%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % DMT1’s binary switching mechanism % % L. Cegarra, A. Colins, Z.P. Gerdtzen, M.T. Nunez, J.C. Salgado % % Santiago, Chile. Jan 2019 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% clear all close all clc format long g global Vin Vout Vv endo ci %%%%%%%%%%%%%%%%%%%%%%%%% %%% System Parameters %%% %%%%%%%%%%%%%%%%%%%%%%%%% endo=1; %%% The model is initialized in the endocytic mode Vin=1000; %%% Volume of cellular and basolateral medium Vout=200; %%% Volume of apical medium Vv=2.5e-10; %%% Volume of vesicles containing DMT1 k12=5.305749117015200253*10^-6; k23=0.91039996585642; k34=2.219297159129719; k41=0.373081091241254; k14=11.27031436970608; k45=0.0629846041336298; k54=0.649235352679672; Nprot=566.1; %%%% simulation time %%%%% t0=0; %initial time (min) t1c=15; %duration of the first iron challenge (min) t2c=15; %duration of the second iron challenge (min) %%%%% vector of initial conditions for the system %%%%% x10=1; %P1(0) x20=0; %P2(0) x30=0; %P3(0) x40=0; %P4(0) x50=0; %P5(0) x60=0; %FeIn(0) Apical iron concentration x70=20; %FeOut(0) Iron concentration in the intracellular-basolateral space ci=x60; % Initial condition of apical iron concentration for the first challenge pa=[k12 k14 k41 k23 k34 k45 k54 Nprot]; x01=[x10 x20 x30 x40 x50 x60 x70]; %%%%%%%%%%%%%% %%% System %%% %%%%%%%%%%%%%% options = odeset('maxstep',0.001,'initialstep',0.001,'RelTol',1e-9,'AbsTol',1e-9,'Refine',10); [t,salr]=ode45(@S1_Appendix_b,[t0 t1c],x01,options,pa); x0=[salr(end,1) salr(end,2) salr(end,3) salr(end,4) salr(end,5) salr(end,6) x70]; ci=salr(end,6); %%% Initial condition of apical iron concentration for the second challenge endo=1; %%% The model is initialized in the endocytic mode [t3,sal3]=ode45(@S1_Appendix_b,[t1c t1c+t2c],x0,options,pa); tff=t1c+t2c; %%%%%%%%%%%%%%%% %%% Graphics %%% %%%%%%%%%%%%%%%% %%%%%%%%%%%% FRACTIONS OF PROTEIN %%%%%%%%%%%%% figure (1) plot(t,salr(:,1)+salr(:,2)+salr(:,3)+salr(:,4)+salr(:,5),'k','LineWidth',1.5) hold on plot(t,salr(:,1)+salr(:,2)+salr(:,3)+salr(:,4),'b','LineWidth',1.5) hold on plot(t,salr(:,5),'r','LineWidth',1.5) hold on plot(t3,sal3(:,1)+sal3(:,2)+sal3(:,3)+sal3(:,4)+sal3(:,5),'k','LineWidth',1.5) hold on plot(t3,sal3(:,1)+sal3(:,2)+sal3(:,3)+sal3(:,4),'b','LineWidth',1.5) hold on plot(t3,sal3(:,5),'r','LineWidth',1.5) xlim([0 tff]) ylim([0 1.3]) legend('total DMT1','DMT1 in apical membrane','DMT1 in vesicles') xlabel('Time [min]') ylabel('Total fraction of DMT1') title('DMT1 endocytic cycling behavior - DMT1’s binary switching mechanism') %%%%%%%%%%%%% Apical iron uptake %%%%%%%%%%%%% figure(2) plot(t,salr(:,6)*1000,'k','LineWidth',1.5) d1=[6.2392,8.499,7.4954,13.597,19.849;6.102,8.9715,9.9409,15.469,12.848;7.0755,5.2364,10.715,17.475,16.549]; d2=mean(d1); des1=std(d1); des1=[0,des1]'; tp=[0 3 6 9 12 15]; yp=[0,d2]; pmol =[2.46759481517043,4.14786365818531,4.09385501680269,11.1797887662026,14.7179548727796;2.08353336533845,3.31733077292367,4.00024003840615,12.5492078732597,15.1668266922708;2.08353336533845,1.67666826692271,3.26452232357177,12.617618819011,13.0952952472396]; prom2=mean(pmol); prom2=prom2+yp(end); des=std(pmol); yx=prom2; hold on tx=[18 21 24 27 30]; % tx=tx+tl plot(tx,yx,'rs','LineWidth',2,'MarkerEdgeColor','k','MarkerFaceColor','r','MarkerSize',5) hold on errorbar(tp,yp',des1,'.g','LineWidth',1.5) hold on errorbar(tx,prom2',des,'.r','LineWidth',1.5) hold on plot(tp,yp,'rs','LineWidth',2,'MarkerEdgeColor','k','MarkerFaceColor','g','MarkerSize',5) hold on plot(t3,sal3(:,6)*1000,'k','LineWidth',1.5) hold on plot(tx,yx,'rs','LineWidth',2,'MarkerEdgeColor','k','MarkerFaceColor','r','MarkerSize',5) xlim([0 tff]) ylim([0 35]) xlabel('Time [min]') ylabel('Apical iron uptake [pmol/inserto]') title('Apical iron uptake - DMT1’s binary switching mechanism') %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % DMT1’s binary switching mechanism % % L. Cegarra, A. Colins, Z.P. Gerdtzen, M.T. Nunez, J.C. Salgado % % Santiago, Chile. Jan 2019 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function xdot=S1_Appendix_b(t,x,pa) global Vin Vout Vv endo ci %%% Parameters k12=pa(1); k14=pa(2); k41=pa(3); k23=pa(4); k34=pa(5); k45=pa(6); k54=pa(7); Nprot=pa(8); alphaDMT1_E=0.989; alphaDMT1_M=0.978; xdot = zeros(7,1); DMT1endo=x(5); %Fraction of DMT1 in the endocyted state DMT1endo DMT1 DMT1memb=x(4)+x(3)+x(2)+x(1); %Fraction of DMT1 in the apical membrane %For the first iron challenge if(ci==0) if((DMT1endo>alphaDMT1_E)&(endo==1)) endo=0; end if((DMT1memb>alphaDMT1_M)&(endo==0)) endo=1; end end % For the second iron challenge if(ci>0) if((DMT1endo>(alphaDMT1_E))&(endo==1)) endo=0; end if(((DMT1memb>(alphaDMT1_M))&(endo==0))) endo=1; end end k45=pa(6)*(endo); k54=pa(7)*(1-endo); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%% DMT1’s binary switching mechanism %%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% xdot(1)=(-k12*x(1)*x(7)-k14*x(1)+k41*x(4)); %P1 xdot(2)=(k12*x(1)*x(7)-k23*x(2)); %P2 xdot(3)=(k23*x(2)-k34*x(3)); %P3 xdot(4)=(k34*x(3)+k14*x(1)+k54*x(5)-k41*x(4)-k45*x(4)*x(7)); %P4 xdot(5)=(k45*x(4)*(x(7))-k54*x(5)); %P5 xdot(6)=(Nprot*k34*x(3)+(Vv)*(1/Vin)*Nprot*k54*x(5)); %FeIn+2 xdot(7)=(-Vin/Vout)*((Nprot*k34*x(3)-(Vv)*(1/Vin)*Nprot*k54*x(5)));%FeOut+2 return