Figure S9. Preparation of microsomal membranes and attempted solubilization of VAPYRIN-GFP.

(a) Western blot with monoclonal anti-GFP antibody using *N. benthamiana* leaves expressing VAPYRIN-GFP. After removal of crude cellular debris, the supernatant (input) was ultracentrifuged to yield microsomal membranes (MEM) and soluble supernatant (SP). the MEM fraction was than treated with 1% NP-40 in order to solubilize VAPYRIN-GFP, but it remained entirely associated with the MEM fraction.

(b) Same procedure as in (a), but with leaves expressing ER-localized GFP-HDEL.

(c) Same procedure as in (a), but with leaves expressing free cytoplasmic GFP.

	Sma	all scale fractiona	tion	Large scale fractionation				
	~		\rightarrow	\checkmark				
	Solubilization Buffer A pH 7.5	Solubilization Buffer B pH 7.9	Solubilization Buffer C pH 7.5	Solubilization Buffer C pH 7.5				
NP-40	1; 3; 5 %	5 %	5 %	5 % (1 % <i>Ph</i> VAPYRIN- GFP)				
Triton X-100	1.5; 3 %		0.5 %, 1%					
Octyl glucoside	1 %		2; 5%					
SDS	2 %							
other	pH 6.8; 9.5							

Figure S10. Experimental conditions in tissue fractionation for the extraction and solubilization of VAPYRIN-GFP and VAP-GFP. Transgenic hairy roots of *P. hybrida* were used to extract membrane pellets with a large scale and a small scale protocol (see Materials and Methods). Subsequently, the membranes were resuspended in different buffers containing various concentrations of different detergents as indicated.

Figure S11. Attempted solubilization of VAP-GFP with NP-40.

Microsomal membrane fractions prepared from hairy roots expressing VAP-GFP were resuspended in diffent buffers with various concentrations of NP-40 as indicated. After incubation for 1h at 4°C, the membrane pellets (MEM) were recovered by centrifugation and subjected to Western blot analysis next to the respective soluble fraction (SP; supernatant after detergent treatment). In all cases, most of the VAP-GFP remained associated with the membranes.

Figure S12. Attempted solubilization of VAP-GFP with Triton-X-100 and octylglucoside.

Microsomal membrane fractions prepared from hairy roots expressing VAP-GFP were resuspended in diffent buffers with various concentrations of Triton-X-100 (T), or octylglucoside (OG) as indicated. After incubation for 1h at 4° C, the membrane pellets (MEM) were recovered by centrifugation and subjected to Western blot analysis next to the respective soluble fraction (SP; supernatant after detergent treatment). In all cases, most of the VAP-GFP remained associated with the membranes.

Figure S13. Drop test with interactor candidates from split-ubiquitin screen. Interaction between the bait and the respective candidates is revealed by the white color and the better growth on selective medium (SD-4D) with the bait (pDHB1-VAP), relative to the empty vector control (pDHB1-EV). Growth on non-selective medium (SD-2D) is independent of an interaction and just reflects the presence of the bait and prey vectors. Highly specific interactors are signified by a + sign, moderately specific interactors are indicated with a ~ sign. A positive control is provided by pA1-Alg5 vs. pPR3N.

The petunia VAMP721m (red asterisk) in this study was compared with all related VAMPs from *Petunia axillaris* (Pa), *Medicago truncatula* (Mt), *Lotus japonicus* (Lj), *Oryza sativa* (Os), and *Arabidopsis thaliana* (At). Symbiosis-related (blue asterisks), and non-symbiotic (black asterisks) VAMP721 members from *M. truncatula* are indicated.

Table S1. List of subcellular fluorescent makers employed in this study

Protein Name	Wave No.	Assignment localization	Interaction with Vapyrin bodies	Source/Reference	
Rab C1	3R	Post-Golgi/endosomal	Colocalization	Geldner et al., 2009	
Rab A5d	24R	Endosomal/recycling endosome	Colocalization and association	Geldner et al., 2009	
Rab D2b	33R	Golgi/endosomal	Colocalization and association	Geldner et al., 2009	
Rab A1g	129R	Endosomal/recycling endosome	No interaction	Geldner et al., 2009	
Rab G3c	11R	Late endosome/vacuole	No interaction	Geldner et al., 2009	
RabF2b (ARA7)	2R	Late endosome/pre-vacuolar compartment	No interaction	Geldner et al., 2009	
RabF2a (Rha1)	7R	Late endosome/pre-vacuolar compartment	No interaction	Geldner et al., 2009	
gamma-TIP		tonoplast	No interaction	Hunter et al., 2007	
delta-TIP		tonoplast	No interaction	Hunter et al., 2007	
MEMB12	127R	Golgi	Association	Geldner et al., 2009	
VAMP721		Early endosome	Colocalization	This study	
SYP61		Trans-Golgi network	Colocalization	(Drakakaki et al., 2012; Hachez et al., 2014)	
AtG8a		Autophagosomes	No interaction	(Zhuang et al., 2017)	
PIP1;4	138R	Plasma membrane	No interaction	Geldner et al., 2009	
pIVD145-eqFP611		Mitochondria	No interaction	(Forner and Binder, 2007)	
GFP(S65T)-APX(36)		Peroxisomes	No interaction	(Forner and Binder, 2007)	
GFP-HDEL		ER	Association	VIB, Belgium	

		,	VAPYRIN-								
	ANK-GFP	VAP-GFP	RFP	RabD2b	RabC1	RabA5d	SYP61	MEMB12	RabA1g	RabF2a	eqFP611
ANK domain	1.000	1.000	1.000	1.000	1.000	1.000	0.011	0.000	0.000	0.000	0.000
VAP domain	1.000	1.000	1.000	1.000	1.000	1.000	0.144	0.000	0.000	0.000	0.000
VAPYRIN	1.000	1.000	1.000	1.000	1.000	1.000	0.388	0.001	0.000	0.001	0.000
RabD2b	1.000	1.000	1.000	1.000	1.000	1.000	0.569	0.001	0.000	0.001	0.000
RabC1	1.000	1.000	1.000	1.000	1.000	1.000	0.992	0.098	0.054	0.089	0.019
RabA5d	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.468	0.331	0.448	0.206
SYP61	0.011	0.144	0.388	0.569	0.992	1.000	1.000	0.953	0.821	0.898	0.412
MEMB12	0.000	0.000	0.001	0.001	0.098	0.468	0.953	1.000	1.000	1.000	1.000
RabA1g	0.000	0.000	0.000	0.000	0.054	0.331	0.821	1.000	1.000	1.000	1.000
RabF2a	0.000	0.000	0.001	0.001	0.089	0.448	0.898	1.000	1.000	1.000	1.000
eqFP611	0.000	0.000	0.000	0.000	0.019	0.206	0.412	1.000	1.000	1.000	1.000

Table S2. Statistical analysis of quantitative co-localization analysis.

Tukey HSD post-hoc test was performed to test for the degree of co-localization. Based on p-values, Two clear groups emerged: Group A: ANK-GFP, VAP-GFP, VAPYRIN-RFP, RabD2b, RabC1, and RabA5d Group B: MEMB12, RabA1g, RabF2a, and eqFP611 SYP61 takes an intermediate position.

ID	Assigned function	protein length	% of protein covered	Signal peptide	Predicted localisation	TM domain
B4 I	Nitrilase	281	98%	-	mitochondrial matrix	-
B7 I	TA20, anther-related	73	73%	pos. 28	vacuole	-
124 I	Unknown (NAM-like?)	166	17%	?	ER membrane	1
12711	PIP aquaporin	283	98%	-	plasma membrane	6
J1I	Copper-binding-like domain	108	54%	-	nembrane	1
J6I	LAT52	166	94%	pos. 20	extracellular	-
J8V	Microsomal signal peptidase	189	98%	-	plasma membrane	2
J 9I	PIP aquaporin	283	84%	-	plasma membrane	5
J17 I	VAMP (R-SNARE)	103	46%	?	ER membrane	1
J20 II	Vacuolar proton ATPase	164	100%	uncleavable	vacuolar membrane	4
J21 I	Microsomal signal peptidase	189	98%	_	plasma membrane	2
J24 I	Bacterial sequence	176	22%	?	-	1
J25 I	Hexa-ubiquitin	376	87%	-	cytoplasm	-
J29 I	Unknown	291	100%	pos 29	Extracellular	-
K7 I	GLP, rhicadhesin receptor	222	99%	pos. 22	cell wall	-
K9 I	Lesion-inducing protein	157	100%	pos. 22	plasma membrane	2 or 3
L2 I	TIP aquaporin	246	99%	pos. 39	plasma membrane	6
L4 I	Unknown (RING-domain)	218	92%	-	ER membrane	3
L11 I	LAT52	166	94%	pos. 20	extracellular	-
M2 I	Peptidase inhibitor	93	100%	-	cytoplasm	-
M4 I	PIP aquaporin	287	100%	-	plasma membrane	6
M22 I	Sucrase /ferredoxin-like	287	77%	-	cytoplasm	-
M24 I	VAMP-like SEC22 (R-SNARE)	62	27%	?	ER membrane	1

Table S3. List of interactor candidates identified by the split-ubiquitin screen

	RPKM values										
Feature ID		M1	M2	M3	M ave	c1	c2	c3	c ave	p-value*	M/c**
Peaxi162Scf00107g01117.1	VAMP721m	384	397	449	410	545	430	509	495	0.12	0.83
Peaxi162Scf00517g00424.1	VAMP721x	792	800	921	838	741	702	855	766	0.06	1.09
Peaxi162Scf00149g01112.1	VAMP721y	1349	1465	1798	1537	1957	1865	2099	1974	0.00	0.78
Peaxi162Scf00367g00010.1	VAMP721z	895	920	1028	948	1113	1076	1161	1117	0.00	0.85
Peaxi162Scf00047g01029.1	VAMP726a	0	0	0	0	0	0	0	0	1.00	n.d.
Peaxi162Scf00817g00123.1	VAMP726b	0	0	1	0	0	0	0	0	0.58	n.d.
Peaxi162Scf00125g00227.1	VAMP727	627	622	741	663	613	660	783	685	1.00	0.97
Peaxi162Scf00534g00007.1	VAMP724	115	88	88	97	113	95	78	95	1.00	1.02
Peaxi162Scf00643g00112.1	VAMP713	532	551	648	577	623	737	886	749	0.11	0.77
Peaxi162Scf00136g00229.1	VAMP711	309	323	379	337	336	399	476	404	0.38	0.83
Peaxi162Scf00091g00616.1	VAMP714a	276	323	366	322	315	276	359	317	0.82	1.02
Peaxi162Scf00091g00617.1	VAMP714b	178	215	230	208	210	181	226	206	0.85	1.01

Table S4. RNAseq data for 12 VAMP genes of *P. hybrida* in mycorrhizal roots vs. control roots

*Baggerley's test: M vs. c original values - FDR p-value correction

**Induction ratio mycorrhizal/control