Supporting Information

High-Performance Polybenzimidazole Membranes for Helium Extraction from Natural Gas

Xuerui Wang,^{*,†} Meixia Shan,[†] Xinlei Liu,[†] Meng Wang,[‡] Cara M. Doherty,[§] Dmitrii Osadchii,[†] Freek Kapteijn^{*,†}

[†]Chemical Engineering Department, Delft University of Technology, Van der Maasweg9, 2629 HZ Delft, The Netherlands

[‡]Process & Energy Department, Delft University of Technology, Leeghwaterstraat 39, 2628 CB DELFT, The Netherlands

[§]The Commonwealth Scientific and Industrial Research Organization (CSIRO) Manufacturing Private Bag 10, Clayton, South Victoria 3169, Australia

*Corresponding authors:

Xuerui Wang: x.wang-12@tudelft.nl

Freek Kapteijn: f.kapteijn@tudelft.nl

Figure S1 2D (a) and 3D (b) AFM image of PBDI membrane surface.

Figure S2 (a) XPS overview spectrum, (b) detail C_{1s} and N_{1s} spectra of the PBDI

membrane.

The surface composition of the PBDI membrane was characterized by XPS (*Figure S2a*). The XPS spectrum shows peaks at 202, 270, 284, 399, and 532 eV, which are attributed to Cl_{2p} , Cl_{2s} , C_{1s} , N_{1s} , and O_{1s} , respectively. Chlorine residues, which stem from BTA, might be trapped within the membrane layer during interfacial polymerization. The C_{1s} spectrum deconvolution shows three peaks at 284.6, 285.9 and 288.3 eV (*Figure S2b*), which are attributed to the carbon atoms within phenyl groups, C-N, and C=N, respectively.¹ The deconvoluted N_{1s} spectrum shows three peaks at 398.6, 400.5 and 403.0 eV (*Figure S2b*), which are attributed to the -N=, -NH-, and =NH⁺-, respectively.¹

Figure S3 Arrhenius representation for the He and CH_4 permeance of the PBDI membrane for an equimolar He/CH₄ mixture at 1 bara feed pressure.

The CH_4 permeance was beyond the GC detection limit at relatively low temperature. The apparent permeation activation energies were determined by the Arrhenius relation:

$$\ln P_i = -\frac{E_{act,i}}{R} \frac{1}{T} + a \tag{4}$$

where $E_{act,i}$ is the apparent activation energy of component *i*, kJ mol⁻¹, *R* is the ideal gas constant, 8.314 J mol⁻¹ K⁻¹, *T* is the absolute temperature, K.

In the Henry regime (linear adsorption), the apparent permeation activation energy can be envisaged as the sum of diffusivity activation energy (E_{diff} , positive value) and adsorption enthalpy (ΔH_{ads} , negative value).²

$$E_{act} = E_{diff} + \Delta H_{ads} \tag{5}$$

Because of the non-adsorbing property of He, its adsorption enthalpy can be considered as zero.³ The adsorption enthalpy of CH₄ in benzimidazole-linked polymers is (-18.6)~(-21.7) kJ/mol.⁴⁻⁵ Therefore, the diffusion activation energy is estimated to be 21.0 kJ mol⁻¹ and 46.2 kJ mol⁻¹ for He and CH₄, respectively, indicating an activated diffusion process for both He and CH₄.

Figure S4 Long-term performance of PBDI membrane for He/CH₄ mixture separation, and effect of water vapour (3 kPa, *cyan shading*) and hydrocarbon (5 kPa *i*-butane, *gray shading*) addition. Operating conditions: 1 bara feed pressure and 100 °C, sweep gas argon.

The performance was constant for ~430 h in dry He/CH₄ mixture. Both He permeance and selectivity dropped significantly when water vapour was introduced. One reason is the competitive adsorption of H₂O by PBDI polymers, causing blockage of the pathway for He diffusion; the other reason is the reduced *d*-spacings of hydrated PBDI polymers due to the hydrogen bonding with nitrogen atoms.⁶ Only 80% He permeance was recovered after cutting off the water vapour, indicating strong interaction between water and polymeric chains. In the presence of hydrocarbon contamination, He permeance decreased by 7% and it can be fully recovered by removal of the *i*-C₄. This phenomenon is attributed to the pore entrance blockage by adsorption of the hydrocarbon. This full recovery excludes any physical aging.

Figure S5 Comparison of PBDI membranes with the state of the art in He/CH₄ mixture separation in a Robeson-plot (selectivity versus permeability). The open and solid labels represent pure gas separation performance (ideal selectivity) and He/CH₄ mixture separation performance, respectively; the blue and red lines denote the 1991 and 2008 Robeson's upper bounds of polymeric membranes for He/CH₄ separation.⁷

Figure S6 PXRD pattern of PBDI film species.

Number	Reaction time / h	P/GPU	lpha / –
M1	0.1	1500	1.9
M2	0.5	51	5.4
M3	1	34	400
M4	3	45	1380

Table S1. He/CH $_4$ separation performance summary of PBDI membranes.

The separation performance was tested in equimolar He/CH₄ mixture at 100 $^\circ C$ and 1 bara

feed pressure, sweep gas Ar.

Polymer	Thickness / µm	Feed	T / °C	p / bara	P/GPU	<i>S</i> / –	α/-	Ref
Hyflon AD60X	60.6	He or CH ₄	25	1	5.9	11.6	N.A.	8
Hyflon AD60X	65.2	He or CH ₄	25	1	7.3	157.1	N.A.	8
Hyflon AD60X	67.7	He or CH ₄	25	1	5.0	16.9	N.A.	8
Hyflon AD60X	68.3	He or CH ₄	25	1	6.7	136	N.A.	8
Hyflon AD60X	220	He or CH ₄	25	1	1.8	167	N.A.	8-9
Hyflon AD60X	122	He or CH ₄	25	1	3.0	32.9	N.A.	9-10
Hyflon AD60	0.2	He or CH ₄	22	3.4	2600	35	N.A.	11
Hyflon AD60X	15~150	He or CH ₄	25	1	22	36.7	N.A.	12
Hyflon AD80X	24.9	He or CH ₄	25	1	11.6	47.4	N.A.	12
Cytop	0.2	He or CH ₄	22	3.4	790	130	N.A.	11
Teflon AF 1600	15~150	He or CH ₄	25	1	57.4	20.6	N.A.	12
Teflon AF 2400	15~150	He or CH ₄	25	1	194	6.3	N.A.	12
Teflon AF 2400	20	He or CH ₄	25	3.4	180	6	N.A.	13
Teflon AF 2400	0.16	He or CH ₄	22	3.4	10500	4.6	N.A.	11
PBDI	1.73	He or CH ₄	100	1	46	1000	N.A.	This
PBDI	1.73	50He/50CH ₄	100	1	45	N.A.	1380	work

Table S2. The data points shown in Figure 4a for He/CH_4 separation.

Polymer	$T_g / °C$	<i>d</i> -spacing ^{<i>a</i>} /Å	FFV	Free volume size ^{b} /Å	Ref
Teflon AF 1600	162	9.1 (2.3)	0.31	4.5 & 10.1	14-15
Hyflon AD80	134	8.2 (4.0, 2.3)	0.23	10.4	14, 16
PBDI	N.A.	3.4, 6.8	N.A.	4.3^{b}	This work

Table S3. Physical properties of PBDI and commercial perfluoropolymers.

^{*a*}: Values correspond to the main reflection and the minor reflection (in parentheses) as shown in *Figure S6*; ^{*b*}: Determined by positron annihilation lifetime spectroscopy (PALS).

Polymer	Thickness / µm	Feed	$T / ^{\circ}C$	p/bara	$P_{\rm He}$ / GPU	$P_{\rm CO_2}$ / GPU	Ref
Teflon AF 2400	0.2	He or CO ₂	22	3.4	10500	13000	11
Hyflon AD60	0.2	He or CO ₂	22	3.4	2600	1300	11
Cytop	0.2	He or CO ₂	22	3.4	790	150	11
PBDI	1.73	He or CO ₂	100	1	46	0.98	This
							work

Table S4. He/CO $_2$ separation performance comparison between PBDI and

perfluoropolymer membranes.

References

- Liu, S.; Tian, J.; Wang, L.; Zhang, Y.; Qin, X.; Luo, Y.; Asiri, A. M.; Al-Youbi, A. O.; Sun, X., Hydrothermal Treatment of Grass: A Low-Cost, Green Route to Nitrogen-Doped, Carbon-Rich, Photoluminescent Polymer Nanodots as an Effective Fluorescent Sensing Platform for Label-Free Detection of Cu(II) Ions. *Adv Mater*, **2012**, *24*, 2037-2041.
- (2) Kapteijn, F.; van de Graaf, J. M.; Moulijn, J. A., One-Component Permeation Maximum: Diagnostic Tool for Silicalite-1 Membranes? *AIChE J*, **2000**, *46*, 1096-1100.
- (3) Gumma, S.; Talu, O., Gibbs Dividing Surface and Helium Adsorption. *Adsorption*, **2003**, *9*, 17-28.
- (4) Sekizkardes, A. K.; İslamoğlu, T.; Kahveci, Z.; El-Kaderi, H. M., Application of Pyrene-Derived Benzimidazole-Linked Polymers to CO₂ Separation under Pressure and Vacuum Swing Adsorption Settings. *J Mater Chem A*, **2014**, *2*, 12492-12500.
- (5) Rabbani, M. G.; El-Kaderi, H. M., Template-Free Synthesis of a Highly Porous Benzimidazole-Linked Polymer for CO₂ Capture and H₂ Storage. *Chem Mater*, 2011, 23, 1650-1653.
- (6) Li, S.; Fried, J. R.; Colebrook, J.; Burkhardt, J., Molecular Simulations of Neat, Hydrated, and Phosphoric Acid-Doped Polybenzimidazoles. Part 1: Poly(2,2'-*M*-Phenylene-5,5'-Bibenzimidazole) (PBI), Poly(2,5-Benzimidazole) (ABPBI), and Poly(*P*-Phenylene Benzobisimidazole) (PBDI). *Polymer*, 2010, *51*, 5640-5648.
- (7) Robeson, L. M., The Upper Bound Revisited. J Membr Sci, 2008, 320, 390-400.
- (8) Macchione, M.; Jansen, J. C.; De Luca, G.; Tocci, E.; Longeri, M.; Drioli, E., Experimental Analysis and Simulation of the Gas Transport in Dense Hyflon® AD60X Membranes: Influence of Residual Solvent. *Polymer*, 2007, 48, 2619-2635.
- (9) Jansen, J. C.; Macchione, M.; Drioli, E., On the Unusual Solvent Retention and the Effect on the Gas Transport in Perfluorinated Hyflon AD[®] Membranes. *J Membr Sci*, 2007, 287, 132-137.
- (10) Jansen, J. C.; Tasselli, F.; Tocci, E.; Drioli, E., High-Flux Composite Perfluorinated Gas Separation Membranes of Hyflon[®] AD on a Hollow Fibre Ultrafiltration Membrane Support. *Desalination*, **2006**, *192*, 207-213.
- (11) Okamoto, Y.; Zhang, H.; Mikes, F.; Koike, Y.; He, Z.; Merkel, T. C., New Perfluoro-Dioxolane-Based Membranes for Gas Separations. *J Membr Sci*, **2014**, *471*, 412-419.
- (12) Jansen, J. C.; Friess, K.; Drioli, E., Organic Vapour Transport in Glassy Perfluoropolymer Membranes: A Simple Semi-Quantitative Approach to Analyze Clustering Phenomena by Time Lag Measurements. J Membr Sci, 2011, 367, 141-151.
- (13) Pinnau, I.; Toy, L. G., Gas and Vapor Transport Properties of Amorphous Perfluorinated Copolymer Membranes Based on

2,2-Bistrifluoromethyl-4,5-Difluoro-1,3-Dioxole/Tetrafluoroethylene. *J Membr Sci*, **1996**, *109*, 125-133.

- (14) Yavari, M.; Fang, M.; Nguyen, H.; Merkel, T. C.; Lin, H.; Okamoto, Y., Dioxolane-Based Perfluoropolymers with Superior Membrane Gas Separation Properties. *Macromolecules*, **2018**, *51*, 2489-2497.
- (15) Rudel, M.; Kruse, J.; Rätzke, K.; Faupel, F.; Yampolskii, Y. P.; Shantarovich, V. P.; Dlubek, G., Temperature Dependence of Positron Annihilation Lifetimes in High Permeability Polymers: Amorphous Teflons AF. *Macromolecules*, **2008**, *41*, 788-795.
- (16) Jansen, J. C.; Macchione, M.; Tocci, E.; De Lorenzo, L.; Yampolskii, Y. P.; Sanfirova, O.; Shantarovich, V. P.; Heuchel, M.; Hofmann, D.; Drioli, E., Comparative Study of Different Probing Techniques for the Analysis of the Free Volume Distribution in Amorphous Glassy Perfluoropolymers. *Macromolecules*, 2009, 42, 7589-7604.