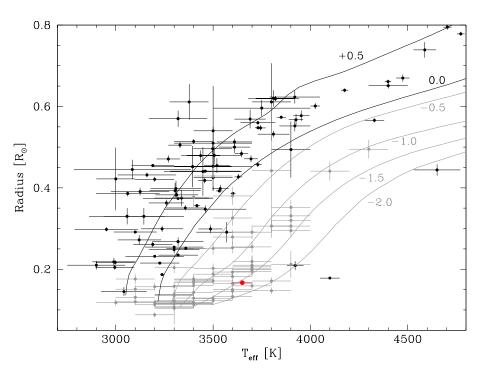
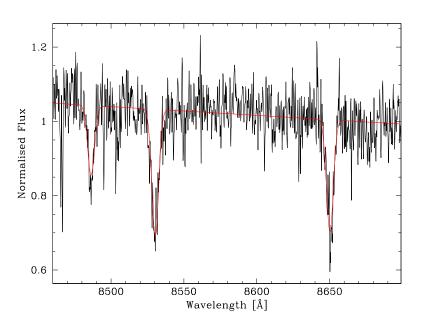

Accurate mass and radius determinations of a cool subdwarf in an eclipsing binary




**Supplementary Figure 1.** Spectral model fits to the residual white dwarf spectrum of SDSS J2355+0448, obtained after subtracting the best-fit cool subdwarf template (Figure 1). Top left panel: from top to bottom the best-fit (black line) to the normalised H $\beta$  to H10 (gray) line profiles. Top right panel: 3, 5, and  $10\sigma$   $\chi^2$  contour plots in the  $T_{eff} - \log g$  plane. Black contours indicate the best line profile fits, whilst red contours the best-fit to the entire spectrum. The maximum H $\beta$  equivalent width is indicated by a dashed line. Black dots indicate the best "hot" and "cold" line profile solutions, the red dot indicates the best fit to the whole spectrum. Bottom panel: the residual white dwarf spectrum after subtracting the cool subdwarf (gray line) together with the best-fit white dwarf model (black line) and the residuals (gray line, bottom). The fit to the whole spectrum selects the "hot" solution.

| Parameter                   | $g_s$   | $r_s$   | $i_s$   | $Z_S$   |
|-----------------------------|---------|---------|---------|---------|
| $\overline{\mathrm{WD}a_1}$ | 0.6882  | 0.6126  | 0.5782  | 0.5530  |
| $WD a_2$                    | 0.1635  | 0.0232  | -0.1761 | -0.3300 |
| WD $a_3$                    | -0.4165 | -0.1818 | 0.0999  | 0.3024  |
| $WD a_4$                    | 0.1915  | 0.0823  | -0.0386 | -0.1209 |
| $\operatorname{sd} a_1$     | -0.4633 | -0.6869 | -0.3228 | -0.1407 |
| $\operatorname{sd} a_2$     | 2.3583  | 3.9532  | 2.9078  | 2.2760  |
| $\operatorname{sd} a_3$     | -1.4110 | -3.7931 | -2.8289 | -2.2345 |
| $\operatorname{sd} a_4$     | 0.1903  | 1.1713  | 0.8566  | 0.6676  |
| sd grav. darkening          | 1.1211  | 0.7539  | 0.6513  | 0.5731  |


**Supplementary Table 1.** Limb- and gravity-darkening coefficients used during our light curve fitting for the  $g_s$ ,  $r_s$ ,  $i_s$  and  $z_s$  bands. The white dwarf limb-darkening coefficients (WD  $a_1$  to WD  $a_4$ ) are for a  $T_{\rm eff} = 13,250$  K,  $\log g = 7.75$  dex white dwarf. The cool subdwarf limb-darkening (sd  $a_1$  to sd  $a_4$ ) and surface gravity (sd grav. darkening) coefficients are for a  $T_{\rm eff} = 3,650$  K,  $\log g = 5.0$  dex, [Fe/H]= -2.0 dex star.



**Supplementary Figure 2.**  $g_s$ -band HiPERCAM light-curve of SDSS J2355+0448 displaying a flare originating in the surface of the cool subdwarf star. The error bars represent  $\pm 1\sigma$  uncertainties.



Supplementary Figure 3. Radius-effective temperature plot for a compilation of low-mass solar-metallicity stars (black) and for a compilation of cool subdwarfs (grey). The solid lines are the Dartmouth theoretical tracks for 10 Gyr and the indicated [Fe/H] abundances (in dex units). The red solid dot represents the cool subdwarf studied in this work. The error bars represent  $\pm 1\sigma$  uncertainties.



**Supplementary Figure 4.** Fit (red solid line) to the normalised Ca II triplet at  $\sim$ 8500Å of a X-Shooter spectrum (black solid lines).