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Abstract
Background : Metabolic rewiring allows cancer cells to sustain high proliferation rates. Thus, targeting only
the cancer-specific cellular metabolism will safeguard healthy tissues.
Methods: We developed the very efficient FASTCORMICS RNA-seq workflow (rFASTCORMICS) to build
10 005 high-resolution metabolic models from the TCGA dataset to capture metabolic rewiring strategies
in cancer cells. Colorectal cancer (CRC) was used as a test case for a repurposing workflow based on
rFASTCORMICS.
Findings: Alternative pathways that are not required for proliferation or survival tend to be shut down and,
therefore, tumours display cancer-specific essential genes that are significantly enriched for known drug
targets. We identified naftifine, ketoconazole, and mimosine as new potential CRC drugs, which were
experimentally validated.
Interpretation: The here presented rFASTCORMICS workflow successfully reconstructs a metabolic model
based on RNA-seq data and successfully predicted drug targets and drugs not yet indicted for colorectal
cancer.
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1. Supplementary text, tables, and
figures

2. Supplementary Text

2.1 Similarity testing
rFASTCORMICS captures metabolic variations between
the cancerous and the control models. We found that, for
the discretized data (the preprocessing step of rFASTCOR-
MICS), the samples cluster according to their tissue-type
(see Figure S.2). This behaviour is also observed for the
models that were reconstructed from the same tissue. They
cluster together, regardless of their healthy state (see Figure
S.3). However, when each model from a tissue is considered
separately, a clear clustering between cancer and control is
observed. Cancerous samples are less homogeneous than
their healthy counterparts (see Figure S.4, S.5, and S.8).
See Table S.1 for the abbreviations of the tissues.

2.2 Signatures
2.2.1 Reaction signatures

To further assess the capability of rFASTCORMICS to cap-
ture metabolic alterations and to verify if alterations are part
of a strategic rewiring, a feature selection approach was
used to find cancer and control-specific reactions and genes
(see Figure S.9).

Reaction signatures were retrieved using a reverse se-
lection approach for all 13 tissues. The reaction signatures
contained between 12 and 100 reactions for each tested tis-
sue (total of 583 reactions) and the prediction accuracy was
above 94% (see Figure S.10). In total, among the reaction
signatures, 346 out of 583 reactions were more frequently
found to be active in the control than in the cancer models.
175 were more often found to be active in at least one cancer
type. 62 reactions were found to be more active in a least
one cancer type and more often inactive in another. Most
reactions could only be found in one signature but MM6ag
was present in 5 different signatures. MM6ag is under the
control of MAN1C1 (mannosidase alpha class 1C member
1) and is a potential hepatocarcinoma biomarker.1

In hepatocarcinoma, several branches of pathways con-
suming building blocks such as amino acids, nucleotides,
nucleotides are shut-down. Additionally, a sub-branch of
the N-glycan synthesis pathway was present in 78% of the
hepatocarcinoma models against only 36% of the healthy
liver models (see Figure S.11).

Overall, among the reaction signatures, the fraction of
active reactions per pathway is smaller in the cancer models.
Pathways that are downregulated in cancer include the biotin
pathway (COAD, LUAD, LUSC, STAD), phenylalanine
synthesis (KICH, LUSC), and the heme pathway (BRCA),
indicating metabolic rewiring strategies (see Figure S.12).
For COAD tumour cells, reactions from keratan sulfate, o-
glycan, glycerophospholipid and sphingolipid lipids were
less often active in cancer cells, whereas a higher faction of
blood group synthesis was more often active in the cancer
samples (LUAD, THCA).

2.2.2 Genes signatures
A similar approach was used to obtain gene signatures that
are able to predict the label of a sample (cancerous or con-
trol) with an accuracy above 95% (see Figure S.13). The
gene signatures are more often active in the control than in
the cancer samples: 305 out of 502 genes were more often
inactive in at least one cancer type. 147 genes were active
in at least one cancer type and inactive in controls, whereas
49 genes were more often active in one cancer type than the
controls but more inactive in another.

To validate the gene signatures, we searched for en-
richments in known cancer driver genes, functional (and
truncating) mutations, as well as homozygous deletions.
Again, a strong enrichment against metabolic genes has
been found (p-values between 0.02 and 0.0002, see Figure
S.14)

Gene that code for transporters have been shown to play
a crucial role in the activation of metabolic pathways in
macrophages and to be under high-regulatory load.2 There-
fore, the gene signatures were tested for solute carriers and
ATP-binding cassette (ABC) transporters. Results show
a strong enrichment for both transporter types compared
to the metabolic genes (p-values = 1.5 10e-8 and 0.0209
for solute carriers and ABC transporters, respectively, see
Figure S.14 and Figure S.15).

Among the solute carriers, 65 were more often present in
cancer cells, 28 in the controls and 7 were tissue dependent.
Further, two solute carriers were found in 3 gene signatures:
SLC12A1 and SLC28A3 were more often found in cancer
and control samples, respectively.

To confirm if possible mutations in the gene signa-
tures are associated to different phenotypes, results from
somatic mutation prediction algorithms such as MUSE,3

MUTECT2,4 sniper,5 and VarScan26 were compared to the
gene signatures. The outcome revealed enrichments (hyper-
geometric test: p-values between 0.0027 and 2.3 10e-5, see
Figure S.14 and Figure S.15) and suggests that mutations
in 97% of the genes in the signature have a high pheno-
typic impact when compared to the metabolic genes, but
the number of mutations varies among the different tissues.

Significant enrichments were also found for each tissue
and algorithm combination (except for KICH and MUSE).
Metabolic genes are less enriched for high-impact muta-
tions than genes in the signatures but are nevertheless en-
riched when compared to non-metabolic genes. For 8 of
the 13 tissues and for 3 of the 4 algorithms, the enrichment
was significant for metabolic genes when compared to non-
metabolic genes (looking at each tissue individually) there
was a strong enrichment when the tissues were pooled (see
Figure S.16). Further inspection of the gene signatures re-
vealed 21 super-enhancers, which are hypo-methylated in
colon cancer, glioblastoma, small cell, and non-small cell
lung cancer (p-value 0.0038).

To further validate the results from the gene signatures,
we referred to the literature. ADH1B, which is known to
synergistically enhance the risk of oesophageal,7, 8 bladder,9

and head and neck cancer,10 was found in the gene signa-
tures of 10 tissues. Similarly, CA4 was found in 6 out of 13
tissues and a significant correlation between different alleles
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of these genes and an increase or a decrease of colon cancer
risk11, 12 was shown for the male13 population especially in
the south-western Chinese population.14

Further inspection of the gene signatures revealed 21
super-enhancers, which are hypo-methylated in colon can-
cer, glioblastoma, small cell, and non-small cell lung cancer
(p-value 0.0038).

Lastly, the gene and reaction signatures as well as the
predicted essential genes are coherent with the previous
knowledge as shown by the enrichment tests and literature
search. For example, heme oxygenase 1 was shown to
inhibit breast cancer invasion15 and modifications in the
glycosylation processes are well described in cancer and
are known to be hallmarks of cancer progression.16 Further,
biotin plays a key role in DNA repair and in the regulation
of gene expression, particularly of oncogenes in small cell
lung cancer.17 PYCR1, present in numerous signatures, is
overexpressed in cancer cells, notably in the metastasis of
prostate cancer18 and was shown to act as an anti-cancer
suppressor in breast cancer when knocked-down.19

2.3 Cancer models and cancer core metabolism
are more compact

Cancer models are smaller than the control models (see Fig-
ure S.6, Figure S.5, and Table S.2). There are more common
reactions and genes in the controls models compared to the
same number of cancer models (Figure S.17 and S.18, re-
spectively). The smaller size of the cancer core metabolism
is accompanied by an enrichment of essential genes (Figure
S.19) and is caused by a shut down of alternative pathways
that are not required for survival (see Figure S.20, Figure
S.21, Figure S.22, and Table S.4). Essential genes were
shown to have higher expression values and, as the cancer
core metabolism is enriched for essential genes, genes in
the cancer core have higher expression values (see Figure
S.23).

2.4 Essential gene and drug prediction
The reconstructed generic metabolic models were used to
predict cancer-specific essential genes (for the workflow, see
Figure S.24). The DrugBank database was datamined to find
drugs that target these essential genes. Growth rates based
on the biomass and ATP production are given in Figures
S.25, Figure S.26, Figure S.27, and Table S.5. The predicted
essential genes are enriched for essential genes identified
by CRISPR technology in cancer cell lines (Figure S.28).
Three drugs, namely ketoconazole, naftifine and mimosine
(see Table S.7) were validated on T6 cells, HT29 cells and
Caco-2 cells (see Figure S.30).

2.5 Comparison to the INIT algorithm
In order to assess the prediction power of a different model
reconstruction algorithms, we used INIT20 to reconstruct
13 generic cancer and 13 generic control models from the
TCGA dataset. Only tissues with a minimum of 13 con-
trol samples were considered. For each cancer and con-
trol model, 25 random samples of the condition and tissue
were selected. The INIT algorithm was implemented in the
COBRA toolbox and needs an input model to extract the
context-specific model from and an array of weights where

each row corresponds to a reaction in the input model (here:
the consistent Recon 2 model). The weights can be positive
or negative depending on the reaction presence. To avoid
the effect of an arbitrary threshold, the FPKM values were
discretized using the rFASTCORMICS workflow, and each
discretized gene was mapped to the reactions of the input
model using the GPR rules. Based on the discretization, we
obtained a matrix of weights in which each column corre-
sponds to one of the 25 random samples for a condition and
each row corresponds to a reaction. In order to create one
generic model, a reactions was considered to be active (1)
if it is active at least 90% of the samples and inactive (-1)
if it is inactive in at least 90% of the samples. If neither
active not inactive state could be associated, 0 was taken
as weights for that reaction. Both the ATP demand and
biomass reaction were forced to be included by assigning
their reactions a weight of 10.
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3. Supplementary Figures

3.1 Model analysis
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Figure S.1. Determination of the expression and inexpression threshold. The density plot of zFPKM converted
log2-transformed FPKM is given by the black curve. The Gaussian curve in green corresponds to genes that are likely
expressed. The red Gaussian curve corresponds to noise or leaky genes expression (uncontrolled expression), off-target
read mapping or sequencing errors. In order to discretize the data, two thresholds are determined and applied: The
expression threshold is the expression value corresponding to the maximum of the main signal peak (equal to a zFPKM
score of 0) and the inexpression threshold is set at 3 standard deviations (3 z-scores) below the intensities values of the
main peak. If the maximum of lowest peak has a zFPKM score >-3, then the latter is taken as inexpression threshold. If a
gene has a zFPKM score below the value of the inexpression threshold (pink area), the gene is considered not expressed
and a score of -1 (for not expressed) is assigned. If the zFPKM score of the considered gene is above 0 then a score of 1
(for expression) is assigned (green area). For all remaining genes a score of 0 (white area) is assigned.
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Figure S.2. The FASTCORMICS discretization step captures metabolic variations between different tissues. The
discretized values (-1, 0, 1 for unexpressed, unknown, and expressed, respectively) of the metabolic genes of the 10,005
models from the TCGA dataset were clustered according to their cosine similarity index using the euclidean distance.
Samples cluster according to their tissue of origin rather than in function of the healthy state of the sample. Overall, the
samples show high similarity (cosine similarity index ¿ 0.5) with several sub clusters represented by a same tissue type.
The clustergram displays 10,005 models of 30 different tissues: Adrenocortical carcinoma (ACC), Bladder Urothelial
Carcinoma (BLCA), Breast invasive carcinoma (BRCA), Cervical squamous cell carcinoma and endocervical
adenocarcinoma (CESC), Cholangiocarcinoma (CHOL), Colon adenocarcinoma (COAD), Lymphoid Neoplasm Diffuse
Large B-cell Lymphoma (DLBL), Esophageal carcinoma (ESCA), Glioblastoma multiforme (GBM), Head and Neck
squamous cell carcinoma (HNSC), (Kidney Chromophobe (KICH), Kidney Renal Papillary Cell Carcinoma (KIRP),
Kidney Renal Clear Cell Carcinoma (KIRC), Acute Myeloid Leukemia (LAML), Brain Lower Grade Glioma (LGG) Liver
hepatocellular carcinoma (LIHC), Lung adenocarcinoma (LUAD), Lung squamous cell carcinoma (LUSC), Ovarian serous
cystadenocarcinoma (OV), Pancreatic adenocarcinoma (PAAD), Pheochromocytoma and Paraganglioma(PCPG), Prostate
adenocarcinoma (PRAD), Rectum adenocarcinoma (READ), Sarcoma (SARC), Skin Cutaneous Melanoma (SKCM),
Stomach adenocarcinoma (STAD), Thyroid carcinoma (THCA), Thymoma (THYM), Uterine Corpus Endometrial
Carcinoma (UCEC), and Uterine Carcinosarcoma (UCS).
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Figure S.3. FASTCORMICS captures metabolic alterations between tissues. Models from the same tissue of origin
cluster together (high Jaccard similarity index), regardless if they were reconstructed from a cancer or a control sample.
The tissue of origin has a higher impact on the model similarity then the healthy state.
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a b

Figure S.4. rFASTCORMICS captures metabolic alterations between cancerous and healthy samples.
a) For individual tissues, such as colon, a clear segregation can be observed between the cancer and control models. The
control models (blue) show higher inter-similarity compared to the cancer models, which are more heterogeneous.
b) For the kidney tissues, FASTCORMICS was able to capture metabolic variations between the controls and the three
different cancer sub-types (Kidney Chromophobe (KICH), Kidney Renal Papillary Cell Carcinoma (KIRP) and Kidney
Renal Clear Cell Carcinoma (KIRC)). The kidney models clustered in function of their subtypes and their label (control vs
cancer).
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PRAD

Figure S.5. The FASTCORMICS workflow captures metabolic variations between cancer and control samples.
Cancer models (depicted by the red line next to the clustergram) showed high intra variability compared to the control
models (blue line). However, a clear segregation could be observed between the cancer and control samples. The healthy
models and the same number of cancer model from a same tissue were clustered in function of their Jaccard Similarity
Index.
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Figure S.6. Cancer models are overall smaller than their control models.
a) The median size of the cancer models is smaller for 9 tissues (green), greater for 3 (red), and not significantly different
(yellow) for 2 tissues compared to the control models.
b) Boxplots showing the distribution in size for each cancer and control model from each of the 13 analysed tissues. The
endings H and D in the tissue names represent healthy and cancer models, respectively. The green box plots illustrate
tissues for which the cancer models are significantly smaller. The red box plots illustrate tissues for which the cancer
models are significantly larger. The yellow box plots illustrate tissues for which no significant difference in model size can
be observed between the cancer and control models.
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Figure S.7. The generic cancer models are smaller than the generic control models and have wider distribution.
Generic models were built using Recon 2.04 as input. 13 models were used for the analysis, for both healthy and cancer
state.
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Figure S.8. FASTCORMICS is able to capture metabolic variations between the cancer and control models. The
13 generic cancer type models and the 13 corresponding generic control models cluster together whereas the cancer models
are represented in two different clusters for both input models, accounting for the heterogeneity of cancer. The generic
models were built with Recon 2.04 as input.
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3.2 Machine learning: reaction and gene signa-
tures
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a

b

Figure S.9. Machine-learning approaches show that the metabolic alterations are not random but part of a
rewiring strategy.
a) The models were randomized and split in a training set (80%) and a validation set (20%). A reverse feature selection
approach was applied on the top most differentially active reactions/genes (features). At each round, one feature was
removed and the machine learning models were trained on the training set to predict the labels of the validation set.
b) The confusion matrix for the hepatocarcinoma (LIHC) samples showed a high concordance between the predicted and
the true labels. The TP (true positives), FN (false negatives), FP (false positives) and TN (true negatives) are respectively
equal to 96.8%, 3.2%, 4% and 96%.

Figure S.10. Reaction signatures: high accuracy, sensitivity and specificity for the 13 analysed tissues. The
accuracy, sensitivity and specificity of the predictions, based on a 5-fold machine classifier using the reaction signatures for
each tissue was above 0.94 for most tissues.
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Figure S.11. Reaction signatures: LIHC shuts down pathways not required for survival or growth. Here only the
top 100 reactions in the signature are plotted. Therefore, only the most differentially activated reactions (reactions that tend
to be active in LIHC models and absent in controls or vice-versa) between LIHC and the liver control model was plotted
against each other. Pathways that consume nucleotides (in blue), amino acids (pink), and cholesterol (green) are more often
active in the control liver model and, overall, LIHC has fewer active reactions.
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Figure S.12. Reaction signatures: Cancer cells shut down pathways not required for survival or growth. Reactions
present in the reaction signatures tend to be more often active in control than in cancer models. The heatmap shows, for
each pathway and tissue, the presence rate (fraction of reactions in a pathway which is present in the signatures) in the
signatures. Higher presence rates in cancer and control are shown blue and orange shades, respectively.
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Figure S.13. Gene signatures: high accuracy, sensitivity and specificity for the 13 analysed tissues. For all tissues,
the gene signatures contained between 4 and 97 genes able to segregate between cancer and control models. 502 unique
genes are found in total. The gene signatures were determined by a reverse feature selection approach and then used for
cross-validation to asses the prediction power of the signatures. The accuracy of the prediction was higher than 94% for
each tissue.

Figure S.14. Gene signatures are enriched for high-impact SNPs, loss-of-function mutations, transporters, and
driver genes. The fraction of genes (from the 502 pooled gene signatures, in black), which code for transporters, driver
genes, loss-of-function mutations, and genes predicted to have a high impact on the phenotype if mutated (determined by
algorithms such as MUSE, MUTECT2, VarScan2 and sniper), is greater than in the metabolic genes (white).
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Figure S.15. Gene signatures carry mutations which have a high impact on the phenotype.
a) 212 genes in the signatures are homozygous deletions, functional, or truncated mutations (not mutually exclusive).
b) 435 genes have been found to highly affect the phenotype by all mutation calling algorithms (MUSE, MUTECT2,
VarScan2 and sniper).
c) All genes but 1 from the signature were identified as mutations with a high impact where 211 were loss-of-function
mutations, 109 were transporter and 144 driver mutations.
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Figure S.16. Number of mutations detected by the mutation calling algorithm for different tissues. Pooled gene
signatures (top left), metabolic genes (top right), genes that have a high impact (bottom left), and number of mutation with
high, medium, and low impact on the phenotype (bottom right) detected in the different tissues by the mutation calling
algorithms (MUSE, MUTECT2, VarScan2, and sniper).
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3.3 The cancer core metabolism
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Figure S.17. Reactions: the cancer core metabolism is included in the control core metabolism.
All of the 10005 model were considered for this analysis. Left: 1,291 reactions were present in more than 95% of the
models. 31 and 103 reactions were exclusive to cancer and control models, respectively. 211 reactions were always present
in each cancer model, representing the cancer core metabolism. The control core metabolism comprised all reactions but
one of the cancer core metabolism (total of 760 reactions) and was bigger than the cancer core metabolism.
Right: A total of 4,121 different reactions were present in at least one model. Only 2 reactions could not be found in the
cancer models whereas 210 additional reactions were present in cancer.

Figure S.18. Genes: the cancer core metabolism is included in the control core metabolism. The core metabolism of
cancer cells (red), defined as the reactions present in 100% of the cancer metabolic models, is smaller than in the healthy
core metabolism (blue). 17 genes are unique to the cancer models while 76 genes are unique to the control models. All of
the 10005 model were considered for this analysis.
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Figure S.19. Genes: the cancer core metabolism is enriched for essential genes. The cancer core metabolic genes
(black) and the healthy core metabolic genes (grey) were significantly enriched for essential genes compared to the
metabolic genes (white). A list was retrieved from21 who identified essential genes by CRISPR-Cas9 screens in the Jiyoye,
K562, KBM7, and Raji cancer cell lines. The intersection represents genes which were found to be essential in each of the
4 cell lines and the union in any of the 4 cell lines. A list of fitness genes (essential in 3 out of 5 TKO cell lines) was
retrieved from.22

Figure S.20. The cancer core metabolism has lower pathway activity. Branches of metabolic pathways are shut down
in the cancer models (red) when compared to their healthy counterparts (blue), resulting in a smaller percentage of active
reactions per pathway. For example, the presence rate of the ROS detoxification pathway for cancer and healthy are 71%
and 86%, respectively.
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Figure S.21. Control models: reaction presence rates across 90 pathways. Distribution of the active reactions for each
pathway present in Recon 2.04. 741 healthy models were used.
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Figure S.22. Cancer models: reaction presence rates across 90 pathways. Distribution of the active reactions for each
pathway present in Recon 2.04. 9,264 cancer models were used.
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Figure S.23. The cancer core metabolic genes have higher expression values and abundance. Abundance of the
log2(FPKM) expression values for the different genes: cancer core genes (pink), cancer core metabolic genes (red),
essential genes (yellow), healthy core metabolic genes (blue), metabolic genes (green), and all genes (black).
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3.4 In silico gene deletions and drug repurposing
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Figure S.24. Drug repurposing workflow based on rFASTCORMICS. 13 cancer and control generic tissue-specific
models were reconstructed using the TCGA and Recon X as input for rFASTCORMICS. Essential genes for each tissue
were determined using in silico gene deletions while optimizing for the ATP demand or biomass reaction as objective
function. The predicted essential genes were tested for enrichments in known essential gene screenings.21–23 The
DrugBank was used to retrieve drug targets using for the genes present in the models. The drug targets were then compared
to the predicted essential genes in cancer and, in a last step, cancer drugs are retrieved.
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Figure S.25. Mean growth ratios for ATP and biomass. The ATP demand is more robust to gene deletions than the
biomass production. Control and cancer models are affected differently by in silico gene deletions, here represented as
mean ratios from all 13 generic models. The ATP demand is never completely shut down, the lowest mean ratio being
0.6883 (cancer) and 0.6498 (healthy). On the other hand, gene deletions affect the biomass production differently,
producing intermediate phenotypes. Deletion of 33 and 18 genes results in a growth ratio of 0 in cancer and healthy,
respectively.

Figure S.26. Median growth ratios for ATP and biomass. The ATP demand is more robust to gene deletions than the
biomass production. Control and cancer models are affected differently by in silico gene deletions, here represented as
median ratios from all 13 generic models. The ATP demand is never completely shut down, the lowest ratio can be
observed around 0.7. On the other hand, gene deletion affect the biomass production differently producing intermediate
phenotypes.
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Figure S.27. Growth ratios for ATP and biomass for all tissues reconstructed from Recon 2.04. In general, single
gene deletion has an higher impact on the biomass production than on ATP demand, regardless of the tissue.
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Figure S.28. Predicted essential genes in CRC are enriched for known essential genes. The predicted essential genes
were compared to five different essential gene screenings from.21, 24 High enrichments are found in the cancer-specific
essential genes if compared to the metabolic genes. See Table S.5 for a more detailed explanation of the figure legend.
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3.5 Validation
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Figure S.29. Models reconstructed with rFASTCORMICS are enriched for reactions with a high confidence level.
Unlike the other models, rFASTCORMICS was run with RNA-seq data as input. Models reconstructed with
FASTCORMICS show high confidence scores at the transcriptomic level and behave similarly to the models reconstructed
with FASTCORE (left). Models reconstructed with FASTCORMICS show an enrichment for of reactions associated to
high and medium confidence levels at the proteome level (human Protein atlas) (right).
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Figure S.30. Effect of candidate drugs on primary and commercial colorectal cancer cells. 12,000 T6 cells, HT29
cells, or Caco-2 cells were seeded in 100 µL of growth medium into each well of a 96 well plate. 24 hours afer seeding
,medium in each well was exchanged and cells were treated with the corresponding drugs Ketoconazole (K), Naftifine (N),
and Mimosine (M),at different concentraer seeding, medium in each well was exchanged and cells were treated with the
corresponding drugs Ketoconazole (K), Naftifine (N), and Mimosine (M), at different concentraer seeding, medium in each
well was exchanged and cells were treated with the corresponding drugs Ketoconazole (K), Naftifine (N), and Mimosine
(M), at different concentrations. Cellular confluence was measured every 3 hours over 5 days. Data show representative
experiments of threebiological replicates per cell line. Data points represent mean confluence ± SD of 6 wells.
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4. Supplementary Tables
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Table S.1. Cancer abbreviations and full names. Explanation of the abbreviations used in the TCGA dataset.

Cancer abbreviation Full name of cancer

ACC Adrenocortical carcinoma
BLCA Bladder urothelial carcinoma
BRCA Breast invasive carcinoma
CESC Cervical squamous cell carcinoma and endocervical adenocarcinoma
CHOL Cholangiocarcinoma
COAD Colon adenocarcinoma
DLBC Lymphoid neoplasm diffuse large B-cell lymphoma
ESCA Esophageal carcinoma
GBM Glioblastoma multiforme

HNSC Head and neck squamous cell carcinoma
KICH Kidney chromophobe
KIRC Kidney renal clear cell carcinoma
KIRP Kidney renal papillary cell carcinoma

LAML Acute myeloid leukemia
LGG Brain lower grade glioma

LIHC Liver hepatocellular carcinoma
LUAD Lung adenocarcinoma
LUSC Lung squamous cell carcinoma

OV Ovarian serous cystadenocarcinoma
PAAD Pancreatic adenocarcinoma
PCPG Pheochromocytoma and paraganglioma
PRAD Prostate adenocarcinoma
READ Rectum adenocarcinoma
SARC Sarcoma
SKCM Skin cutaneous melanoma
STAD Stomach adenocarcinoma
THCA Thyroid carcinoma
THYM Thymoma
UCEC Uterine corpus endometrial carcinoma

UCS Uterine carcinosarcoma
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Table S.2. Model size overview for each tissue. The number of control and cancerous samples as well as the median
sizes of the models is given for each tissue type. NaN was assigned to the median size of healthy control and cancer models
for tissues for which no samples were available.

Cancer Number of Number of Median size of Median size of
abbreviation healthy models cancer models healthy models cancer models

ACC 0 79 NaN 1882
BLCA 19 414 1897 1898
BRCA 113 1119 1849 1816
CESC 3 306 1689 1835
CHOL 9 0 2164 NaN
COAD 41 483 2067 1955
DLBC 0 48 NaN 1811
ESCA 13 0 1928 NaN
GBM 5 170 1826 1818
HNSC 44 504 1922 1822
KICH 25 66 2077 1772
KIRC 72 542 2047 1978
KIRP 32 291 2082 1981

LAML 0 178 NaN 1465
LGG 0 532 NaN 1743
LIHC 50 374 2159 2121
LUAD 59 541 1847 1940
LUSC 51 502 1859 1876

OV 0 430 NaN 1875
PAAD 4 0 1909 NaN
PCPG 3 0 1906 NaN
PRAD 52 502 1943 1935
READ 10 167 2045 1967
SARC 2 0 1985 NaN
SKCM 1 472 1889 1748
STAD 37 420 2049 1951
THCA 59 513 1773 1843
THYM 2 0 1722 NaN
UCEC 35 554 1749 1857
UCS 0 57 NaN 1813
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Table S.3. Optional medium composition used to reconstruct the context-specific models. The medium composition
is used to constrain the uptakes or exchange reactions during the model building process. The metabolite column
represents the metabolites as found in the model.mets field in Recon 2.04.

metabolite metabolite Name

4hpro LT[e] trans-4-hydroxy-L-proline
5adtststerone[e] 17beta-hydroxy-5alpha-androstan-3-one

5mta[e] 5-Methylthioadenosine
Lcystin[e] L-cystine

ala L[e] L-alanine
arg L[e] L-argininium(1+)
asn L[e] L-asparagine
asp L[e] L-aspartate(1-)

bilirub[e] bilirubin(2-)
btn[e] Biotin
ca2[e] calcium(2+)

chol[e] Choline
cl[e] Chloride

co2[e] carbon dioxide
cys L[e] L-cysteine

fe2[e] Fe2+
fol[e] Folate

glc D[e] D-glucose
gln L[e] L-glutamine
glu L[e] L-glutamate(1-)

gly[e] Glycine
gthrd[e] Reduced glutathione

h2o[e] Water
h[e] proton

hco3[e] Bicarbonate
his L[e] L-histidine
ile L[e] L-isoleucine
inost[e] myo-inositol

k[e] potassium
leu L[e] L-leucine
lys L[e] L-lysinium(1+)

met L[e] L-methionine
na1[e] Sodium

ncam[e] Nicotinamide
o2[e] O2

phe L[e] L-phenylalanine
pi[e] hydrogenphosphate

pnto R[e] (R)-Pantothenate
pro L[e] L-proline
pydx[e] Pyridoxal

pydxn[e] Pyridoxine
ribflv[e] Riboflavin
ser L[e] L-serine

so4[e] sulfate
thm[e] Thiamin

thr L[e] L-threonine
trp L[e] L-tryptophan
tyr L[e] L-tyrosine
urate[e] Urate
urea[e] Urea

val L[e] L-valine
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Table S.4. Pathways that are significantly more often active in cancer and control models, respectively.
higher presence rate fraction in control higher presence rate fraction in cancer

’Transport, extracellular’ ’Blood group synthesis’
’Steroid metabolism’ ’Transport, golgi apparatus’

’Exchange/demand reaction’ ’Unassigned’
’Tyrosine metabolism’ ’Fatty acid synthesis’

’Transport, peroxisomal’
’Bile acid synthesis’

’Pyrimidine catabolism’
’Fatty acid oxidation’

’Transport, endoplasmic reticular’
’Phenylalanine metabolism’

’Tryptophan metabolism’
’Glycine, serine, alanine and threonine metabolism’

’Transport, lysosomal’
’Sphingolipid metabolism’

’Urea cycle’
’Glutamate metabolism’

’Glycolysis/gluconeogenesis’
’Triacylglycerol synthesis’
’beta-Alanine metabolism’

’N-glycan synthesis’
’Glutathione metabolism’

Table S.5. Essential genes. Knock-out were performed using as optimization function the production of biomass or ATP
production. Enrichment test were performed using different genes lists for the different optimization function, for the case
in which essential genes were pooled and for conserved essential genes. The number of essential genes in Recon 2.4 per
category.

name Recon description
2.04

all genes intersect a 0 essential for ATP in every model <0.5
all genes intersect b 1 essential for biomass in every model <0.5

all genes union a 34 essential for ATP in all model <0.5
all genes union b 99 essential for biomass in every model <0.5

cancer genes intersect a 0 essential for ATP in every cancer <0.5
cancer genes intersect b 32 essential for biomass in every cancer<0.5

cancer genes union a 3 essential for ATP in all cancer<0.5
cancer genes union b 92 essential for biomass in all cancer<0.5

healthy genes intersect a 0 essential for ATP in every healthy <0.5
healthy genes intersect b 18 essential for biomass in every healthy<0.5

healthy genes union a 33 essential for ATP in all healthy<0.5
healthy genes union b 88 essential for biomass in all healthy<0.5

healthy genes intersect a 2 essential for ATP in every healthy <0.9
healthy genes intersect b 20 essential for biomass in every healthy<0.9

healthy genes union a 99 essential for ATP in all healthy<0.9
healthy genes union b 145 essential for biomass in all healthy<0.9

cancer only genes intersect aa 0 not essential for ATP in every healthy but essential for
ATP in every cancer

cancer only genes intersect ab 29 not essential for ATP in every healthy but essential for
biomass in every cancer

cancer only genes intersect bb 0 not essential for biomass in every healthy but essential for
healthy in every cancer

cancer only genes union aa 1 not essential for ATP in all healthy but essential for ATP
in all cancer

cancer only genes union ab 58 not essential for ATP in all healthy but essential for
biomass in all cancer

cancer only genes union bb 39 not essential for biomass in all healthy but essential for
biomass in all cancer
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Table S.6. Overview of the websites used to find cancer drugs. As of April 2017, the listed websites provided
information on currently used and approved drugs for cancer.

Name Description

National Cancer Institute provides general information on cancer and its treatments including a
list of more than 200 approved drugs and drug combinations for cancer
https://www.cancer.gov/about-cancer/treatment/drugs

SEER*Rx an antineoplastic drug database
https://seer.cancer.gov/seertools/seerrx/#

ChemoCare cancer drugs and side effects database
http://chemocare.com/chemotherapy/drug-info/default.aspx

CenterWatch a clinical trial database
https://www.centerwatch.com/drug-information/fda-approved-
drugs/therapeutic-area/12/oncology

MediLexicon a drug database
http://www.medilexicon.com/drugs-list/cancer.php

Navigating Care a chemotherapy drugs database oriented towards patients
https://www.navigatingcare.com/library/all/chemotherapy drugs

Table S.7. Complementary information on ketoconazole, naftifine, and mimosine.
Drug Name Origin Solvent Gene tar-

get
Current use Mode of ac-

tion
References

Ketoconazole
(M= 531.43)

synthetic
imidazole-
based
drug

DMSO:
(20
mg/mL)
(warmed)

CYP51A1 antifungal As P450 en-
zyme inhibitor
it decreases
xenobiotic
metabolism

-increases intratumor drug levels and
antitumor activity of fenretinide25

and venetoclax26

-modulation of microbial communi-
ties27

-causes regression of advanced pro-
static cancer patients by suppressing
plasma androgens levels28, 29

-reduces cell proliferation of colon
cancer cells30

Naftifine (M=
323.86)

synthetic
allylamine
derivative

DMSO:
5 mg/mL
(warmed)

SQLE antifungal It inhibits
squalene
epoxidase,
which de-
creases
sterol-levels
in fungal cell
membranes

-exhibits toxicity to hematological
neoplasms in vitro31

-reduces superoxide production
and polymorphonuclear leukocyte
chemotaxis/endothelial adhesion32

-inhibits squalene epoxidase33

Mimosine
(M= 198.18)

Non-
protein
amino
acid of Mi-
mosoideae

DPBS +
Sodium
Bicarbon-
ate (10%):
15mg/mL
(warmed)

SHMT1
(protein-
arginine
omega-N
methyl-
transferase
HMT1)

anti-
neoplastic
alanine-
substituted
pyridine
derivative

As iron/zinc
chelator it
leads to the
depletion of
iron, which re-
sults in DNA
double-strand
breaks

-cell cycle inhibition of colon cancer
cells34

-cell cycle inhibition and anti-
proliferative in human lung cancer
cells35

-potential role of in malignant
glioma treatment,36 regenerative
dentistry,37 and phytoremediation38

-induces apoptosis in glioma cells
via ROS and p38/JNK activation36
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Table S.8. Short overview of the predicted drug targets and their drugs.
Drug Name Gene target Current

use
Reference

Trimethoprim DHFR antibiotic ”DHFRi - dihydrofolate reductase inhibitor, a substance that can build up in
cancer cells and block them from using folate. Folate is a nutrient that rapidly
dividing cells need to make DNA. Blocking folate use helps keep cancer cells
from growing and may kill them. Some dihydrofolate reductase inhibitors are
used to treat cancer. A dihydrofolate reductase inhibitor is a type of antifolate.
Also called DHFR inhibitor.”

https://www.cancer.gov/publications/dictionaries/cancer-terms?cdrid=754028

“the antifolates trimethoprim and pyrimethamine are potent inhibitors of bacte-
rial and protozoal DHFRs, respectively, but are only weak inhibitors of mam-
malian DHFRs”39

Trimethoprim TYMS
(thymidylate
synthetase,
TS)

antibiotic “microRNA-612 [. . . ], which is known to reduce stemness and to relieve drug
resistance to cisplatin and 5-fluorouracil, possibly by targeting TYMS [via Wnt
signaling] in cancer cells”40

Furosemide SLCO2A1 edema and
chronic re-
nal insuffi-
ciency

“Furosemide administration reduced choline uptake in tumour lesions, especially
significant in pelvic lymph node metastases.”41

Furosemide reverses multidrug resistance status in bladder cancer cells in vitro.
42

”The most commonly used diuretic, furosemide (Lasix R©), causes the kidneys
to produce more urine. As a result, the amount of free water in the body is
reduced. Along with an increase in urine volume, furosemide causes loss of
calcium, sodium and potassium. Furosemide is well tolerated; however, it is not
free of side effects, which may include dehydration, low blood potassium and
low blood sodium”
http://news.cancerconnect.com/types-of-cancer/bone-cancer/hypercalcemia/

Nebulized furosemide as a novel treatment for dyspnea in terminal cancer
patients43

Naftifine SQLE antifungal “Naftifine exhibits toxicity to hematological neoplasms in vitro. [. . . ] Naftifine
was used in the present study since it has chemical features similar to those of
other known WNT inhibitors. Materials and Methods: The anti-tumor apoptotic
effect of naftifine at doses ranging from 0.1-200µM was investigated on two
human and one murine lymphoma, as well as in one murine and three human
myeloma cell lines”31

Terbinafine SQLE antifungal “These findings demonstrate for the first time that TB can inhibit the proliferation
of tumor cells (COLO205, HT29) in vitro and in vivo.[30–120 µM]”44

Terbinafine inhibits KSR1 and suppresses Raf-MEK-ERK signaling in oral
squamous cell carcinoma cells. [anti-neoplasia]45

Terbinafine inhibits oral squamous cell carcinoma growth through anti-
cancer cell proliferation and anti-angiogenesis46

Terbinafine inhibits endothelial cell migration through suppression of the Rho-
mediated pathway47
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Drug Name Gene target Current
use

Reference

Tioconazole CYP51A1 antifungal No paper

Ketoconazole
(P450 enzyme
inhibitor)

CYP51A1 antifungal “ketoconazole can be used as a pan-antagonist of NRs involved in xenobiotic
metabolism (Cyp3A4) in vivo, which may lead to novel strategies that improve
drug effect and tolerance”48

P450 inhibitor ketoconazole increased the intratumor drug levels and antitumor
activity of fenretinide in human neuroblastoma xenograft models 25

Effect of ketoconazole, a strong CYP3A inhibitor, on the pharmacokinetics of
venetoclax, a BCL-2 inhibitor, in patients with non-Hodgkin lymphoma26

“In the serum independent HT29-S-B6 colon cell clone, ketoconazole reduced
cell proliferation and [3H]thymidine incorporation in a dose-dependent fashion,
with a 50% inhibitory concentration of approximately 2.5 microM.”30

Mimosine SHMT1
(protein-
arginine
omega-N
methyl-
trans-
ferase
HMT1)

antineoplastic
alanine-
substituted
pyri-
dine
deriva-
tive

“Inhibition of cell cycle progression by mimosine (MIM), a reversible cell cycle
blocker, reduced the percentage of migrating cells (SW480).”34

The Chemistry and Biological Activities of Mimosine: A Review.
“Interestingly, the new roles of mimosine in malignant glioma treatment, regen-
erative dentistry, and phytoremediation are being emerged”38

Mimosine-induced apoptosis in C6 glioma cells requires the release of
mitochondria-derived reactive oxygen species and p38, JNK activation.
“Mimosine markedly inhibited proliferation and induced apoptosis of C6 glioma
cells in a dose- and time-dependent manner”36

Orlistat FASN (Fatty
acid synthase)

obesity
treatment

“[. . . ] the combination of lonidamine (LND), 6-diazo-5-oxo-L-norleucine
(DON) and orlistat [. . . ] (triple metabolic blockade of the malignant phenotype)
appears feasible and promising for [colon] cancer therapy.”49

Fatty acid synthase as a potential therapeutic target in cancer.
“Early small-molecule FASN inhibitors such as cerulenin, C75 and orlistat have
been shown to induce apoptosis in several cancer cell lines and to induce tumor
growth delay in several cancer xenograft models but their mechanism is still not
well understood. These molecules suffer from pharmacological limitations and
weight loss as a side effect that prevent their development as systemic drugs.
Several potent inhibitors have recently been reported that may help to unravel
and exploit the full potential of FASN as a target for cancer therapy in the near
future. Furthermore, novel sources of FASN inhibitors, such as green tea and
dietary soy, make both dietary manipulation and chemoprevention potential
alternative modes of therapy in the future.”50

Butenafine SQLE
(choles-
terol
synthesis)

antifungal No paper
“SQLE promotes cancer progression in multiple types of cancer. Again, its role
in colon cancer progression was undefined.”51

SQLE induces epithelial-to-mesenchymal transition by regulating of miR-133b
in esophageal squamous cell carcinoma.52

Cholesterol biosynthesis pathway as a novel mechanism of resistance to estrogen
deprivation in estrogen receptor-positive breast cancer.53
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Drug Name Gene target Current
use

Reference

Atovaquone DHODH
(Dihy-
droorotate
dehydro-
genase),
Pyrim-
idine
biosynthe-
sis

antimicrobial,
antimalar-
ial

Gene expression-based discovery of atovaquone as a STAT3 inhibitor and
anti-cancer agent. “These findings establish atovaquone as a novel, clinically-
accessible STAT3 inhibitor with evidence of anti-cancer efficacy in both animal
models and humans.”54

The anti-malarial atovaquone increases radiosensitivity by alleviating tumour
hypoxia.
“it reduces hypoxia in FaDu and HCT116 xenografts in nude mice, and causes a
significant tumour growth delay when combined with radiation”55

Repurposing atovaquone: targeting mitochondrial complex III and OXPHOS to
eradicate cancer stem cells.
“atovaquone [1µM] also induces apoptosis in both CD44+/CD24low/- CSC
and ALDH+ CSC populations, during exposure to anchorage-independent
conditions for 12 hours.”?

Atovaquone derivatives as potent cytotoxic and apoptosis inducing agents.
“Several compounds displayed significantly improved cytotoxic activities
against a panel of cancer cell lines than that of atovaquone”56

Sertaconazole CYP51A1 antifungal no paper

Itraconazole CYP51A1 antifungal Inhibition of angiogenesis by the antifungal drug itraconazole.
“Itraconazole inhibits endothelial cell cycle progression at the G1 phase in vitro
and blocks vascular endothelial growth factor/basic fibroblast growth factor-
dependent angiogenesis in vivo.57

Itraconazole inhibits angiogenesis and tumor growth in non-small cell lung
cancer.
“itraconazole has potent and selective inhibitory activity against multiple key
aspects of tumor-associated angiogenesis in vitro and in vivo”58

Recent advances in drug repurposing for the discovery of new anticancer drugs.
“[(Nacev et al. 2011)] showed that itraconazole inhibited cholesterol traffick-
ing in human endothelial cells, leading to inhibition of mammalian target of
rapamycin (mTOR) and vascular endothelial growth factor receptor type 2
(VEGFR2) signaling pathways that are critical for endothelial cell proliferation
and angiogenesis”59

Lactic Acid SLCO2A1 “increasing evidence that cancers can escape immune destruction by suppressing
the anti-cancer immune response through maintaining a relatively low pH in their
micro-environment. Tumours achieve this by regulating lactic acid secretion via
modification of glucose/glutamine metabolisms.”60
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Drug Name Gene target Current
use

Reference

Icatibant
(bradykinin
receptor
antago-
nist)

SLCO2A1
(solute
carrier
organic
anion
trans-
porter
family
member
2A1)

peptidomimetic
drug, hered-
itary an-
gioedema

“the oral treatment significantly inhibited the development of [Dextran sulfate
sodium-induced] colitis [in mice] that was observed histopathologically.”61

Influence of Genetic Polymorphisms in Prostaglandin E2 Pathway (COX-
2/HPGD/SLCO2A1/ABCC4) on the Risk for Colorectal Adenoma Development
and Recurrence after Polypectomy.62

Prostaglandin transporter, SLCO2A1, mediates the invasion and apoptosis of
lung cancer cells via PI3K/AKT/mTOR pathway.63

Mechanisms involved in kinin-induced glioma cells proliferation: the role of
ERK1/2 and PI3K/Akt pathways.64

Identification of bradykinin receptors in clinical cancer specimens and murine
tumor tissues.65

Canagliflozin
(sodium
glucose
cotrans-
porter type
2 (SGLT2)
inhibitor)

SLC5A1 anti-
diabetic
drugs

“canagliflozin is able to reduce tumor growth and increase the necrosis in the
tumor center.”66

“Canagliflozin, but not Dapagliflozin, potently suppress proliferation and clono-
genic survival of cancer cells alone and in combination with cytotoxic thera-
pies.”67

“Relationship between SGLT2 inhibition and cancer formation is still inconclu-
sive and studies with larger sample size, longer exposure duration, and different
ethnicities are warranted.”68

Sodium fluo-
ride

MT-CO1 prevent
cavities

“population-based-studies strongly suggest that chronic fluoride ingestion is a
possible cause of uterine cancer and bladder cancer; there may be a link with
osteosarcoma—highlighted as an area where there is evidence of problems
requiring further research”69
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Table S.9. Model numerics for models reconstructed with the INIT algorithm. Overview on the number of reaction,
metabolites, and genes of the 26 model reconstructed with INIT. Model were constructed using the consistent Recon 2
model and weights for each reaction as input.

Tissue Number of reactions Number of metabolites Number of genes

Input model 5317 2960 1913
(consistent Recon 2.04)

BRCA cancer 3042 2079 1431
COAD cancer 3472 2345 1478
HNSC cancer 3345 2278 1428
KICH cancer 3229 2213 1580
KIRC cancer 3336 2294 1527
KIRP cancer 3239 2216 1556
LIHC cancer 3633 2431 1567
LUAD cancer 3242 2206 1474
LUSC cancer 3335 2270 1537
PRAD cancer 3431 2327 1450
STAD cancer 3352 2267 1462
THCA cancer 3181 2186 1552
UCEC cancer 3170 2152 1428
BRCA control 3278 2236 1486
COAD control 3618 2438 1645
HNSC control 3334 2282 1402
KICH control 3503 2384 1582
KIRC control 3460 2345 1613
KIRP control 3447 2340 1581
LIHC control 3900 2537 1750
LUAD control 3411 2324 1554
LUSC control 3386 2284 1534
PRAD control 3362 2297 1547
STAD control 3240 2220 1430
THCA control 3258 2220 1611
UCEC control 3232 2213 1495
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