
Appendix1

Optimal solution to P(m,n,B)

The problem P(m,n,B) is optimally solved by Algorithm 1.

To demonstrate its correctness we preliminarily observe that the assumptions:

m ≥ 2, n ≥ 2, B ≤ bm/2c · bn/2c, (5)

guarantee that P(m,n,B) has definitely a solution. Moreover, in the following, we

assume, without loss of generality, that m ≥ n, unless otherwise specified. The following

lemma holds.

Lemma 1 If pm, pn are solutions of P(m,n,B), then pm ≥ pn .

Proof . For m = n, if pm < pn we can swap the two values without changing

the cost of the solution which remains optimum. For m > n, we prove the lemma by

contradiction. Let us assume pm < pn. Since m > n, we have that (pn−1)n+(pm−1)m <

(pm−1)n+ (pn−1)m, but this is impossible because pm, pn are solutions of the problem.

2

Lemma 1, and conditions (1) and (5) lead us to the conclusion that the solution

to P(m,n,B) must be a point with integer coordinates in the shaded area shown in

Figure 3, including its border. Moreover, lines of equation:

y =
c+ n+m− nx

m
.

are the locus of points that have cost c.

To solve problem P(m,n,B) we can initially relax the constraint that pm, pn must

be positive integers. In this case the minimum cost is:

ĉ =

√
B
m

n
n+

√
B
n

m
m− (n+m). (6)

The solution of P(m,n,B) must be a point (p̄m, p̄n), with integer coordinates, above

or lying on the hyperbola (see Figure 3):

y =
B

x
. (7)

1Some figures and equations numbers refer to those reported in the paper.

1



Algorithm (pm, pn, c) = P(m,n,B) : % PRE: m ≥ n

pm :=
⌈√

Bm/n
⌉
; pn :=

⌊√
B n/m

⌋
if pm pn ≤ B then % p does not satisfy (1)

pm :=
⌊√

Bm/n
⌋
; pn :=

⌈√
B n/m

⌉
if pm pn ≤ B then % p′ does no satisfy (1)

pm :=
⌈√

Bm/n
⌉

% p′′ definitely satisfy (1)

end
end
c := mpn + n pm % cost of (pm, pn)
pm0 := pm % save pm0

% look for a better solution by increasing pm
pmcur := pm0 + 1; pncur := (c− n pmcur)/m
while pmcur ≤ m/2 ∧ pmcur pncur ≥ B do

if 1 ≤ b pncur c ∧ pmcur b pncur c ≥ B then
% update current candidate and its associated cost
pm := pmcur ; pn := b pncur c
c := mpn + n pm

end
% look for an even better solution, if any
pmcur := pmcur + 1
pncur := (c− n pmcur)/m

end
% look for a better solution by decreasing pm starting from pm0

pmcur := pm0 − 1; pncur := (c− n pmcur)/m
while b pncur c ≤ pmcur ∧ pmcur pncur ≥ B do

if b pncur c ≤ n/2 ∧ pmcur b pncur c ≥ B then
% update current candidate and its associated cost
pm := pmcur ; pn := b pncur c
c := mpn + n pm

end
% look for an even better solution, if any
pmcur := pmcur − 1
pncur := (c− n pmcur)/m

end

Algorithm 1: Pseudo-code of the algorithm solving P(m,n,B).

2



and as near as possible to line:

y =
ĉ+ n+m− nx

m
. (8)

Consider now the points (see Figure 3):

p =
(⌈√

Bm/n
⌉
,
⌊√

B n/m
⌋)

p′ =
(⌊√

Bm/n
⌋
,
⌈√

B n/m
⌉)

p′′ =
(⌈√

Bm/n
⌉
,
⌈√

B n/m
⌉)

Remembering that m ≥ n, there is a non decreasing cost associated to p, p′, and

p′′. Moreover, p′′ definitely satisfies conditions (1), as it can be easily verified using

assumptions (5).

Based on these considerations, we consider the point:

(pm0 , pn0) =



(⌈√
Bm/n

⌉
,
⌊√

B n/m
⌋)

if p satisfies conditions (1)

(⌊√
Bm/n

⌋
,
⌈√

B n/m
⌉)

if p does not satisfy conditions (1) and p′ does

(⌈√
Bm/n

⌉
,
⌈√

B n/m
⌉)

otherwise.

This point is the best candidate solution to P(m,n,B) among these three points,

and it can be easily verified that (pm0 ≥ pn0), as requested by Lemma 1. The cost

associated to (pm0 , pn0) is:

c0 = (pm0 − 1)n+ (pn0 − 1)m.

The solution of P(m,n,B) must therefore have a cost belonging to the interval [ĉ, c0],

and it must be a point in the area A delimited by the hyperbola (7) and the line:

y =
c0 + n+m− nx

m
, (9)

including the border (the dashed area in Figure 3).

We can now prove the following lemma.

3



Lemma 2 For any given integer h, there is at most one integer k such that point (h, k)

is a candidate solution of P(m,n,B), i.e. (h, k) is in A.

Proof . Let us consider first the case when p satisfies conditions (1). For any given

abscissa x, it is:

c0 + n+m− nx
m

− ĉ+ n+m− nx
m

=
c0 − ĉ
m

< 1.

because we have:

c0 − ĉ
m

= −
(√

B n/m−
⌊√

B n/m
⌋)

+
n
(⌈√

Bm/n
⌉
−
√
Bm/n

)
m

= −α +
nβ

m
< 1,

since 0 ≤ α, β < 1 and m ≥ n. Hence, there can be at most one point with integer

coordinates between lines (8) and (9). The thesis follows from the observation that the

area of interest is between the two lines.

The case when p does not satisfy conditions (1), but p′ does, can be proved in a

similar way.

If conversely, neither p nor p′ satisfy conditions (1), for h =
⌈√

Bm/n
⌉
, the

difference between the ordinates of hyperbola (7) and line (9) is less than 1, since p′′

lies on (9), p is below (7), and the difference of their ordinates is less than 1. The same

holds for h =
⌊√

Bm/n
⌋

because the point on line (9) has ordinate:

c0 − n
⌊√

Bm/n
⌋

m
=
⌈√

B n/m
⌉

+
n
(⌈√

Bm/n
⌉
−
⌊√

Bm/n
⌋)

m
,

the difference with the ordinate of p′ is:

n
(⌈√

Bm/n
⌉
−
⌊√

Bm/n
⌋)

m
≤ 1,

and p′ is below hyperbola (7).

Now, for h <
⌊√

Bm/n
⌋

and h >
⌈√

Bm/n
⌉
, the difference of ordinates of

hyperbola (7) and line (9) further decreases, so again at most one point with integer

ordinate can be in the area of interest. 2

4



The search of the optimal solution can now proceed by considering the point:

(pm1 , p
′
n1

) =

(
pm0 + 1,

c0 + n+m− n (pm0 + 1)

m

)
,

lying on line (9). If this point is below the hyperbola (7), then we are outside the region

of interest and it is pointless to further increment the x coordinate along line (9). If this

is not the case, let us consider the point (pm1 , pn1) =
(
pm0 + 1,

⌊
c0+n+m−n (pm0+1)

m

⌋)
. If

it satisfies (1), then it is a better candidate solution, since its associated cost:

c1 = pm1 n+ pn1 m− (n+m),

is less than or equal to c0, since (pm1 , pn1) is on line (9) or below it. Hence, the line:

y =
c1 + n+m− nx

m
, (10)

can substitute line (9) in the search.

It is worth noting that no point below (pm1 , pn1) can be a solution of P(m,n,B),

because of Lemma 2. The search can therefore continue the same way by increasing pm1

and checking if the next point lying on the line passing for the last candidate solution is

above hyperbola (7).

When, moving on the current cost line a point below hyperbola (7) is reached,

the search for increasing pm terminates, and a similar search must be carried on for

decreasing pm, starting from pm0 − 1. This search terminates when either a point below

hyperbola (7) is reached, or the first coordinate of the next point is less than the second

one (as requested by Lemma 1).

The last considered candidate solution satisfying (1) is the solution (p̄m, p̄n) of

P(m,n,B).

To the purpose of evaluating the complexity of the algorithm, let us consider the

two intersections between hyperbola (7) and line (9), and let I be the search interval

between their projections on the horizontal axis (see again Figure 3).

The algorithm considers only points on (9) with integer abscissa in I, and for each

of them executes a constant number of steps. Indeed, not all integers in I are actually

considered because of the conditions 1 ≤ pm ≤ m/2, 1 ≤ pn ≤ n/2, and m ≥ n.

Moreover, any time a better solution is found, a new line corresponding to a lower cost

substitutes (9), which reduces the width of the search interval. Hence, the number of

5



integers in I, i.e. its width, is an upper bound for the algorithm complexity.

The lower and upper bounds of I are the solutions of the equation:

nx2 − c′0 x+mB = 0,

where c′0 = c0 + n+m to simplify notation. Hence the interval width is:√
(c′20 − 4mnB)

n
=
√

(c′0/n)2 − 4mB/n). (11)

Now, c′0 has the form mK1 + nK2, where K1 ≤
⌈√

B n/m
⌉
<
√
B n/m + 1 and

K2 ≤
⌈√

Bm/n
⌉
<
√
Bm/n + 1. Hence, substituting these bounds in (11) and

carrying out some calculations, the width of I is definitely less than:√(m
n

+ 1
)2

+ 4
(m
n

+ 1
)√

B
m

n
.

which is O(B1/4) if we assume that m/n is upper bound, as it is reasonable since values

of m/n much larger than 1 are unlikely.

In practice, however, the algorithm requires a number of steps bound by a small

constant (running some simulations we found an upper bound of 6), since either (pm0 , pn0)

is already a very good solution inducing a very small I, or better solutions are found

in the first steps of the algorithm, which greatly reduces the search space leading to a

quick termination.

Algorithm for partitioning the dataset in the fusion step

With reference to the notation introduced in Section 5, Algorithm 2 computes b̄, l′, and

the number k of sub-intervals in which [0, D − 1] has been decomposed.

To explain how the algorithm works, let be bh = w− h with h = 0, 1, . . . , bw/2c and

kh =
⌊

D
2nbh

⌋
. For some h ≤ bw/2c, let be:

rh = D − kh2nbh < 2nbh. (12)

If rh = 0, bh is an ideal solution which induces a partition over [0, D − 1] of kh

sub-intervals, all of size 2nbh.

Conversely, when rh > 0, bh induces a partition of [0, D − 1] into kh sub-intervals of

6



Algorithm (b̄, l′, k) = F(D,w, n) :
1. b̄ := w; l′ := |D|2nw; k = bD/(2nw)c;
2. h := 0;
3. while true do
4. bh := w − h;
5. kh = bD/(2nbh)c;
6. if |D|2nbh = 0 then % this is the largest ideal solution
7. b̄ := bh; l′ := 0; k = kh; % update results
8. break % exit
9. elseif |D|2nbh > r then % this is a better solution
10. b̄ := bh; l′ := |D|2nbh ; k = kh; % update results
11. end
12. if h = bw/2c then % this is the best possible solution
13. break % exit
14. end

15. h := min
(
bw/2c, h + max

(
1,
⌊
bh − D

2n(kh+1)

⌋))
;

16. end
17. if |D|2nbh > 0 then % there is one more sub-interval
18. k = k + 1;
19. end

Algorithm 2: Pseudo-code of the algorithm for finding sub-intervals of [0, D − 1].

size 2nbh, plus one additional sub-interval of size rh < 2nbh. We then consider if we can

replace bh with bh+α, α > 0 and integer such that it is:

rh+α = D − kh2nbh+α ≤ 2nbh+α, (13)

that is, if we can find a value bh+α < bh that still induces a partition of [0, D − 1] into

kh sub-intervals of size 2nbh+α plus one additional sub-interval of size rh+α ≤ 2nbh+α.

It is worth noting that if bh+α exists, it is a better choice than bh since rh+α > rh. In

particular, we are interested in finding the largest value of α that satisfies (13), since

this is the best value that induces a partition of [0, D − 1] into kh + 1 sub-intervals.

Since (13) can be rewritten as:

D − kh2nbh+α = D − kh2n(bh − α) ≤ 2nbh+α = 2n(bh − α), (14)

the largest α we are looking for is:

α =

⌊
2nbh(kh + 1)−D

2n(kh + 1)

⌋
=

⌊
bh −

D

2n(kh + 1)

⌋
, (15)

7



and bh+α is:

bh+α = bh − α = bh −
⌊
bh −

D

2n(kh + 1)

⌋
=

⌈
D

2n(kh + 1)

⌉
.

Note that a bh+α < bh could not exist, i.e., there is no integer α > 0 satisfying (14).

Indeed, even though rh > 0 =⇒ bh >
D

2n(kh+1)
from (12), the difference between the

two sides of the inequality could be less than 1, meaning that (15) is 0. In this case, bh

is the best value that induces a partition of [0, D− 1] into kh + 1 sub-intervals. However,

increasing h could still generate a better solution with more sub-intervals, hence, as

long as h is smaller than bw/2c, h should be incremented and the procedure repeated.

To evaluate complexity of algorithm 2, we observe that, at step 15, h increases

at least by 1, and that step 12 limits its growth up to bw/2c. This implies that the

algorithm terminates at most after bw/2c cycles. Nevertheless, a possibly better bound

can be derived by considering that the value of hidden variable kh increases at least

every 2 cycles of the algorithm. Indeed, if some execution of step 15 simply skips

non optimal values of bh, and therefore kh does not actually change at step 5 , it

definitely increases at the next cycle, since h cannot be increased further keeping the

the same number of partitions. Now, kh can vary from the initial value
⌊
D

2nw

⌋
= k0

to its maximum possible value
⌊

D
2ndw/2e

⌋
. Hence the algorithm can execute at most

2
(⌊

D
2ndw/2e

⌋
−
⌊
D

2nw

⌋)
< 2(k0 + 1) cycles, and 2(k0 + 1) < bw/2c in practical cases.

8


