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Figure A: Flow cytometry and morphological staging of PUER differentiation. i. Histograms of the
macrophage marker F4/80 fluorescence in PUER cells with and without OHT treatment. There is no de-
tectable F4/80 expression in undifferentiated PUER cells. F4/80 is upregulated at 96 hours of OHT treatment
in IL3 conditions. ii. Histograms of the neutrophil marker Gr-1 in undifferentiated PUER cells, showing
that they express Gr-1, which is in agreement with previous analyses [1]. As discussed in the study that
established PUER neutrophil differentiation [1], Gr-1 is not informative for assessing differentiation since it
is already expressed in uninduced PUER cells. We score cells based on their morphology in Wright Giemsa
stains to asess neutrophil differentiation. iii. Cells were staged into early, middle, and late stages of neu-
trophil development according to the scheme of Zhou et al. [2]. The early stage comprised mononuclear
myeloblasts (oval nuclei with high nucleocytoplasmic ratio) and promyelocytes (lower nucleocytoplasmic
ratio and beginning of nuclear clearing). The middle stage consists of myelocytes (small clearing in the
nucleus) and metamyelocytes (ring shaped nucleus). The late stage was defined by band cells (thin ring-
shaped nucleus) and mature neutrophils (curled/ringed or fully segmented nucleus). During the course of
OHT treatment in GCSF conditions, the morphological distribution shifts significantly in favor of middle
and late stage neutrophils.
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Figure B: Immunoblot of C/EBPα protein expression. i. Flourescent detection with anti-C/EBPα in the
800nm channel. Two biological replicates are shown. Lanes 1–4 were treated with GCSF for 48 hours and
lanes 1–2 were treated with OHT for an additional 48 hours in the prescence of GCSF. Both the 42kDa
and 30kDa isoforms are detected. ii. Detection of total protein in the 700nm channel with the REVERT
stain (Licor). iii. Time course of C/EBPα protein expression mirrors Cebpa mRNA expression (Fig. 1C).
Band intensities were summed across all bands and normalized against total protein. Relative expression
was normalized to average relative expression in uninduced PUER cells. -48 hours and 0 hour points are
both measurements from uninduced cells. Error bars show standard error.
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Figure C: Normalization of Firefly luminescence against Renilla luminescence for wildtype enhancers
in PUER cells. Scatter plots of Firefly luminescence (y-axis) against Renilla luminescence (x-axis). Blue
points show the luminescence measurements of the construct containing the Cebpa proximal promoter alone,
Cebpa(0), in all panels. Red points are measurements of constructs bearing the indicated CRM in addition
to the Cebpa proximal promoter. Best fit lines y = βx were determined using robust errors-in-variables
(EIV) regression and are plotted as solid lines. The normalized activity is given by estimated slope, β. 95%
confidence intervals for the slope are shown as dashed lines. i–iii. Cebpa(7). iv–vi. Cebpa(14). vii–ix.
Cebpa(16). x–xii. Cebpa(18). i, iv, vii, x. Uninduced PUER cells in IL3. ii, v, viii, xi. PUER cells after 24h
OHT treatment in IL3. iii, vi, ix, xii. PUER cells after 24h OHT treatment in GCSF.
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Figure D: Sequence-based model of transcription. See Bertolino et al. for a detailed description and
equations. i. Binding sites are identified and their binding affinities (K) are computed from CRM and
promoter DNA sequences using PWMs. Activator and repressors sites are shown in red and green/blue
respectively. ii. Binding of TFs to their sites is simulated using thermodynamic principles to compute the
fractional occupancy (f ) of each site based on the concentrations of the TFs and binding site affinities. iii.
Quenching, or short-range repression, is simulated by reducing the occupancy of activators (f ′) based on
the occupancy of repressors bound within 150bp. iv. The interaction strength (I) of the CRM with the
basal promoter is determined based on the occupancy of the activator sites and the activation efficiency of
the bound TFs. v. Long-distance dominant repression is simulated by reducing the interaction strength (I ′)
based on the occupancy of the repressors bound to the CRM. vi. In the last step the rate of transcription is
computed by modeling transcript initiation as an enzymatic reaction, where the activation energy barrier is
lowered in proportion to the interaction strength (I ′).
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Figure E: Normalization of Firefly luminescence against Renilla luminescence for mutants of Cebpa(7),
Cebpa(14), and Cebpa(16) in PUER cells. See legend of Figure C for details of the calculations, axes,
and legends. i–iii. Cebpa(7m1) (red) and Cebpa(7) (blue). iv. Cebpa(7m2 (red) and Cebpa(7) (blue). v.
Cebpa(14m1) (red) and Cebpa(14) (blue). vi–viii. Cebpa(16m1) (red) and Cebpa(16) (blue). i, iv, v, vi.
Uninduced PUER cells in IL3. ii, vii. PUER cells after 24h OHT treatment in IL3. iii, viii. PUER cells after
24h OHT treatment in GCSF.
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Figure F: The regulatory logic of Cebpa(18) and the +37kb enhancer. i–iii. Cebpa(18). iv–vi. The +37kb
enhancer [3]. i, iv. Schematics of the construct design showing distal CRM (blue) and Cebpa proximal
promoter (red). ii, v. Activity of each TF repressor site predicted by the sequence-based model. See the
legend of Figure 4F for details of the calculations, axes, and legend. iii, vi. Activity of each TF activator site
predicted by the sequence-based model. See the legend of Figure 3B,F for details of the calculations, axes,
and legend.
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Figure G: Normalization of Firefly luminescence against Renilla luminescence for Cebpa(18m1) and the
+37kb enhancer in uninduced PUER cells. See legend of Figure C for details of the calculations, axes,
and legends. Blue and red points show the luminescence measurements of Cebpa(18m1) and the +37kb
enhancer respectively in uninduced PUER cells.
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Figure H: Relative activity of Cebpa silencers in PUER cells. Cebpa(0) is the construct bearing the Cebpa
proximal promoter alone, while the others carry the indicated distal CRM in addition to the proximal pro-
moter. Bar plots show the ratio of each construct’s activity in each condition to Cebpa(0) activity in unin-
duced PUER cells. Each CRM’s activity was assayed in uninduced (red), induced IL3 (green), induced
GCSF (blue) conditions. Reporter assays were performed in 10 replicates. Error bars are 95% confidence
intervals. Regression plots are shown in Figure I.
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Figure I: Normalization of Firefly luminescence against Renilla luminescence for wildtype silencers in
PUER cells. See legend of Figure C for details of the calculations, axes, and legends. Blue points show the
luminescence measurements of the construct containing the Cebpa proximal promoter alone, Cebpa(0), in
all panels. i–iii. Cebpa(9). iv–vi. Cebpa(11). vii–ix. Cebpa(23). x–xii. Cebpa(24). i, iv, vii, x. Uninduced
PUER cells in IL3. ii, v, viii, xi. PUER cells after 24h OHT treatment in IL3. iii, vi, ix, xii. PUER cells
after 24h OHT treatment in GCSF.
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Figure J: Normalization of Firefly luminescence against Renilla luminescence for wildtype silencers in
G1ME cells. See legend of Figure C for details of the calculations, axes, and legends. Blue points show the
luminescence measurements of the construct containing the Cebpa proximal promoter alone, Cebpa(0), in
all panels. Red points are measurements of constructs bearing the indicated CRM in addition to the Cebpa
proximal promoter. i. Cebpa(9). ii. Cebpa(11). iii. Cebpa(24).
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Figure K: Cebpa expression is undetectable in G1ME cells. RT-RTPCR of G1ME total RNA with Cebpa
primers (see Methods). The x-axis is the amount of RNA that was reverse transcribed. The y-axis is the
cycle where the fluorescence crosses the threshold (Ct). There is very little change in Ct over three orders
of magnitude of total RNA, implying that the sample lacks Cebpa mRNA.
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Figure L: Normalization of Firefly luminescence against Renilla luminescence for mutant silencers in
G1ME cells. See legend of Figure C for details of the calculations, axes, and legends. Blue points show
the luminescence measurements of the construct containing the Cebpa proximal promoter alone, Cebpa(0),
in all panels. Red points are measurements of constructs bearing the indicated CRM in addition to the
Cebpa proximal promoter. i. Cebpa(9m1). ii. Cebpa(11m1). iii. Cebpa(11m2). iv. Cebpa(11m3). v.
Cebpa(24m1).
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Figure M: Compilation of ChIP-seq and ChIP-chip datasets from NCBI Gene Expression Omnibus. Where
available, BED format files were downloaded and plotted in Integrated Genomics Viewer [4]. The first track
shows annotated genes in the genomic region. The second track shows the CRMs analyzed in this study.
The other tracks show TF binding peaks from ChIP-seq or ChIP-chip datasets. The TF and the cell type the
ChIP was performed in are listed on the left of each track. Empirical evidence for binding is matched with
CRMs predicted to be bound by the TF in the red boxes. Tracks 3-13: GSM537984 [5], GSM2231898 [6],
GSM2231899 [6], GSM538003 [5], GSM1218228 [7], GSM881139 [8], GSM2231903 [6], GSM912903
(mouse ENCODE), GSE22095 [9], GSM777091 [10, 11], and GSM1218221 [7].
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Table A: Binding sites mutated in the study.
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Mutant Fragments
Cebpa(7m1) 7Amp1+7Amp2
Cebpa(7m2) 7sdsDNA
Cebpa(14m1) 14sdsDNA
Cebpa(16m1) 16Amp1+16sdsDNA+16Amp2
Cebpa(18m1) 18Amp1+18Amp2
Cebpa(9m1) 9Amp1+9sdsDNA+9Amp2
Cebpa(11m1) 11Amp1+11sdsDNA+11Amp2
Cebpa(11m2) 11Amp3+11Amp4
Cebpa(11m3) 11Amp5+11Amp6
Cebpa(24m1) 24Amp1+24Amp2+24Amp3

Table B: Scheme for the synthesis of mutant CRMs. The second column shows the fragments used to
stitch the mutant CRM in the order of their appearance. Amp: amplicon. sdsDNA: synthetic dsDNA. The
sequences of synthetic dsDNAs and primers of the amplicons are listed in Table 3.
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Fragment Type Sequence

Cebpa(0) Primer fwd TGGCCTAACTGGCCGGTACCTGAGCTCGCTAGCCTCGAGAACTCCTACCCACAGCCGCG

Cebpa(0) Primer rev TCCATGGTGGCTTTACCAACAGTACCGGATTGCCAAGCTTCAGCTTCGGGTCGCGAATG

Cebpa(7) Primer fwd AACCTCTACAAATGTGGTAAAATCGATAAGGATCCCCCACTTCCACCCCCTAAGA

Cebpa(7) Primer rev GCTGACTGGGTTGAAGGCTCTCAAGGGCATCGGTCGACCCTGAGCAGAGCAACCTTAACA

Cebpa(14) Primer fwd AACCTCTACAAATGTGGTAAAATCGATAAGGATCCGTAAGGAATCACAGGGGTCAGT

Cebpa(14) Primer rev GCTGACTGGGTTGAAGGCTCTCAAGGGCATCGGTCGACTAGGGTGTTTCAGAAAGTCAGTGT

Cebpa(16) Primer fwd AACCTCTACAAATGTGGTAAAATCGATAAGGATCCAAAATCAGTTTATCCCTATGCTGCC

Cebpa(16) Primer rev GCTGACTGGGTTGAAGGCTCTCAAGGGCATCGGTCGACTGGGCTGAGGACAACTCTGTGT

Cebpa(18) Primer fwd AACCTCTACAAATGTGGTAAAATCGATAAGGATCCATGCCACCCCTCTGATTTTGC

Cebpa(18) Primer rev GCTGACTGGGTTGAAGGCTCTCAAGGGCATCGGTCGACCACTGAGTCCCCTGGAATAGA

Cebpa(9) Primer fwd AACCTCTACAAATGTGGTAAAATCGATAAGGATCCCCCTGTGGAAGAGTTGGTCA

Cebpa(9) Primer rev GCTGACTGGGTTGAAGGCTCTCAAGGGCATCGGTCGACCTAGCCCATTGGTCCTACAAAG

Cebpa(11) Primer fwd AACCTCTACAAATGTGGTAAAATCGATAAGGATCCGGGAGGAATAGAGAATTGAGATC

Cebpa(11) Primer rev GCTGACTGGGTTGAAGGCTCTCAAGGGCATCGGTCGACCTCTCTGAGCCATCTGCAGT

Cebpa(23) Primer fwd AACCTCTACAAATGTGGTAAAATCGATAAGGATCCCTCTTCCCCTAGGCATCTACAA

Cebpa(23) Primer rev GCTGACTGGGTTGAAGGCTCTCAAGGGCATCGGTCGACACACAGACACATACCCCCATG

Cebpa(24) Primer fwd AACCTCTACAAATGTGGTAAAATCGATAAGGATCCCAGCAGCTTTCTATCAACTTGTG

Cebpa(24) Primer rev GCTGACTGGGTTGAAGGCTCTCAAGGGCATCGGTCGACAATGGCAGTTTCTTTCCTGTAGTTC

7Amp1 Primer fwd AACCTCTACAAATGTGGTAAAATCGATAAGGATCCCCCACTTCCACCCCCTAAGA

7Amp1 Primer rev gttgaActcctgtggtcaGCGAGCAGACACTGTGCTGAGAGTGATTTGTCATGCTTAGTC

7Amp2 Primer fwd CTGCTCGCtgaccacaggagTtcaacgcaggagGTTTTGCCTGGTGCGGCAACATTTTAA

7Amp2 Primer rev GCTGACTGGGTTGAAGGCTCTCAAGGGCATCGGTCGACCCTGAGCAGAGCAACCTTAACA

7sdsDNA gblock AACCTCTACAAATGTGGTAAAATCGATAAGGATCCCCCACTTCCACCCCCTAAGAATACTGGATCCCTCTTGCCGATAAGGAACTGTGGTCAACTTCTAGTGGCTTTCCT

GTGCACGTGTTGGGCAACCAAGCCTCAGCTGGACTTAGTTGCCAAGCCCAGACAACAGGTGGCAAGGGGGTGTCAGGGACTGGGTACCAGCTCTTTGGGGAGCTGCCATG

ACCTTCACCATCAGGTTAGGACCCGTCAGAAGTGGCCTCCTTGAGTGATTTACAATTTGCAAACATGTTTTATTTGATTCCCGAGTTCTGCCGGGGCAATTACAGTGACT

AAgtgtttgtccaagtcaagacctgaGTGTCTGCTCGCtgaccacaggagTtcaacgcaggagGTTTTGCCTGGTGCGGCAACATTTTAAAAATAGACTCGCTCACTGTA

CGCGAAGGCAATTTGTTCCAAATTTTCCCACTAATTTGATTTTAATCTGATATTTAAAATTCGTGTGACgtgtttgtccaagtcaagacctgaATAAGCCCTACCTGGCG

GCACTGTAATTGGCTTTGGCCCAGGAGTCCACAGGACAGAGCATTTATCCCAGAACAATTTGAAGGCACTCATGTCTTAATGTTTTAAATATAGCCTAATTTAGCgtgtt

tgtccaagtcaagacctgaGCAGGACAATGAGTGTTAAGGTTGCTCTGCTCAGGGTCGACCGATGCCCTTGAGAGCCTTCAACCCAGTCAGC

14sdsDNA genestring AACCTCTACAAATGTGGTAAAATCGATAAGGATCCGTAAGGAATCACAGGGGTCAGTCAGGGCTTCCCTAACTGGAAAACCCAAGTTCAGAGGTACCACAGACTATGACT

GGGGTTAGAGTTGGAACATGGGGTAGGCCGACCTGGGGTACAAGGGAGGAGGACCCCCAGTGTTCATACCATAGGGGCACCTGCTTCTGCTAGACAGTGaaccgtccatg

cttTGAGCCATGAGAGAGCACAAGGGAGGTCAAGGGGCAGAAAGGCCAGAGGGTGTCAGCAGGCTCCAGCAGGCTGTGGACACTTGGCCAGAAAGGCCTGTTTACTGAGA

GGCCTGGGAGGTCAAGGCCCAGGCCTGGAGTTAATCATTAATGGCTCACCCTGCTCGTGGCTGCCTAGTGTGGTCTGGACCAGGCCCCAGTACACAGGTACTGCCCCACT

GCCACGCTGTGTGTATGatccgactacgcttCAGGGGCAGTACTGGTGTGCTTTGGAGACACTGACTTTCTGAAACACCCTAGTCGACCGATGCCCTTGAGAGCCTTCAA

CCCAGTCAGC

16Amp1 Primer fwd AACCTCTACAAATGTGGTAAAATCGATAAGGATCCAAAATCAGTTTATCCCTATGCTGCC

16Amp1 Primer rev AGCATCTACACCAAATCCCGATGCTATCTATGGTCCTCTGTGCATCTGGACGTGCCATGT

16Amp2 Primer fwd ACGTGGAAAAACATCACGGATCAAAATGGCTTCCTGGTCTGAAGTGGAGGCATGGTGTGT

16Amp2 Primer rev GCTGACTGGGTTGAAGGCTCTCAAGGGCATCGGTCGACTGGGCTGAGGACAACTCTGTGT

16sdsDNA gblock AGACCAGGAAGCCATTTTGATCCGTGATGTTTTTCCACGTAATAACGGCCCCAAAACATTTTTCCACGTAATAACGGGGGATATGGATAGTTTTTCCACGTAATAACCAC

ACCCAGCAGATGCAGCCAGAACACCCCAGCCTCCCCTGGCCCCACATTAGCAGGCAGGAGTTAGCATCTACACCAAATCCCGATGCTATCTATGGTCCTCTG

18Amp1 Primer fwd TTGAGCGAGGCTCTCTGTGTGGCTGGGccttcgacAGACATCTGGTAACCTTTGGGTCCC

18Amp1 Primer rev GCTGACTGGGTTGAAGGCTCTCAAGGGCATCGGTCGACCACTGAGTCCCCTGGAATAGA

18Amp2 Primer fwd AACCTCTACAAATGTGGTAAAATCGATAAGGATCCATGCCACCCCTCTGATTTTGC

18Amp2 Primer rev TTCCATGGGACCCAAAGGTTACCAGATGTCTgtcgaaggCCCAGCCACACAGAGAGCCTC

9Amp1 Primer fwd AACCTCTACAAATGTGGTAAAATCGATAAGGATCCCCCTGTGGAAGAGTTGGTCA

9Amp1 Primer rev GTTCTAGGGAAGTTTGGTTAAGAACTCCgtcctcgcaaTATGTGCCTATTCTCCAGGACC

9Amp2 Primer fwd GGTGCTGGCGTGGGGGCAGGAGCACACCACAccttcgccCACGGGGGACTGAATCTGAG

9Amp2 Primer rev GCTGACTGGGTTGAAGGCTCTCAAGGGCATCGGTCGACCTAGCCCATTGGTCCTACAAAG

9sdsDNA genestring ttgcgaggacGGAGTTCTTAACCAAACTTCCCTAGAACGGAGGGAGCTAACAAGAAAGAACTTTGGAAATCTACCCTCCTCTTTCCCTGTCACTGCCAGGAATGTCACCA

TGAGAGCAGTTTCAGTTAATGAGCAAACTCCTCAGACAAGGCAGGAAGGCAGCTCTTGGGCCTCACTGTCAAGCACAGGAAGCGACTGGATTCCACTTGCCCGGTGTAGG

GATGACAGCAGGTATTGAGTGGGACTGCAGGCCTGACATCCTTAGCTCCTCCACACCCAGGACAGCCCGGCTGTCAGCACAGGGCAGCAGAAAGGACAGGGGACAAGCTC

CAGGTGTGGGCGAGTCCCAGAGCAGCCCGGGGAGAGTGTCACTGTGTGGGTGCTGGCGTGGGGGCAGGAGCACACCACAccttcgcc

11Amp1 Primer fwd AATTCCAGGCTGGAGATGGGTGGGGAAGGTGGTTTGTAATCTTTATTCAGACTCGGCCCC

11Amp1 Primer rev GCTGACTGGGTTGAAGGCTCTCAAGGGCATCGGTCGACCTCTCTGAGCCATCTGCAGT

11Amp2 Primer fwd AACCTCTACAAATGTGGTAAAATCGATAAGGATCCGGGAGGAATAGAGAATTGAGATC

11Amp2 Primer rev GACAACACCCCGTTTGGCTGTCTCATTAACGATCCCCCCCGCCAGGATTCCCAGACAGAT

11sdsDNA gblock GGGGGGGATCGTTAATGAGACAGCCAAACGGGGTGTTGTCAGCCCACATGAAGGCCCTGCTGCTGGCCACATTCTGTAAACAAACATCCACATGTGTGCGCATAGCAACC

TAGTGCCAAAGGACAAACATTCCAAGTACAAGTTTATGGAGCTGTAGTATCGGGGAGGACCCGACAGGATAGGCAAATCATAAATGCATGTAGTGATGCCTTTTGTCTGT

GCGAACCCTGCCTGTCTGTTGGGAATTCCAGGCTGGAGATGGGTGGGGAAGGTGGTTTGTAAT

11Amp3 Primer fwd ttgttgggacAGGCAAATCATAAATGCATGTAGTGATGCCTTTTGTCTGTGCGAACCCTG

11Amp3 Primer rev GCTGACTGGGTTGAAGGCTCTCAAGGGCATCGGTCGACCTCTCTGAGCCATCTGCAGT

11Amp4 Primer fwd AACCTCTACAAATGTGGTAAAATCGATAAGGATCCGGGAGGAATAGAGAATTGAGATC

11Amp4 Primer rev ACATGCATTTATGATTTGCCTgtcccaacaaGTCCTCCCCGATACTACAGCTCCATAAAC

11Amp5 Primer fwd AGCAACCTAGTGCCAAAGGACAAACAttcctgatACAAGTTTATGGAGCTGTAGTATCGG

11Amp5 Primer rev GCTGACTGGGTTGAAGGCTCTCAAGGGCATCGGTCGACCTCTCTGAGCCATCTGCAGT

11Amp6 Primer fwd AACCTCTACAAATGTGGTAAAATCGATAAGGATCCGGGAGGAATAGAGAATTGAGATC

11Amp6 Primer rev TCCCCGATACTACAGCTCCATAAACTTGTatcaggaaTGTTTGTCCTTTGGCACTAGGTT

24Amp1 Primer fwd TAGGGCCAACCTCAATGTTTTGAAGGTGTccttcgacTGGGAGGAGGCAGATAATTAGTT

24Amp1 Primer rev CTTTCCTGCAGTTTGGCTCAACAACTGAGAgtcccggcaaAAAGTTGTGCTGCGCCTGGT
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24Amp2 Primer fwd AACCTCTACAAATGTGGTAAAATCGATAAGGATCCCAGCAGCTTTCTATCAACTTGTG

24Amp2 Primer rev CTAATTATCTGCCTCCTCCCAgtcgaaggACACCTTCAAAACATTGAGGTTGGCCCTAAT

24Amp3 Primer fwd GGACCAGGCGCAGCACAACTTTttgccgggacTCTCAGTTGTTGAGCCAAACTGCAGGAA

24Amp3 Primer rev GCTGACTGGGTTGAAGGCTCTCAAGGGCATCGGTCGACAATGGCAGTTTCTTTCCTGTAGTTC

Table C: Primer and synthetic dsDNA sequences. gblock and genestring are synthetic dsDNAs made by

Integrated DNA Technologies or Thermo Fisher Scientific respectively. Amp: amplicon. sdsDNA: synthetic

dsDNA.
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