the Residual Error Sum of Squares in the X space can be calculated as $$RESS_X = \sum_{i} \left\| \hat{\mathbf{x}}_i - \mathbf{x}_i \right\|^2$$ where $\hat{\mathbf{x}}_i$ denotes the spectrum predicted by the model for sample *i*. The proportion of explained variance in the X space, \mathbb{R}^2 , is then calculated as $$R_X^2 = 1 - \frac{RESS_X}{SS_X}$$ where SS_X is the total sum of squares of the centred X data, $SS_X = \sum_i \|\mathbf{x}_i - \overline{\mathbf{x}}\|^2$. An analogous quantity R_Y^2 can be calculated for the response Y $$RESS_{Y} = \sum_{i} \|\hat{y}_{i} - y_{i}\|^{2}, \quad R_{Y}^{2} = 1 - \frac{RESS_{Y}}{SS_{Y}}.$$ When cross-validation is used to estimate the predictive quality of the model, each spectrum or response may be predicted from the model built when it is left out, denoted by $\tilde{\mathbf{x}}$ and $\tilde{\mathbf{y}}$. Similar quantities as above may be calculated to estimate proportion of variance predictable in cross-validation, Q^2 , based on the Predicted Residual Error Sum of Squares (*PRESS*) $$PRESS_X = \sum_i \|\widetilde{\mathbf{x}}_i - \mathbf{x}_i\|^2, \quad Q_X^2 = 1 - \frac{PRESS_X}{SS_X},$$ and $$PRESS_{Y} = \sum_{i} \|\widetilde{y}_{i} - y_{i}\|^{2}, \quad Q_{Y}^{2} = 1 - \frac{PRESS_{Y}}{SS_{Y}}.$$ Q^2 is therefore a measure of the robustness of a model to sub-sampling of the data and was used to choose the number of components for each model. For further information see Eriksson *et al.*⁸ #### References - 1. Jaffé, M. Über den Niederschlag welchen Pikrinsaure in normalen Harn erzeugt und über eine neue Reaction des Kreatinins. *Z. Physiol. Chem.* **10**,391-400 (1886). - 2. Keys, A. & Parlin, R.W. Serum cholesterol response to changes in dietary lipids. *Am. J. Clin. Nutr.* **19**, 175-81 (1966). - Stamler, J.S. Population studies. In: Levy, R.I., Rifkind, B.M., Dennis, B.H., Ernst, N.D., eds. *Nutrition, lipids, and coronary heart diseases*. New York, NY: Raven Press, 25-88 (1979). - 4. Intersalt Co-operative Research Group. Intersalt: an international study of electrolyte excretion and blood pressure. Results for 24 hour urinary sodium and potassium excretion. *Br. Med. J.* **297**, 319-28 (1988). - Levi, F., Lucchini, F., Negri, E. & La Vecchia, C. Trends in mortality from cardiovascular and cerebrovascular diseases in Europe and other areas of the world. *Heart* 88, 119-124 (2002). - 6. Zhou, B. F. *et al.* Nutrient intakes of middle-aged men and women in China, Japan, United Kingdom, and United States in the late 1990s: The INTERMAP Study. *J. Hum. Hypertens.* **17**, 623-630 (2003). - 7. Okuda, N. *et al.* Relation of long chain n-3 polyunsaturated fatty acid intake to serum high density lipoprotein cholesterol among Japanese men in Japan and Japanese-American men in Hawaii: The INTERLIPID Study. *Atherosclerosis*. **178**, 371-379 (2005). - 8. Rosamond, W. *et al.* Heart disease and stroke statistics 2007 update: A report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. *Circulation* **115**, e69-e171 (2007). 9. Eriksson, L., Johansson, E., Kettaneh-Wold, N. and Wold, S. (2001) *Multi- and Megavariate Data Analysis*. Umetrics AB, Umea, Sweden. ## **Supplementary Tables and Figures** **Supplementary Table 1** Discriminatory metabolites[†] from population pairwise comparisons, first and second urine specimens a regression coefficients (r²) for each pairwise OPLS-DA comparison | | | OPLS-DA of pairwise population comparisons | | | | | | | | | | | |-----------------------------------|------|--------------------------------------------|------|------|------|------|------|------|------|------|------|------| | | Ch | /Jp | Ch | /UK | Ch | /US | Jp/ | /UK | Jp. | /US | Jp/ | Jp-A | | Specime | ո 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | | Metabolites | | | | | | | | | | | | | | 2-aminoisobutyric acid | | | 0.28 | 0.26 | 0.26 | 0.23 | 0.17 | 0.19 | | | | | | 2-hydroxyibuprofen | | | | | | | | | 0.09 | 0.10 | | | | 2-oxoglutarate | | | 0.30 | 0.34 | 0.28 | 0.32 | | | | | | | | 3-hydroxyisovalerate | | | 0.22 | 0.30 | | | | | | | | | | Acetylcarnitine | 0.40 | 0.41 | 0.36 | 0.38 | 0.15 | 0.15 | | | | | | | | Alanine | | | 0.27 | 0.32 | 0.21 | 0.28 | 0.17 | 0.14 | | | | | | Citrate | 0.18 | 0.20 | 0.38 | 0.32 | 0.17 | 0.16 | | | 0.09 | 0.09 | | | | Creatine | 0.33 | 0.37 | | | 0.14 | 0.17 | 0.18 | 0.13 | | | | | | Ethanol | | | | | | | 0.15 | 0.13 | 0.20 | 0.16 | 0.17 | 0.13 | | Ethylglucoside | | | | | | | 0.14 | 0.14 | 0.15 | 0.13 | | | | Formate | | | 0.17 | 0.21 | 0.18 | 0.26 | | | 0.16 | 0.17 | 0.12 | 0.13 | | Guanidinoacetate | 0.17 | 0.27 | | | | | 0.29 | 0.27 | 0.25 | 0.22 | 0.10 | 0.09 | | Hippurate | | | 0.32 | 0.32 | 0.12 | 0.16 | 0.30 | 0.29 | 0.14 | 0.15 | | | | Lysine | 0.27 | 0.23 | | | | | | | 0.19 | 0.19 | | | | N-acetyl-glycoproteins | 0.26 | 0.30 | 0.31 | 0.28 | 0.30 | 0.35 | 0.21 | 0.17 | 0.14 | 0.12 | 0.12 | 0.19 | | N-methyl-2-pyridone-5 carboxamide | | | 0.29 | 0.25 | | | | | | | 0.20 | 0.18 | | N-methylnicotinate | 0.19 | 0.24 | | | 0.14 | 0.15 | | | | | | | | NNN-trimethylysine | | | | | | | 0.18 | 0.16 | 0.18 | 0.15 | | | | Phenylacetyglutamine | | | 0.31 | 0.26 | | | 0.18 | 0.16 | | | | | | Protein envelope (unresolved)‡ | 0.33 | 0.35 | | | 0.21 | 0.23 | 0.23 | 0.21 | 0.32 | 0.24 | 0.17 | 0.17 | | Sarcosine | 0.22 | 0.35 | 0.24 | 0.32 | 0.31 | 0.40 | | | | | | | | Suberate | 0.43 | 0.50 | 0.29 | 0.42 | 0.38 | 0.39 | | | | | | | | Succinate | | | 0.29 | 0.30 | 0.12 | 0.11 | 0.21 | 0.17 | | | | | | Taurine | 0.20 | 0.17 | | | | | 0.19 | 0.15 | 0.22 | 0.14 | | | | Trimethylamine-N-oxide | 0.29 | 0.31 | | | | | 0.22 | 0.18 | 0.21 | 0.22 | 0.09 | 0.11 | | Unknown 1 (δ2.80,s) | 0.23 | 0.32 | 0.24 | 0.30 | 0.24 | 0.27 | | | | | | | | Unknown 2 (δ3.36,s) | | | 0.30 | 0.29 | | | | | | | | | | Unknown 3 (δ1.27) | | | | | | | 0.26 | 0.25 | | | | | | Unknown 4 (δ7.96, m) | | | 0.27 | 0.30 | 0.14 | 0.15 | | | | | | | | Unknown 5 (δ2.78,s) | 0.24 | 0.34 | 0.33 | 0.28 | 0.31 | 0.35 | | | | | | | | Q ² Y (%) | 83.5 | 86.1 | 84.5 | 85.8 | 82.8 | 82.1 | 77.2 | 77.9 | 77.5 | 79.4 | 68.4 | 75.3 | | Number of orthogonal components | 3 | 3 | 2 | 2 | 4 | 3 | 3 | 4 | 4 | 4 | 3 | 4 | #### † see Methods Abbreviations: Ch, China; Jp, Japan; UK, United Kingdom; US, United States of America; Jp-A, Japanese Americans; δ , proton chemical shift; s, singlet Values in bold denote metabolites higher in concentration in the first population of the pairwise OPLS-DA analyses. Values in italics denote metabolites higher in concentration in the second population of the pairwise OPLS-DA analyses. ‡ protein envelope is overlapped with superimposed signals from isoleucine, leucine, valine **b** ¹H NMR spectral parameters (chemical shift and peak appearance) for discriminatory metabolites from pairwise population sample comparisons | NMR Spectroscopic Data | | | | | | | | |--------------------------------------------|-----------------------------------|------------------------------------------------------------------------------|--|--|--|--|--| | Urinary Metabolites | Moieties | Signal directly observed, δ^* | | | | | | | 2-aminoisobutyric acid | CH; CH ₂ | 1.20 (d); 2.61(m) ; 3.11(m) | | | | | | | 2-hydroxyibuprofen | CH₃ | 1.12(s) ; 1.52(d); 2.78(s); 3.56(t); 3.83(q); 3.98(q); 7.22-7.37(m) | | | | | | | 2-oxoglutarate | CH ₂ | 2.45(t), 3.00(t) | | | | | | | 3-hydroxyisovalerate | CH ₃ | 1.27(s) ; 2.37(s) | | | | | | | Acetylcarnitine | CH ₃ | 2.17 (s); 2.52(dd); 2.65 (dd); 3.21(s) ; 3.61 (d); 3.85(dd) | | | | | | | Alanine | CH₃ | 1.48 (d) ; 3.79 (qt) | | | | | | | Citrate | CH ₂ | 2.54(d); 2.66(d); | | | | | | | Creatine | CH ₂ | 3.04(s); 3.94(s) | | | | | | | Ethanol | CH ₂ ; CH ₃ | 1.2(t); 3.65(q) | | | | | | | Ethylglucoside | CH₃ | 1.24(t) ;3.41(dd);3.55(dd);3.69(m);3.71(dd);3.77(dd);3.80(q);3.86(dd) | | | | | | | Formate | CH | 8.46(s) | | | | | | | Guanidinoacetate | CH ₂ | 3.80(s) | | | | | | | Hippurate | CH ₂ ; CH; CH; CH | 3.97 (d); 7.55 (t); 7.64 (t); 7.84(d) | | | | | | | Lysine | CH ₂ ;CH ₂ | 1.47(m); 1.72 (m); 1.89 (m); 3.01 (t) ; 3.77(t) | | | | | | | N-acetyl-glycoproteins | CH ₃ | 1.98 - 2.06 | | | | | | | N-methyl-2-pyridone-5 carboxamide | CH; CH | 8.34(m) | | | | | | | N-methylnicotinate | CH₃;CH; CH;CH | 4.44(s); 8.08(t); 8.84(t); 9.13(s) | | | | | | | NNN-trimethylysine | $N-(CH_3)$ | 3.12(s) ; 3.35(m); 3.76(m) | | | | | | | Phenylacetyglutamine | CH; CH | 1.98 (m) ; 2.13 (m); 4.20(m); 7.37(t); 7.43(t) | | | | | | | Protein envelope (unresolved) [‡] | - | 0.90 - 0.98 | | | | | | | Sarcosine | CH ₃ | 2.75 (s) | | | | | | | Suberate | CH ₂ | 1.31(m); 1.55(m); 2.18(t) | | | | | | | Succinate | CH₃ | 2.41(s) | | | | | | | Taurine | CH ₂ | 3.26 (t); 3.43(t) | | | | | | | Trimethylamine-N-oxide | N-(CH ₃) ₃ | 3.27 (s) | | | | | | | Unknown 1 | - | 2.80 (s) | | | | | | | Unknown 2 | - | 3.36(s) | | | | | | | Unknown 3 | - | 1.27 | | | | | | | Unknown 4 | - | 7.96 (m) | | | | | | | Unknown 5 | CH₃ | 2.78 (s) | | | | | | [¥] chemical shifts in bold indicated signals found to be significantly different in the OPLS-DA pairwise comparisons (Suppl Fig. 1A) and those not in bold were directly observed in 1D ¹H-NMR and their connectivities confirmed by statistical total correlation spectroscopy (STOCSY) [‡] protein envelope is overlapped with superimposed signals from isoleucine, leucine, valine **Supplementary Table 2** Partial Pearson-r correlation coefficients for quantified urinary metabolites (mmol/24 h)* with dietary and urinary variables, and body mass index, adjusted for age, gender, and sample | Variable | Metabolite | | | | | | | | |---------------------------------------|------------|------------|------------|--------------------|--|--|--|--| | | Alanine | Formate | Hippurate | N-methylnicotinate | | | | | | | (n= 4,232) | (n= 4,147) | (n= 4,184) | (n= 4,081) | | | | | | Energy (kcal/24 hr) | 0.17 | 0.14 | 0.03 | 0.05 | | | | | | Total protein (%kcal) | 0.07 | 0.06 | 0.05 | 0.02 | | | | | | Animal protein (%kcal) | 0.07 | 0.03 | 0.00 | -0.02 | | | | | | Vegetable protein (%kcal) | -0.01 | 0.03 | 0.07 | 0.06 | | | | | | Total fat (%kcal) | 0.09 | 0.03 | -0.03 | 0.04 | | | | | | Monounsaturated fatty acids (%kcal) | 0.08 | 0.02 | -0.04 | 0.02 | | | | | | Polyunsaturated fatty acids (%kcal) | 0.06 | 0.01 | -0.02 | -0.01 | | | | | | Saturated fatty acids (%kcal) | 0.06 | 0.04 | -0.02 | 0.07 | | | | | | Total available carbohydrate (%kcal) | -0.02 | -0.01 | 0.07 | -0.06 | | | | | | Starch (%kcal) | 0.03 | 0.01 | 0.01 | -0.01 | | | | | | Estimated total sugars (%kcal) | -0.06 | -0.02 | 0.08 | -0.06 | | | | | | Trans fatty acids (%kcal) | 0.04 | 0.00 | -0.04 | 0.00 | | | | | | Omega 3 fatty acids (%kcal) | 0.04 | 0.00 | 0.00 | -0.03 | | | | | | Omega 6 fatty acids (%kcal) | 0.06 | 0.01 | -0.02 | 0.00 | | | | | | Alcohol (%kcal) | -0.11 | -0.06 | -0.10 | 0.02 | | | | | | Cholesterol (mg/1,000kcal) | 0.11 | 0.04 | -0.03 | 0.00 | | | | | | Fibre (g/1,000kcal) | -0.05 | 0.05 | 0.17 | 0.08 | | | | | | Calcium (mg/1,000kcal) | -0.01 | 0.05 | 0.09 | 0.05 | | | | | | Magnesium (mg/1,000kcal) | -0.05 | 0.09 | 0.19 | 0.18 | | | | | | Phosphorus (mg/1,000kcal) | 0.03 | 0.07 | 0.11 | 0.04 | | | | | | Urinary sodium (mmol/24 hr) | 0.39 | 0.37 | 0.11 | 0.10 | | | | | | Urinary potassium (mmol/24 hr) | 0.21 | 0.32 | 0.40 | 0.29 | | | | | | Urinary sodium to potassium ratio | 0.13 | 0.05 | -0.22 | -0.13 | | | | | | Body mass index (kg/m²) | 0.28 | 0.03 | -0.05 | -0.04 | | | | | | Keys dietary lipid score [†] | 0.08 | 0.04 | -0.03 | 0.05 | | | | | ^{*} Dietary data are from mean of four 24 h recalls. Urinary data are from mean of two 24 h urine collections. Body mass index is calculated from mean of two measurements of height and weight. †Keys score: $1.35 \times (2 \times \text{SFA} - \text{PFA}) + 1.5 \sqrt{\text{Chol}}$ where SFA = saturated fatty acids (%kcal), PFA = polyunsaturated fatty acids (%kcal) and chol = cholesterol (mg/1,000kcal). | r | >0.06, P<0.001 **Supplementary Table 3** Estimated mean differences* in systolic and diastolic BP (Z-scores[‡]), non-intervened persons[§] | | Α | | | | В | | | | | |---------------------------------------|-----------------------------------|----------------------|-------------------------------|----------------------|-----------------------------------|----------------------|------------------|----------------------|--| | | Not adjusted for BMI [†] | | Adjusted for BMI [†] | | Not adjusted for BMI [†] | | Adjusted for BMI | | | | Systolic BP | | | | | | | | | | | Alanine (n= 2,018) | 2.83 | (4.27) | 0.62 | (0.94) | 3.48 | (4.84) | 1.86 | (2.63) | | | Formate (n= 1,976) | -1.22 | (-1.97) | -1.39 | (-2.34) | -1.78 | (-2.59) | -0.83 | (-1.25) | | | Hippurate (n= 1,936) | -2.09 | [#] (-3.17) | -1.81 | [#] (-2.85) | -1.21 | [#] (-1.68) | -0.48 | [#] (-0.70) | | | N-methylnicotinate (n= 1,876) | 0.68 | (1.08) | 0.83 | (1.37) | 1.01 | (1.54) | 1.44 | (2.28) | | | Diastolic BP | | | | | | | | | | | Alanine (n= 2,018) | 1.97 | (4.30) | 0.40 | (0.87) | 2.18 | (4.35) | 1.00 | (2.03) | | | Formate (n= 1,976) | -0.89 | (-2.10) | -0.98 | (-2.44) | -1.50 | (-3.19) | -0.85 | (-1.88) | | | Hippurate (n= 1,936) | -1.01 | (-2.23) | -0.84 | (-1.91) | -0.76 | (-1.53) | -0.29 | (-0.61) | | | <i>N</i> -methylnicotinate (n= 1,876) | 0.21 | (0.47) | 0.32 | (0.73) | 0.29 | (0.61) | 0.60 | (1.30) | | ^{*}Systolic and diastolic BP differences (mm Hg) per +2 standard deviation difference in each of four quantified urinary metabolites (mean of two 24 h urine values). Two standard deviation difference – based on total population with valid quantified urinary metabolite data (see Table 1 and Suppl. Fig. 1b) – for alanine = 0.34 mmol/24 h; formate = 0.29 mmol/24 h; hippurate = 3.55 mmol/24 h; N-methylnicotinate = 0.41 mmol/24 h. (Chemical shifts used for quantification: alanine, δ 1.48; formate, δ 8.45; hippurate, δ 7.85 and N-methylnicotinate, δ 4.44.) Regression coefficients for individuals are pooled across countries (**Methods**). A: adjusted for age, sex, sample, physical activity (h/24 h moderate or heavy activity), family history of high blood pressure B: A + 7-day alcohol (g/24 h) + urinary Na⁺ (mmol/24 h) + urinary K⁺ excretion (mmol/24 h) [‡] Z score: regression coefficient divided by standard error. Z-score ≥1.96, P<0.05; ≥2.58, P<0.01; ≥3.29, P<0.001; ≥3.89, P<0.0001. [§] Non-intervened: people without special diet/nutritional supplements or diagnosis/treatment for cardiovascular disease or diabetes [#] P for cross-country heterogeneity <0.05. Country-specific BP differences were inverse in Japan, China, and UK (systolic BP differences per +2 standard deviation difference in hippurate -2.16 to -4.79 mm Hg, Z-scores -1.36 to -3.15), direct in the USA (systolic BP differences +0.26 to +1.58 mm Hg, Z-scores +0.27 to +1.58). [†]Body mass index, kg/m² **Supplementary Table 4** Percent technical error* from split urinary specimens for alanine, formate, hippurate and *N*-methylnicotinate (mmol/24 h) quantified by ¹H NMR | Metabolite | | First specimen | Second specimen | | | | |--------------------|----------------|--------------------------|-----------------|--------------------------|--|--| | | n [†] | Percent technical error* | n [†] | Percent technical error* | | | | Alanine | 308 | 17.3% | 296 | 15.5% | | | | Formate | 293 | 11.9% | 282 | 24.8% | | | | Hippurate | 292 | 24.0% | 287 | 26.7% | | | | N-methylnicotinate | 289 | 11.7% | 273 | 10.7% | | | ^{*} Percent technical error: 100 times technical error divided by mean value of split samples; technical error ⁼ $\Sigma d^2/2n^{\dagger}$, where d is the difference between a pair of measurements. [†] number of split pairs **Supplementary Table 5** Serum total and LDL cholesterol, early 1990s (MONICA)* and late 1990s (INTERLIPID/INTERMAP)[†], men and women, by country | Risk factor | China | Japan | Ĺ | UK | | SA | |----------------------------------|-------|-------|---------|---------|----------|----------| | _ | | | Belfast | Glasgow | Stanford | Honolulu | | Men | | | | | | | | Total cholesterol (mg/dl) | | | | | | | | MONICA* | 174 | _ | 228 | 236 | 209 | _ | | INTERLIPID/INTERMAP† | _ | 198.6 | _ | _ | _ | 211.6 | | LDL-cholesterol (mg/dl) | | | | | | | | INTERLIPID/INTERMAP [†] | _ | 120.4 | _ | - | _ | 137.9 | | Women | | | | | | | | Total cholesterol (mg/dl) | | | | | | | | MONICA* | 174 | _ | 228 | 236 | 205 | _ | | INTERLIPID/INTERMAP† | _ | 202.1 | _ | _ | _ | 210.2 | | LDL-cholesterol (mg/dl) | | | | | | | | INTERLIPID/INTERMAP† | _ | 123.7 | _ | _ | _ | 136.1 | ^{*} Zhou et al.⁶ MONICA: ages 35-64; INTERLIPID/INTERMAP: ages 40-59 [†] Okuda *et al.*⁷ **Supplementary Table 6** Age-standardised* coronary heart disease and stroke mortality rates, 1970[†] and 1999/2004[‡], men and women, ages 35-74 years by country | Cause of death by | Ch | ina | Japan | U | UK | | | |------------------------|-------|-------|-------|--------------------|----------|-----|--| | gender, year | Rural | Urban | | England
& Wales | Scotland | | | | Men | | | | | | | | | Coronary heart disease | | | | | | | | | 1970 [†] | _ | _ | 94 | 509 | 634 | 652 | | | 1999/2004 [‡] | 64 | 106 | 53 | 196 | 247 | 174 | | | Stroke | | | | | | | | | 1970 [†] | _ | _ | 385 | 141 | 180 | 120 | | | 1999/2004 [‡] | 243 | 217 | 66 | 49 | 61 | 35 | | | Women | | | | | | | | | Coronary heart disease | | | | | | | | | 1970 [†] | _ | _ | 47 | 164 | 240 | 252 | | | 1999/2004 [‡] | 41 | 71 | 16 | 68 | 98 | 73 | | | Stroke | | | | | | | | | 1970 [†] | _ | _ | 225 | 113 | 158 | 90 | | | 1999/2004 [‡] | 152 | 147 | 31 | 36 | 48 | 27 | | ^{*} Rate per 100,000 population adjusted to the standard European population Mortality data not available for China in 1970 [†] Zhou *et al.*⁶ [‡] China 1999; Japan 2003; UK 2002; USA 2004 (Rosamond *et al.*⁸) # Supplementary Figure 1 Schematic of data analyses **a** Participant numbers, exclusions, pattern recognition techniques and identification of discriminatory metabolites Key: * Spectra data normalised to total area, excluded 575 urine samples containing high glucose, trimethylamine N-oxide, paracetamol and alcohol. All other models normalised to probabilistic quotient method OPLS-DA = orthogonal partial least square -discriminant analysis ^{**} Sub-group analysis for high vegetable/low animal protein vs low vegetable/high animal protein for East Asian and Western populations ## **b** Numbers included for multiple regression of four quantified metabolites ^{*}Non-intervened: people without special diet/nutritional supplements or diagnosis/treatment for cardiovascular disease or diabetes **Supplementary Figure 2** Hierarchical cluster analysis (HCA) based on median ¹H NMR urine spectra by population sample and gender (n= 4,630) a group average linkage method, second urine specimens **b** single linkage method, first urine specimens **c** single linkage method, second urine specimens The similarity index measures the multivariate distance between clusters. A similarity of one indicates zero distance between clusters; a value of zero indicates the maximum intercluster separation seen in the data. **Supplementary Figure 3** Cross validated Principal Components Analysis (PCA) scores plots based on a 7 component model (n= 4,630) Key: 1, Beijing; 2, Guangxi; 3, Shanxi; 4, Aito Town; 5, Sapporo; 6, Toyama; 7, Wakayama; 8, Belfast; 9, West Bromwich; 10, Baltimore; 11, Chicago; 12, Corpus Christi Hispanic; 13, Corpus Christi non-Hispanic; 14, Honolulu; 15, Jackson; 16, Minneapolis; 17, Pittsburgh a 3-dimensional plot for Principal Components (PC) 1-3;b PC2 vs PC1;c PC3 vs PC1;d PC3 vs PC2 Median ¹H NMR spectra of the second 24 h urine specimen stratified by country and by gender; female (\blacktriangle) and male (\blacksquare), R²_X= 74.9% (percent variation in the NMR data explained by the model); Q²_X= 52.1% (percent variation in the NMR data predictable by the model from cross validation). Data for the first three components available in an Excel file in **Supplementary Information**. **Supplementary Figure 4** Cross validated Principal Components Analysis (PCA) scores plots based on median ¹H NMR urine spectra stratified by country Key: 1, Beijing; 2, Guangxi; 3, Shanxi; 4, Aito Town; 5, Sapporo; 6, Toyama; 7, Wakayama; 8, Belfast; 9, West Bromwich; 10, Baltimore; 11, Chicago; 12, Corpus Christi Hispanic; 13, Corpus Christi non-Hispanic; 14, Honolulu; 15, Jackson; 16, Minneapolis: 17, Pittsburgh **a** first (\blacktriangle) and second (\blacksquare)24 h urine specimens (n= 4,630). R²_X= 82.4% (percent variation in the NMR data explained by the model); Q²_X= 63.1% (percent variation in the NMR data predictable by the model from cross validation), based on an 8 component model. **b** first (\blacktriangle) and second (\blacksquare) 24 h urine specimens (R²_X= 70.2%, Q²_X= 48.8%, based on a 6 component model), for normal weight[†], non-diabetic participants (n= 2,063). [†]Body mass index 18.50-24.99 kg/m² **Supplementary Figure 5** PCA scores plot for individuals, first three principal components derived from the ¹H NMR spectra of first urine specimens (n= 4,630) Key: PC, principal component; TMAO, trimethylamine N-oxide Co-ordinates are coloured according to country of residence of participants. The plot reveals outlying groups due to high levels of urinary glucose, trimethylamine-N-oxide, ethanol, acetaminophen and their metabolites. $R^2_X=80.9\%$ (percent variation in the NMR data explained by the model); $Q^2_X=76.5\%$ (percent variation in the NMR data predictable by the model from cross validation), based on a 7 component model. **Supplementary Figure 6** Cross validated Principal Components Analysis (PCA) scores plots based on median ¹H NMR urine spectra stratified by country after the removal of outliers using 95% Hotellings T² statistic Key: 1, Beijing; 2, Guangxi; 3, Shanxi; 4, Aito Town; 5, Sapporo; 6, Toyama; 7, Wakayama; 8, Belfast; 9, West Bromwich; 10, Baltimore; 11, Chicago; 12, Corpus Christi Hispanic; 13, Corpus Christi non-Hispanic; 14, Honolulu; 15, Jackson; 16, Minneapolis; 17, Pittsburgh **a** first (\blacktriangle) and second (\blacksquare)24 h urine specimens (n= 4,055). R²_X=86.1% (percent variation in the NMR data explained by the model); Q²_X=64.3 (percent variation in the NMR data predictable by the model from cross validation), based on a 10 component model). **b** first (\blacktriangle) and second (\blacksquare) 24 h urine specimens for normal weight[†], non-diabetic participants (n= 1,810, R²X= 69.4%, Q²X= 46.7%, based on a 6 component model). [†]Body mass index 18.50-24.99 kg/m² **Supplementary Figure 7** O-PLS-DA scores and loadings plots (bootstrap analyses) for participants reporting high vegetable/low animal protein and low vegetable/high animal protein intakes, second 24 h urinary specimens O-PLS-DA scores plots (1 orthogonal component) comparing high vegetable/low animal protein intake with low vegetable/high animal protein intake (top and bottom quartiles), adjusted for sample, age and sex, **a** eastern and **b** western population samples. Loadings plots from the O-PLS-DA bootstrap analyses are shown with discriminatory metabolites labelled (see **Methods** for metabolite selection criteria) for \mathbf{c} East Asian and \mathbf{d} western participants. Analyses are after removal of metabolic outliers using the 95% Hotelling's T^2 statistic in the initial PCA. The plots show the number of participants, the number of components used in each model and the Q^2_Y values (percent variation in the protein subgroup assignment explained by the model, and predictable by the model from cross validation). ## Supplementary Figure 8 Macronutrient intake (% kcal) by country (n= 4,630) **a** men (n= 2,336) **b** women (n= 2,294) **Supplementary Figure 9** Mean body mass index (BMI, kg/m²), dietary cholesterol (mg/1000kcal), urinary Na⁺ excretion (mmol/24 h), urinary K⁺ excretion (mmol/24 h) and urinary Na⁺/K⁺ ratio, by country (n= 4,630) **a** men (n= 2,336) **b** women (n= 2,294)