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Supplementary Notes 35 

Viruses detected from non-enriched metagenomes and metatranscriptomes do not reflect 36 
variation of bacterial taxa 37 

A small number of both DNA and RNA viruses were quantified confidently by MetaPhlAn2, which 38 
is likely an underestimate of the gut virome diversity since our extraction protocol did not enrich 39 
for virus-like particles. Of the 30 DNA viral species detected in the cohort, 29 were bacteriophage 40 
belonging primarily to the Siphoviridae (19) family, with few Myoviridae (6), Podoviridae (2), and 41 
Inoviridae (1) members, and one Escherichia phage of unknown taxonomy. The most common 42 
putative phage identifications were C2likevirus (in 116 participants), Epsilon15likevirus (in 16 43 
participants), and Lactobacillus Lc Nu (in 16 participants), however, no correlation was found 44 
between the abundance distribution of these Caudovirales phages and their natural host genera 45 
Lactococcus, Escherichia, and Lactobacillus; although power for detecting this is low given non-46 
virally-enriched detection rates. In metatranscriptomes, we identified 88 RNA viral species 47 
belonging to 19 families. Apart from rare Leviviridae and Iflaviridae members, these were all plant 48 
viruses, in agreement with previous studies1 and possibly due to dietary ingestion. Most RNA 49 
viruses were detected in <30 (10%) metatranscriptomes with the exception of Pepper mild mottle 50 
virus (48% prevalence) and Tomato mosaic virus (39% prevalence), which together accounted 51 
for 31% of viral RNA on average (when present). Although gut viral ecology is more difficult to 52 
analyze than that of the bacteriome due to inadequate viral reference sequences2, these methods 53 
allow for some incidental analysis of DNA phage and RNA plant viruses in human gut 54 
metagenomes and metatranscriptomes. 55 

Effect of GC content and ORF length on transcription ratios. 56 

We analytically evaluated the effect of GC content and ORF length on transcription ratios, finding 57 
no interaction (Supplementary Fig. 5). The 430 structured MetaCyc pathways analyzed here 58 
were quantified from 808,694 UniRef90 gene families (3.4% of the total UniRef90 database) that 59 
had detectable DNA in at least one sample in our study. Of those, 89,991 and 44,792 UniRef90s 60 
had non-zero DNA and RNA abundance in at least one sample, respectively. This resulted in 61 
37,085 pathway-associated UniRef90 gene families for which RNA/DNA ratios were calculated. 62 
Among these genes, there were no significant differences in ratio when stratified by either %GC 63 
or length of nucleotide sequences; when tested continuously, there was no significant correlation 64 
of either length or %GC with RNA abundances. Intriguingly, a very low effect size (Pearson’s r<-65 
0.04), but significant, correlation was observed between sequence length and DNA abundance. 66 
Given the comparability of DNA and RNA protocols in this study, it is not clear why this might 67 
have arisen, but at such a minimal effect size it does not affect the study’s conclusions. 68 

Core and variable fecal metatranscriptomes differ from the metagenome. 69 

The distribution of transcript abundance ranged over four orders of magnitude among 210 70 
pathways that were transcribed in >10% of samples (Supplementary Fig. 6F). The highest 71 
transcription ratios consistently arose from pathways that were both low prevalence and 72 
taxonomically restricted, e.g. archaeal methanogenesis and coenzyme 420 biosynthesis, as 73 
previously suggested by our pilot study3. Following energy metabolism and fermentation, which 74 
tended to dominate in both prevalence and expression levels, the highest metatranscription was 75 
observed for saturated and unsaturated fatty acid elongation pathways, albeit in less than one-76 
third of samples. Fatty acids are generated from acetyl-CoA, which in turn is produced mainly 77 
during glycolytic energy release, and together this may explain the concerted metatranscription 78 
of glycolysis and energy-expensive fatty acid elongation. As the primary role for bacterial fatty 79 
acids is to serve as precursors for cell membrane building blocks (e.g. phospholipids), this likely 80 
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signals widespread cell growth in the typical fecal microbiota4. On the other end of the spectrum, 81 
pathways with the lowest metatranscription had mean RNA abundances below their 82 
corresponding DNA relative abundances, with prevalence of metatranscription ranging between 83 
15% (sulfate assimilation/cysteine synthesis) and 95% (peptidoglycan synthesis) of samples. This 84 
low tail of metatranscription included several amino acid synthesis pathways, including 85 
methionine, homoserine, aromatic and seleno-amino acids, followed by cofactor biosynthesis, 86 
including thiamine (and variants), tetrapyrrole, etc. Prevalent metatranscription of degradation of 87 
stachyose (PWY-6527), a legume-derived non-digestible tetrasaccharide that promotes SCFA 88 
producers, may reflect diet preferences. Together, these findings would underline that the fecal 89 
microbiome does not prioritize de novo synthesis of amino acids or widespread activation of 90 
specialized functions, yet displays high dynamic range and milieu activities such as transformation 91 
of phenolics, stress adaptation, and secondary metabolism. 92 

Genetic divergence patterns of stool-associated bacterial strains is species-specific and 93 
preserved among host populations 94 

Nucleotide substitution rates within and between cohorts were strikingly similar for the compared 95 
species, indicating that species’ evolutionary strategies within the stool niche were comparable 96 
between these host populations (Fig. 6C). The amount of genetic change was higher for 97 
Firmicutes than Bacteroidetes and did not appear to be simply a function of species prevalence 98 
in the two cohorts. For example, Bacteroides dorei and uniformis, and Alistipes putredinis had 99 
comparable prevalence with Ruminococcus bromii, Dialister invisus, and Eubacterium rectale, yet 100 
appreciably fewer nucleotide substitutions between strains. This may be due to Bacteroides 101 
species’ more restrictive definitions by systematics5, serving as a reminder that culture-based 102 
isolate information and culture-independent microbial profiling may need further resolution as 103 
strain and transcriptional meta’omics are explored. 104 

Species-function relationships in fecal meta’omes. 105 

We quantified how tightly was each pathway coexpressed - that is, the extent to which the multiple 106 
enzymes making up each pathway were expressed at similar abundances within each organism 107 
and meta’ome (Supplementary Dataset 4). This was assessed using the average variance of 108 
gene families’ transcription log ratios across samples (see Methods), here termed the EC 109 
dispersion. The distribution of dispersions from all pathways’ ECs was significantly below 1 (one-110 
sided t-test P=1.1×10-16), with a mean of 0.89, indicating that functionally-related genes are co-111 
expressed on average. Tightly coexpressed pathways (low dispersion) included methanogenesis 112 
(dispersion 0.26), two pathways for L-histidine degradation (0.38, 0.39), and degradation of the 113 
glutaryl-CoA (0.49) intermediate of tryptophan and lysine metabolism. Tryptophan and histidine 114 
are among the energetically most expensive amino acids to synthesize6,7, for which tight co-115 
expression of degradation pathway is not surprising. No evidence was found for a relationship 116 
between EC dispersion and the number of species that transcribed the pathway (Spearman rho -117 
0.01). Differences between pathways that were considered a part of the core or variably 118 
expressed metatranscriptome were also not detected (Wilcoxon rank-sum test p-value 0.10). 119 

  120 
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Supplementary Discussion 121 
We briefly review here the current literature on the topic of microbiome sample stabilization with 122 
RNAlater. The reported minor effect of choice of sample handling method on microbiome 123 
composition8 lacks testing for statistical significance of any variance, suggesting that between-124 
condition variation in that study was comparable to replicate variation (and much smaller than 125 
population variability). In addition to our own validation work3, which indicates a negligible effect 126 
of RNAlater on microbial community composition, there are numerous reports on the evaluation 127 
of methods for storage and handling of microbiome samples in a cohort setting. These studies 128 
reveal a lack of significant alteration in community structure between samples preserved with 129 
RNAlater, ethanol, lyophilization, fecal occult blood test cards, and freezing at -80℃ 9-14. 130 

The recent Choo et al. study15 reports a statistically significant effect of storage method on 131 
microbial community composition, based on assessing the variation among differently stored 132 
samples collected from one individual sampled three times over 30 days. However, Choo et al. 133 
report that the variation attributable to storage method is markedly smaller than the variation 134 
explained by different sample time points (i.e. smaller than intra-individual difference, which in 135 
turn is far smaller than inter-individual difference).  Notably, the variation introduced by RNAlater, 136 
relative to freezing at -80℃, was comparable to that introduced by sample storage in 137 
OMNIGene.Gut, another popular sample stabilization kit. Furthermore, significant but localized 138 
differences in taxon abundance relative to freezing were comparable among RNAlater and 139 
OmniGene.Gut. Finally, Choo et al evaluated stool samples from a single subject, which are not 140 
likely to be representative at the population level. 141 

 142 

 143 

  144 
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Supplementary Figures  145 

Please note that Supplementary Figures 6-10 are multi-panel, multi-page figures that were 146 
submitted as separate files due to their length and size. 147 

Supplementary Figure 1. Taxonomic profiles of gut metagenome ecology and stability. 148 
Summaries of taxonomic membership and population diversity in the MLVS, which broadly agree 149 
with previous comparable gut metagenome profiles16-18. A) Inter-individual variation of major 150 
phyla. Seven out of fourteen phyla were found present at a relative abundance >0.1% with a 151 
prevalence >10%. Panels indicate collection time points, with the number of participants in 152 
parenthesis, and samples ordered by decreasing mean abundance of the most abundant phylum 153 
(Firmicutes). B) Relative abundances of most abundant (when present) species (rows) across 154 
913 samples.  Columns in the heatmap were ordered based on average linkage clustering on a 155 
Euclidean distance matrix of log10 relative abundances. The grey color indicates that the species 156 
was not detected. C) Principal coordinates ordination of 307 subjects on Bray-Curtis dissimilarity 157 
between abundance profiles for 139 species (detected in ≥10% samples at ≥0.01% abundance) 158 
averaged over time points and colored by sequencing depth, and each point in the ordination is 159 
one participant. The ordination of taxonomic profiles averaged for individual time points shows no 160 
bias from variability in input sequencing depth of samples. Labels t1-t4 represent sampling time 161 
points; samples were self-collected in two pairs (t1-t2 and t3-t4), six months apart, with each pair 162 
spanning 2-3 days. 163 

Supplementary Figure 2. Variation in genus composition among MLVS, HMP1-II, and 164 
ELDERMET cohorts. PCoA of Bray-Curtis dissimilarities in genus composition of samples from 165 
(A) the ELDERMET cohort (participant age >65 yrs) reported by Claesson et al19, (B) the 166 
ELDERMET, MLVS (age range 65-81 yrs) and HMP1-II (age range 20-40 yrs) cohorts based on 167 
the intersection of genera detected in all three cohorts, and (C) the ELDERMET, MLVS and 168 
HMP1-II cohorts based on the union of all genera detected in the three cohorts. Cohort sample 169 
numbers are in parenthesis. Only genera with abundances >=0.01% in >=10% of samples in 170 
respective cohorts were used for ordination analysis; i.e. 42, 57, and 52 genera in ELDERMET, 171 
MLVS, and HMP1-II cohorts. A) Taxonomic composition of the ELDERMET cohort reported in 19 172 
was recapitulated in our analysis indicating that 72% samples were dominated by Bacteroidetes 173 
with 56% average abundance across all 192 samples; Firmicutes averaged 39% abundance per 174 
sample.  In contrast to Claesson et al19, though, we found that the control samples (9 young 175 
adults) in the ELDERMET cohort also contained Bacteroidetes at a slightly higher average 176 
abundance (45%) than Firmicutes (43%).  Such differences in resulting taxonomic profiles are 177 
likely a consequence of different OTU calling pipelines. Claesson et al used the RDP tool suite 178 
version 10.16 whereas we used UPARSE version 9.0.2132 for de novo OTU clustering and the 179 
RDP classifier version 2.2 for taxonomic classification of OTU centroid sequences against the 180 
Greengenes 13_8 database. B) Twenty-seven genera represented the taxonomic intersection of 181 
all three cohorts. In our MLVS data, taxonomic profiling reinforced Firmicutes and Bacteroidetes 182 
as the dominant provenance of bacterial clades, and, unlike in young adults of the HMP1-II 183 
cohort20,17, the proportion was tilted in favor of Firmicutes (50.6% ± 14.3%; mean ± s.d.) over 184 
Bacteroidetes (40.4% ± 14.3%) in the MLVS. One potential confounder in this comparison is the 185 
different DNA extraction protocol between MLVS and HMP, which was more efficient in extracting 186 
Bacteroidetes DNA from HMP samples21,22. C) Seventy genera represented the taxonomic union 187 
of all three datasets and, in addition to sample processing, the comparison is biased by 188 
differences in taxonomic assignment strategies for metagenomic and amplicon sequencing reads. 189 
Explicit comparison with data from an ELDERMET publication including whole metagenome 190 
shotgun (WMS) sequence data18 was not possible as neither WMS nor 16S sequencing reads 191 
from that study are available from the MG-RAST server where the data were deposited  192 
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(http://metagenomics.anl.gov/mgmain.html?mgpage=project&project=mgp154). Taken together, 193 
these larger metagenomic and new metatranscriptomic data showed a greater enrichment for 194 
Firmicutes, clearer resolution at the species level, and fewer signs of instability or directly age-195 
linked configurations, possibly due to the comparably high level of population health despite 196 
participant age. All numbers in parenthesis are stool metagenome sample counts from a total of 197 
307 MLVS, 253 HMP (male and female), and 170 ELDERMET (male and female) participants. 198 

Supplementary Figure 3. Feature detection as a function of sequencing depth. Effect of 199 
sample sequencing depth on the ability to detect microbiome functional features in metagenomic 200 
and metatranscriptomic sequence data. HUMAnN2 functional profiling of DNA and RNA quality 201 
filtered reads was performed on individual samples in species-specific mode, i.e. nucleotide 202 
alignment against pangenomes of species identified in the sample with MetaPhlAn2, and in 203 
combined species-specific and -agnostic mode, in which reads not matching any pangenome 204 
reference sequences were subjected to DIAMOND23 translated searching against the UniRef90 205 
database. Each sample is represented by a green and blue point in each plot. Linear regression 206 
trends with 95% confidence intervals are represented by straight lines and grey shading in each 207 
plot. Four plots per row from left to right show read alignment rates, and counts of detected 208 
UniRef90 gene families, enzymes, and pathways as a function aligned read counts, for 913 DNA 209 
samples (A) and 347 RNA samples (B). The number of gene families detected in metagenomic 210 
samples increased by less than half a log over a log difference in sequencing depth (A), but well 211 
over one log for metatranscriptomes (B) indicating great transcriptional capacity of the gut 212 
metagenome.  Detection of UniRef90 transcripts Increasing sequencing depth would improve 213 
feature detection from RNA samples whereas feature detection was saturated with these input 214 
DNA read counts. C) Species rarefaction curve for samples with total counts above the 1st decile 215 
(836 samples).  The vertical reference line is set at 50,000; at rarified count of 50,000 the median 216 
ratio of rarified to observed number of species of samples nears one (boxplot inset). On average, 217 
3.5% of input reads per sample were considered by MetaPhlAn2, implying per sample saturation 218 
at <1.5M input reads which is roughly seven times less than the average per sample sequencing 219 
depth after quality control (9.3M paired-end reads). The ratio of the Chao extrapolated richness 220 
from all samples (‘specpool’ function in the R/vegan package) to the observed number of species 221 
in all samples, indicated 89.9% species saturation in the MLVS cohort. D) Rarefaction curves of 222 
UniRef90 gene family abundances, using data from samples with total counts above the 9th decile 223 
(93 samples), plateaus at a count of 5M. This was also indicated by boxplot summaries of rarefied 224 
to observed UniRef90 ratios (inset). The per-sample average read usage rate by HUMAnN2 was 225 
60%, implying per sample saturation at 8.3M quality filtered reads. E) For UniRef90 transcript 226 
abundances, curves plateau at similar rarefaction levels based on analysis of 184 samples with 227 
highest total counts. Average sequencing depth for RNA samples was 6.7M paired-end reads, 228 
after quality control. Boxplot whiskers represent 1.5 times the inter-quartile range from the first 229 
and third quartiles. RPKs – reads per kilobase. 230 

Supplementary Figure 4. Definition of core metatranscriptome that is robust to sequencing 231 
depth. Number of pathways (from a total of 340) with prevalence exceeding the given threshold, 232 
calculated from 341 samples with RNA sequencing depth greater than 1M, 2M, 4M, and 8M reads. 233 
A change in slope is observed at 81 pathways, which is robust to changes in sequencing depth. 234 
These pathways were thus defined as “core”. 235 

Supplementary Figure 5. UniRef90 gene and DNA-normalized transcript abundance is not 236 
biased by GC content and ORF length. A) RNA/DNA ratios for gene families (UniRef90s, total 237 
n=37,085) do not vary significantly by GC content, plotted as deciles from the lowest to highest 238 
%GC in gene families analyzed in 341 metagenome-metatranscriptome paired samples from 96 239 
MLVS participants. GC content was calculated as an average across a single representative 240 

http://metagenomics.anl.gov/mgmain.html?mgpage=project&project=mgp154)
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nucleotide sequence per UniRef90 family. Boxplot whiskers represent 1.5 times the inter-quartile 241 
range from the first and third quartiles. Half-open interval labels for x-axis ticks include only the 242 
second endpoint, e.g. (0,1] includes values greater than zero and less than or equal to 1. B) When 243 
analyzed continuously (rather than quantized), neither DNA abundance nor RNA abundance of 244 
each UniRef90 gene family (one per point) is strongly correlated with %GC. Additionally, this small 245 
degree of %GC bias does not differ between DNA vs. RNA abundances. C) As above, RNA/DNA 246 
ratios for gene families do not vary significantly by gene length, as deciles from highest to lowest 247 
lengths across gene families. Length was again calculated using a single representative 248 
sequence per UniRef90. Boxplot whiskers represent 1.5 times the inter-quartile range from the 249 
first and third quartiles. D) As above, neither DNA nor RNA abundance of UniRef90 gene families 250 
were strongly correlated with length. A slightly greater association was detected between greater 251 
metagenomic (but not metatranscriptomic) abundance of shorter genes, but even this weak 252 
association was of extremely low effect size (maximum absolute Pearson correlation <0.04).  253 

Supplementary Figure 6. Core and variable metatranscriptomes of the stool microbiome, 254 
with pathway definitions and distribution range of pathway transcript abundances. DNA-255 
normalized transcript abundances for 239 gut microbiome pathways with detectable RNA in >10 256 
of the 341 metatranscriptomes, collected from 96 MLVS participants. A) Core metatranscriptome 257 
pathways (transcribed in >80% of samples) with RNA:DNA transcription ratio >1. B) Low-258 
expression core metatranscriptome pathways with transcript abundance detectable in >80% of 259 
samples but an RNA:DNA ratio <1. C) Variably metatranscribed pathways detected in DNA but 260 
below detection in at least half of RNA samples, and D) variably metatranscribed pathways below 261 
detection in DNA (and matching RNA) in 30%-80% of the 341 samples. E), Thirty-eight pathways 262 
that do not fall into any of the categories depicted in A-D. F) Pathways with the 30 highest and 30 263 
lowest mean DNA-normalized transcript abundances among the 341 metatranscriptome samples. 264 
Points indicate individual samples with medians overlaid per pathway, with prevalence in 265 
parenthesis; see Supplementary Notes for supplementary results text.  266 

Supplementary Figure 7. Per pathway species contributions to metagenomes and 267 
metatranscriptomes. Each point in a given pathway plot is a contributing species, and species 268 
contributions to DNA and RNA are expressed as relative abundances; i.e. the average 269 
abundances from 341 metagenome-metatranscriptome sample pairs from 96 participants. For 270 
example, if DNA or RNA for a given pathway is contributed by a single species, based on species-271 
specific HUMAnN2 functional profiling, then the corresponding log10 value along the x or y axis,  272 
respectively, is 1.  Color scheme: red - species (points) that contributed more RNA than DNA for 273 
a given pathway; blue - species (points) that contributed more DNA than RNA for a given pathway; 274 
grey - species (points) that contributed equal levels of RNA and DNA for a given pathway. Number 275 
of species within each plot (n) and Spearman correlation coefficients (Rho) between species’ 276 
contributions to DNA and RNA abundances of a pathway are provided in plot titles. 277 

Supplementary Figure 8. Species-stratified distributions of metagenomic potential (DNA) 278 
and metatranscriptomic activity (RNA) for all pathways with non-zero abundance in at least 279 
10% of samples. The 40 most transcriptionally-active species are shown (additional species are 280 
grouped as “other”). Abundances were normalized within each pathway for 189 subject-week 281 
pairs, from 96 participants. For each pathway, the number of samples with non-zero RNA and 282 
DNA is given in the x-axis label. Subjects were ordered to emphasize blocks of subjects with 283 
similar metatranscriptomic profiles (see Methods). Pathways are sorted in decreasing order of 284 
their Weighted Spearman coefficients (see Fig. 4B). 285 

Supplementary Figure 9. Ecological interactions in the gut microbiome for individual time 286 
points. Significant co-variation and co-exclusion relationships among 104 species in stool 287 
metagenomes of MLVS participants. Each node represents a species and edges correspond to 288 
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significant interactions inferred by BAnOCC (see Methods). Stool microbiome taxonomic profiles 289 
were averaged within each participant for the first (215 participants) and second (258 participants) 290 
collection pairs (separated by 6 months). 95% credible interval criteria was used to assess 291 
significance, and only estimated absolute correlations with effect sizes >=0.15 are reported.  292 

Supplementary Figure 10: Strain-level diversity is robust across cohorts. Principal 293 
coordinate analysis of pairwise nucleotide substitution rates among strains of 21 species identified 294 
in stool metagenomes from MLVS and HMP1-II cohorts. Nucleotide substitution rates were 295 
calculated from multiple sequence alignments using the Kimura Two-Parameter distance24. All 296 
numbers in plot titles are sample counts in which indicated strains were above limit of detection; 297 
from a total of 913 MLVS stool metagenomes and 564 HMP stool metagenomes (from 253 male 298 
and female HMP participants) that were analyzed with StrainPhlAn. 299 

 300 

 301 

 302 

 303 

Supplementary Tables 304 

Supplementary Table 1. Functional profiling of MLVS metagenomes and 305 
metatranscriptomes. UniRef90 gene families identified from DNA and RNA, plus those 306 
characterizable to enzymes and pathways per sample and in the entire cohort.   307 

  Metagenome (n = 913) Metatranscriptome (n = 347) 
  Features per sample 

Unique in cohort* 
Features per sample 

Unique in cohort 
(mean ± s.d.) (mean ± s.d.) 

UniRef90 173,609 ± 36,157 1,569,171 32,279 ± 21,537 602,896 

ECs 1045 ± 128 1,909 623 ± 149 1,570 

Pathways  253 ± 40 429 129 ± 48 340 

* - Number of unique non-redundant features in entire cohort.  308 
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