MSK-HN1 Skull base tumor

HPV RNA ISH low-risk serotypes

HPV RNA ISH high-risk serotypes

HPV16 RNA ISH

HPV18 RNA ISH

100 µm

HPV high-risk RNA positive control

HPV low-risk strains: 6, 11, 40, 43, 44, 54, 69, 70, 71, 74 HPV high-risk strains: 16, 18, 26, 31, 33, 35, 39, 45, 51, 52, 53, 56, 58, 59, 66, 68, 73, 82

Supplementary Fig. 1 – RNA *in situ* hybridization (ISH) for human papilloma virus (HPV). RNA *in situ* hybridization (ISH) for human papilloma virus (HPV) low-risk and high-risk serotypes, as well as HPV16 and HPV18 strains, indicates that the skull base tumor from Patient MSK-HN1 was not associated with HPV. RNA ISH was performed once with appropriate controls in a Clinical Laboratory Improvement Amendments certified clinical laboratory.

Supplementary Fig. 2 – Immunohistochemistry staining of Patient MSK-HN1 samples. **a.** Immunohistochemistry staining for CD45 in the primary skull base tumor of Patient MSK-HN1 revealed a modest level of immune infiltration prior to any treatment. **b.** An additional tissue section of lung metastasis demonstrated no PD-L1 staining, with **c.** PD-L1 positive control. IHC staining was performed at least twice with appropriate controls in a Clinical Laboratory Improvement Amendments certified clinical laboratory.

Supplementary Fig. 3 – FACETS analysis of Patient MSK-HN1's skull base tumor reveals no significant copy number variations. The red line is the segmentation line showing copy number by chromosomal region, and the y-axis represents log copy number ratio, where 0 represents the diploid genome.

Supplementary Fig. 4 – Comparison of Patient MSK-HN1's skull base tumor's immune characteristics and tumors in the TCGA HNSCC dataset. The MSK-HN1 tumor is relatively lowly immune infiltrated compared to other HNSCC tumors, as measured by Immune Infiltration Score (IIS), T cell Infiltration Score (TIS), ESTIMATE ImmuneScore, CiberSort Absolute Score, CYT Score, and interferon-γ signaling (Reactome.org). The MSK-HN1 tumor had very low PD-L1 and PD-1 expression, consistent with **Fig. 1d**.

Supplementary Fig. 5 – H&E staining of formalin-fixed paraffin-embedded (FFPE) slides from Patient ACC_M9 tumor acquired prior to treatment. The adenoid cystic carcinoma histology was confirmed (by N.K.). Staining was performed once as part of clinical care in a Clinical Laboratory Improvement Amendments certified clinical laboratory.

Supplementary Fig. 6 – Immunoblot confirming the expression of MYB-NFIB fusion constructs. HEK293 cells were transfected with pcRNA6SL-MYB-NFIB fusion plasmids and cell lysates were collected after 48 hr. The lysates were blotted and probed with anti-MYB antibody. Data are representative of two independent experiments.

2.00-

Supplementary Fig. 7 - Solid tumors with gene fusion products that are predicted to bind patientspecific HLAs ("Fusion NeoAg" present) have lower leukocyte fraction and lymphocyte infiltration signature than solid tumors with a fusion gene present but without a predicted neoantigen that binds HLA ("Fusion NeoAg" = absent). Multi-variate linear regression analysis was performed on 5,825 samples across 30 cancer types from TCGA data adjusting for cancer type and mutational load. The boxes represent the median and interquartile range, the whiskers represent 1.5x the interquartile range, and dots indicate values beyond 1.5 IQR.

a

Supplementary Fig. 8 – **a.** Change in fusion neoantigens detected in melanomas treated with anti-PD-1 therapy from pre-therapy and on-therapy timepoints. **b.** Change in non-neoantigen fusions detected in melanomas treated with anti-PD-1 therapy from pre-therapy and on-therapy timepoints.

Supplementary Table 1 - Genetic alterations in Patient HNSC1. The gene fusion DEK-AFF2 and the reciprocal fusion AFF2-DEK are shown with the chromosomal coordinates of the breakpoints. SNVs (missense mutations) are also shown with their respective chromosomal coordinates.

Fusions

	Breakpoint 1	Breakpoint 2
DEK-AFF2	Chr 6: 18249882	Chr X: 147891400
AFF2-DEK	Chr X: 147744289	Chr 6: 18237747

SNV (missense mutations)

Gene	Nucleotide change	Amino Acid Change	Entrez Gene ID	Transcript ID	Chromosome	Start Position	Most common nonsilent mutation reported in COSMIC
SUV39H2	c.574T>G	p.S192A	79723	NM_001193424.1	10	14939241	R213fs*2 (9 cases, all occurred in clear cell renal cell carcinoma)
MTUS2	c.895G>C	p.A299P	23281	NM_001033602.2	13	29599700	E193K (3 cases in prostate adenocarcinoma, 1 in stomach adenocarcinoma)
PCSK6	c.998G>A	p.R333Q	5046	NM_002570.4	15	101933625	A302V (3 cases); R71Q (3 cases)
COX5A	c.163C>T	p.R55C	9377	NM_004255.3	15	75221511	D81N (3 cases)
NPIPB5	c.1991G>C	p.R664P	440345	NM_001135865.1	16	22546295	P485-A488delPPSA (10 cases, 3 of which are in HNSCC); F616C (5 cases in hematopoietic neoplasms)
LIG1	c.1493A>T	p.E498V	3978	NM_000234.2	19	48638967	D570E (4 cases in serous carcinoma)
ZNF460	c.1067G>A	p.R356Q	10794	NM_006635.3	19	57802976	E127K (4 cases)
OR7D4	c.350T>C	p.V117A	125958	NM_001005191.2	19	9325164	V49I (6 cases)
STAU1	c.345G>C	p.R115S	6780	NM_001322932.1	20	47768284	L181V (5 cases)
OTOP1	c.1793G>C	p.R598P	133060	NM_177998.1	4	4190576	L104_W106delLLW (38 cases, recurrent in HNSCC); L226fs*1 (6 cases, 5 in thyroid cancer)
OTOP1	c.1792C>G	p.R598G	133060	NM_177998.1	4	4190577	
OTOP1	c.1774C>G	p.P592A	133060	NM_177998.1	4	4190595	
DSPP	c.2017G>A	p.D673N	1834	NM_014208.3	4	88535831	Several inframe indels; D673N (6 cases)
COL14A1	c.890C>T	p.A297V	7373	NM_021110.3	8	121215960	R566Q (10 cases, none of which are in HNSCC); L793I (5 cases); T636M (5 cases)
Non-prote:	in coding SNVs						
GPRC5B	c.265C>T	None	51704	NM_001304771.1	16	19896652	
DCLK2	c.961+2T>C	None	166614	NM_001040261.4	4	151119257	

Supplementary Table 2 - SNV-derived peptides predicted to bind Patient HNSC1 HLAS. All possible 9-amino acid length peptide combinations that were predicted to bind significantly to patient-specific HLAs are shown (NetMHCpan 4.0, Rank <2%) (left). Since one neoantigen peptide can be predicted to bind to multiple HLAs, we generated a list of unique peptides (right). The mutated amino acid is indicated by a capital letter.

Gene	WT Pentide	MUT Pentide	HLA hinder	WT Rank (%)	MIT Rank (%)
COL1431	lfaigwknA	lfajouknV	C0401	7 5371	1 7033
COLIGAI	ilaigvkiik	riargvkiiv	D2001	7.5371	1.7933
COLIGAI	VKNAdVNEI	vknvdvnei	BSOUL	0.8639	1.0801
COL14A1	falgvknAd	falgvknVd	C1203	1.2	1
COX5A	efdaRwvty	efdaCwvty	A2601	0.6723	1.9058
COX5A	efdaRwvty	efdaCwvty	C0401	0.05	0.015
COX5A	efdaRwvty	efdaCwvty	B3501	2.5	1.2
COX5A	fdaRwvtyf	fdaCwvtyf	A2601	1.3	1.3
COX5A	fdaRwvtyf	fdaCwvtyf	C1203	0.7	0.6
COX5A	fdaRwvtyf	fdaCwvtyf	B3501	2.5	1.3
COX5A	fdaRwvtyf	fdaCwvtyf	C0401	1.2	1.7
LIG1	ktwleEggm	ktwleVgqm	C1203	3.6738	1.4143
LTG1	twleEcomi	twleVacmi	C0401	1 8116	1 3715
1101	cwichqgmi 	cwievqgmi 	00401	0.0746	1.3/1/
LIGI	WIEEddwil	WIEVqgmil	C0401	0.2/46	0.8927
LIGI	earktwieE	earktwleV	A2601	7	2
LIG1	earktwleE	earktwleV	C1203	13	1.6
LIG1	eEqgmilkq	eVqgmilkq	A2601	16	1.7
LIG1	twleEqgmi	twleVqgmi	C0401	1.8	1.2
LIG1	wleEqgmil	wleVqgmil	B3801	0.5	1.5
LIG1	wleEqgmil	wleVqgmil	C0401	0.175	0.6
MTUS2	Askeipskl	Pskeipskl	C1203	1.3	1.8
MICA	luntanaan	Dutapaga	D2E01		1.0
MUCA	invespssa	1FVCSpssa	B3501	22	0.7
MUC4	tpiHvtsps	tpipvtsps	B3501	0.6	0.5
MUC4	tplHvtsps	tplPvtsps	C0401	3.5	1.7
NPIPB5	eRmiisrhl	ePmiisrhl	B3501	10.7657	0.7124
NPIPB5	grfhpeRmi	grfhpePmi	B3801	0.8555	0.5429
NPIPB5	hpeRmiisr	hpePmiisr	B3501	2.9458	1.0847
NPIPB5	rfhpeRmii	rfhpePmii	C0401	0.443	0.1805
NDTDP5	rfhpePmii	rfhnePmii	C1203	1 8225	1 4074
0P7D4	TTIPERMITT	- THPERMITT	C1203	1.0330	1.42/0
OR/D4	avmayariv	aAmaydriv	C1203	1.///3	1.1533
OR7D4	dtfllaVma	dtfllaAma	A2601	2.6329	1.9769
OR7D4	gmdtfllaV	gmdtfllaA	A0201	0.1103	0.4718
OR7D4	laVmaydrf	laAmaydrf	C1203	1.9922	1.4779
OR7D4	laVmaydrf	laAmaydrf	B3501	0.7973	0.5256
OR7D4	tfllaVmav	tfllaAmav	B3501	1.8548	1.5468
08704	tfllaVmay	tflla∆mav	A2601	1 3856	1 6105
08704	oVmoudefu	o Amourda fur	C1 20 2	2.5050	1.0103
OR / D4	avmaydriv	aAmaydriv	01203	3.5	1.1
OR /D4	matillavm	matiliaAm	B3501	1./	0.9
OR7D4	tfllaVmay	tfllaAmay	C0401	2.5	1.4
OTOP1	fsifyRmha	fsifyPmha	C1203	2.4647	1.0555
OTOP1	ifyRmhaaa	ifyPmhaaa	C0401	6.1722	1.3124
OTOP1	mpfsifyRm	mpfsifyPm	A2601	0.9093	1.9852
OTOP1	mpfsifvRm	mpfsifvPm	B3501	0.0426	0.0954
00001	sifvRmhaa	sifyPmhaa	A0201	1 4724	1 058
omop1	aif. Dahaa	sifyPalaa	A0201	1.4724	1.050
OTOPI	sifykmnaa	sifyPmnaa	A2601	1.9683	1.2/85
OTOPI	sifyRmhaa	sifyPmhaa	C1203	1.5422	1.2836
OTOP1	yRmhaaasl	yPmhaaasl	A2601	5.0155	1.6443
OTOP1	yRmhaaasl	yPmhaaasl	B3501	3.99	0.0175
OTOP1	yRmhaaasl	yPmhaaasl	B3801	0.03	0.9608
OTOP1	vRmhaaasl	vPmhaaasl	C0401	0.6502	0.9436
OTOP1	vRmhaaasl	vPmhaaasl	C1203	0.3364	0.4647
07001	feifyPmba	feifyGmba	C1203	2 4647	1 7387
omop1	1511 yRillia	isiiyomma mafaifaon	C1203	2.404/	1.7307
DIOPI	mpisiiyam	mpisiiyGm	C1203	1.3200	1.6499
OTOP1	mpfsifyRm	mpfsifyGm	B3501	0.0426	0.0703
OTOP1	mpfsifyRm	mpfsifyGm	A2601	0.9093	0.8701
OTOP1	Rmhaaaslf	Gmhaaaslf	C0401	0.6938	1.795
OTOP1	sifyRmhaa	sifyGmhaa	A0201	1.4724	0.615
OTOP1	sifyRmhaa	sifyGmhaa	A2601	1.9683	1.3761
07001	sifuRmhaa	sifyGmbaa	C1203	1 5/00	1 1744
07001	JII JAMMIAA	srryounida	C1203	1.0422	1.1/00
OTOP1	ykuutaaasi	yGumadası	C1203	0.3364	0.0714
01.0b1	ykmnaaas1	yGmnaaas⊥	CU4U1	0.6502	1.5099
OTOP1	yRmhaaasl	yGmhaaasl	B3501	3.99	1.7778
OTOP1	ivvnlamPf	ivvnlamAf	B3501	1.0456	0.4401
OTOP1	ivvnlamPf	ivvnlamAf	C1203	0.9286	0.2542
OTOP1	ivvnlamPf	ivvnlamAf	A2601	0.8402	0.3307
OTOP1	lamPfsifv	lamAfsifv	B3501	0.0607	0.1994
00001	lamPfeify	lamAfgify	A2601	0.0007	0 6001
omon?	lampf 'C	lambfa 'C	A2001	0.2409	0.0221
01.0b1	LamPISITY	ramArsity	C1203	0.0457	0.3645
OLOBT	mPisifyrm	mAisifyrm	C1203	1.3206	0.1679
OTOP1	mPfsifyrm	mAfsifyrm	A2601	0.9093	0.4634
OTOP1	mPfsifyrm	mAfsifyrm	B3501	0.0426	0.3217
OTOP1	nlamPfsif	nlamAfsif	A2601	0.6079	0.8682
PCSK6	qRqqlasif	qQqqlqsif	B3801	0.6024	0.916
PCSK6	fevgikkGr	fevgikk0r	C0401	2 5	
DOOVE	Crealif	Orgalation	02001	2.5	
PCSA0	ardardeii	ðrdðrgs11	B30U1		0.5
STAUL	gayppRyfy	gayppSyfy	C0401	1.3205	1.0705
STAU1	gayppRyfy	gayppSyfy	A2601	0.3473	0.2725
STAU1	gayppRyfy	gayppSyfy	B3501	0.1777	0.0943
STAU1	gayppRvfv	gayppSvfv	C1203	0.0386	0.0341
STAIL	ggavppPuf	ggavppSvf	C1203	1 5040	1 4200
QTAII]	22015501T	32~15501T	C1203	2.0002	1 0144
JIMUL	TAATAAbbey	- AAaybbay	C1203	3.4646	1.9164
STAUl	yppRyfypf	yppSyfypf	B3501	0.3753	0.1695
	yppRyfypf	yppSyfypf	A2601	2.71	1.6
STAU1					
STAU1 ZNF460	shlkqheRi	shlkqheQi	B3801	0.4039	0.2099
STAU1 ZNF460 ZNF460	shlkqheRi Rihtgekpf	shlkqheQi Qihtgekpf	B3801 B3501	0.4039	0.2099

Unique Pe	ptides
COL14A1	lfaigvknV
COL14A1	vknVdvnel
COL14A1	faigvknVd
COX5A	efdaCwvty
COX5A	fdaCwytyf
LIG1	ktwleVggm
LIG1	twleVgqmi
LTG1	wleVagmil
LIG1	earktwleV
LIGI	eVaamilka
MTUS2	Pskeipskl
MUC4	1 Pvt spesa
MUCA	tplButepe
NDTDD5	eDmijerhl
NDTDB5	crfhpeDmi
NDTDD5	bpeDmijer
OP7D4	almaudafu
OR7D4	dAmayur IV
OR7D4	duiiiaAma
OR7D4	Jahrender
OR /D4	TaAmayori
OR /D4	tillaAmay
OR /D4	matillaAm
OTOPI	isiiyPmna
OTOPI	iiyPmnaaa
OTOPI	mpisityPm
OTOPI	sifyPmhaa
OTOPI	yPmhaaasi
OTOP1	fsifyGmha
OTOPI	mpisifyGm
OTOP1	Gmhaaaslf
OTOP1	sifyGmhaa
OTOP1	yGmhaaasl
OTOP1	ivvnlamAf
OTOP1	lamAfsify
OTOP1	mAfsifyrm
OTOP1	nlamAfsif
PCSK6	gQqglgsif
PCSK6	feygikkQr
PCSK6	Qrqglgsif
STAU1	gayppSyfy
STAU1	ggayppSyf
STAU1	rggayppSy
STAU1	yppSyfypf
ZNF460	shlkqheQi
ZNF460	Qihtgekpf

HLA-A*02:01 peptides are highlighted

Supplementary Table 3 - Fusion-derived peptides predicted to bind Patient HNSC1 HLAS. All possible 9-amino acid length peptide combinations surrounding the fusion breakpoints of DEK-AFF2 or AFF2-DEK are listed with the predicted patient-specific HLA binding values (NetMHCpan 4.0).

		HLA-A0201	HLA-A2601	HLA-B3501	HLA-B3801	HLA-C0401	HLA-C1203
Peptide	Fusion	Rank (%)					
FTILQTSEP	AFF2-DEK	28.3913	15.7193	21.7468	44.4444	42.1379	13.6372
TILQTSEPP	AFF2-DEK	38.5882	61	38.9	68.125	70.625	61.9048
ILQTSEPPK	AFF2-DEK	25.5652	43.1818	42.8571	69.375	19.8059	45.2794
LQTSEPPKK	AFF2-DEK	33.8519	35.2632	38.2	35.72	23.329	35.9632
QTSEPPKKT	AFF2-DEK	43.8	19.9918	42.7143	42.4167	48.3158	24.8581
TSEPPKKTA	AFF2-DEK	40.5	36.5294	16.8542	32.7143	12.8303	13.8082
SEPPKKTAK	AFF2-DEK	49.2857	14.6642	21.3165	30.7111	14.7184	28.6823
EPPKKTAKR	AFF2-DEK	61.7857	10.3687	13.388	63.5	54.726	34.7905
EDKESEEEV	DEK-AFF2	47.625	23.1791	24.549	18.6382	36.2979	57.1721
DKESEEEVS	DEK-AFF2	96.6667	92.5	69.1667	56.6667	89.1667	92.7778
KESEEEVSL	DEK-AFF2	11.0349	13.2667	4.5523	0.7586	5.4378	13.8115
ESEEEVSLP	DEK-AFF2	68	44.6667	41.5	64	78.6842	73.0769
SEEEVSLPS	DEK-AFF2	53.7037	40.0769	21.519	21.4771	44.875	64.6429
EEEVSLPSD	DEK-AFF2	95	85	55.9091	49.5	84.6875	95.8333
EEVSLPSDP	DEK-AFF2	83	71.25	42.7143	32.2	84.0625	95
EVSLPSDPS	DEK-AFF2	55.5263	11.6012	17.5443	54.375	66.7188	51.4021

Peptide with predicted significant binding is highlighted Peptide in which Patient MSK-HN1 autologous T cells have reactivity towards

Supplementary Table 4 - Primer sequences for cloning the DEK-AFF2 fusion. The cloning strategy is shown with the appropriate primer pairs.

Primer name	Sequence	Comments	Template
DEK-N-term			
DEK-1F	CACACA-GAATTC-ATGTCCGCCTCGGCCCCTGCTGC	PCR with DEK-1F + DEK-2R, digest with EcoRI and BamHI	Patient MSK-HN1 cDNA (from FFPE tumor RNA)
DEK-2R	CACACA-GGATCC-CTCCTCTTCACTTTCTTTATCTTCATC		
DEK-AFF2			
DEK-1F	CACACA-GAATTC-ATGTCCGCCTCGGCCCCTGCTGC	PCR with DEK-1F + DEK-1R, digest with EcoRI and BsmBI	Patient MSK-HN1 cDNA (from FFPE tumor RNA)
DEK-1R	CACACA-CGTCTCC-TTAC-CTCCTCTTCACTTTCTTTATCTTCATC		
AFF2-1F	CACACA-CGTCTCC-GTAAGCCTTCCCAGTGATCCAAG	PCR with AFF2-1F + AFF2-2R, digest with BsmBI and BamHI	Patient MSK-HN1 cDNA (from FFPE tumor RNA)
AFF2-2R	CACACA-GGATCC-AGTGGGCCGTGGACGGGCTTTCTC		

Supplementary Table 5 - TCR β clone frequencies in patient tissues pre- and on- treatment.

GLIPH group name	CDR3s	CRG_Score	Motifs
CRG-SSPRGNEQF	10	2.01E-13	PRGN(7, 0.001)

			Frequency		
Peptide		Pre-treatment	On-therapy PBMCs		
i optido		tumor	0	r inorapy r Bineo	
		Mar-16	Mar-17	Jun-17	Jul-18
SSPRGNEQF	2.70%	0	0.00326%	0.0016%	0.0000%
SSPRGDEQF	0.0007%	0	0.0000%	0.0016%	0.00178%

Pre-treatment and on-therapy refer to pembrolizumab treatment

Supplementary Table 7 - Alternative Splicing-derived peptides predicted to bind Patient MSK-HN1 HLAs. Alternative splicing events with high PSI (percentage spliced inclusion; indicating the percentage of transcripts with the event) of 10% or greater are shown. The 9-amino acid length peptide combinations of these alternative splicing events that were predicted to bind

significantly to patient-specific HLAs are shown (NetMHCpan 4.0, Rank <2%).

Gene	PSI.median_a	PSI.mean_annc	PSI.sum
MROH2A	0.4689655	0.408817635	0.0535433
OBSCN	0.2368421	0.233711048	0.0027372
MROH2A	0.2222222	0.182825485	0.0173228
ICA1L	0.2195122	0.225402504	0.020362
0C90	0.2028986	0.175438596	0.0200573
EPHB6	0.1612903	0.156895128	0.0096525
MED12L	0.122449	0.080163599	0.0017406
CARD16,CASP1,CASP1P2	0.1142857	0.067523584	0.005165
RP11-274B21.1	0.1044776	0.105315948	0.007014
RBM19	0.1034483	0.104675506	0.0046332

Gene	AS Peptide	HLA binder	Rank (%)
MED12L	QTMPQGYTMY	HLA-A26:01	0.1164
MED12L	QTMPQGYTM	HLA-B35:01	0.2933
MED12L	QTRPFQQTM	HLA-C12:03	0.1609
MROH2A	IAACNLAAL	HLA-B35:01	2.1569
MROH2A	IAACNLAAL	HLA-C12:03	0.3414

Peptide with predicted significant binding is highlighted

Supplementary Table 8 - Predicted binding of MYB-NFIE / NFIB-MYB / MYBL1-NFIB fusion-derived peptides in ACC tumors. INTEGRATE-Neo results combining HLAminer results (HLA typing from RNA-seq data) and identified fusion peptides for binding affinity prediction (NetHEC 4.0) (Column E). During preparation of the manuscript, NetMECpan 4.0 was released and a comparison of the predicted binding is shown (Column F). In addition, since some HLA sequences are highly homologous, NetMHCpan 4.0-predicted affinities to HLA-A*02:01 are also shown (Column G). A list of unique peptides is provided (right).

Patient	Fusion	Peptide sequence	HLA	HLA Affinity (nM) - NetMHC4	NetMHCpan 4 (% Rank)	NetMHCpan 4 for HLA-A0201 (% Rank)	Unique MYB-NFIE	3 / NFIB-MYB / MYBL1-NFIB pe	ptides predicted to bind HLA-A*(
ACC_M1	NFIB>>MYB	MMYSPICLTQT	HLA-A02:03	414.87	3.7205	5.3193			
ACC_M1	MYB>>NFIB	QQVLPSWYL	HLA-A02:02	252.74	1.8534	1.9713	Sequence	Fusion	
ACC_M1	MYB>>NFIB	QQVLPSWYL	HLA-A02:06	11.91	1.8534	0.4054	QQVLPSWYL	MYB-NFIB	
ACC_M1	MYB>>NFIB	ELKGQQSWYL	HLA-A02:02	440.89	6.7919	11.4535	ELKGQQSWYL	MYB-NFIB	
ACC_M1	NFIB>>MYB	YSPICLTQFL	HLA-A02:02	419.26	17.3021	24.7792	QQLRICDWTM	MYB-NFIB	
ACC_M1	MYB>>NFIB	QQLRICDWTM	HLA-A02:06	260.1	6.4577	14.2117	TLQFIDSLRI	MYB-NFIB	
ACC_M9	MYB>>NFIB	TLQFIDSLRI	HLA-A02:02	264.35	2.6228	2.2614	LQFIDSLRI	MYB-NFIB	
ACC_M9	MYB>>NFIB	LQFIDSLRI	HLA-A02:06	170.89	1.1201	2.9587	LQFIDSSWYL	MYB-NFIB	
ACC_M9	MYB>>NFIB	SLRICDWTM	HLA-A02:16	115.26	5.6458	5.0656	FIDSSWYL	MYB-NFIB	
ACC_M9	MYB>>NFIB	LQFIDSSWYL	HLA-A02:01	17.62	1.4432	1.4432	QFIDSSWYL	MYB-NFIB	
ACC_M9	MYB>>NFIB	LQFIDSSWYL	HLA-A02:02	16.08	1.6007	1.4432	SLPFSPSQL	MYB-NFIB	
ACC_M9	MYB>>NFIB	LQFIDSSWYL	HLA-A02:03	180.74	4.0551	1.4432	SQLRICDWTM	MYB-NFIB	
ACC_M9	MYB>>NFIB	LQFIDSSWYL	HLA-A02:06	5.07	0.5295	1.4432	SLASPLQLRI	MYB-NFIB	
ACC_M9	MYB>>NFIB	FIDSSWYL	HLA-A02:11	188.14	1.0686	1.0378	LQLRICDWTM	MYB-NFIB	
ACC_M9	MYB>>NFIB	FIDSSWYL	HLA-A02:12	43.41	1.0009	1.0378	SLASPLQSWYL	MYB-NFIB	
ACC_M9	MYB>>NFIB	FIDSSWYL	HLA-A02:16	32.27	1.2373	1.0378	LASPLQSWYL	MYB-NFIB	
ACC_M9	MYB>>NFIB	QFIDSSWYL	HLA-A02:17	192.27	0.2664	1.3362	PLQSWYLG	MYB-NFIB	
ACC_M9	NFIB>>MYB	FLHQQQFL	HLA-A02:02	286.14	1.7123	2.4742	SLASPLQPT	MYB-NFIB	
ACC_M9	NFIB>>MYB	FLHQQQFLNT	HLA-A02:03	389.32	4.4795	5.4084	PLQPTQPQA	MYB-NFIB	
ACC_M9	MYB>>NFIB	SLPFSPSQL	HLA-A02:02	72.74	0.6031	1.4913	ETLQFIDSLR	MYB-NFIB	
ACC_M9	MYB>>NFIB	SLPFSPSQL	HLA-A02:03	27.08	0.6352	1.4913	AETLQFIDSL	MYB-NFIB	
ACC M9	MYB>>NFIB	SQLRICDWTM	HLA-A02:06	159.29	4.3985	8.3925	LOFIDSSWY	MYB-NFIB	
ACC M9	MYB>>NFIB	SLPFSPSQL	HLA-A02:11	381.8	0.8647	1.4913	AETLOFIDSSW	MYB-NFIB	
ACC P11	MYB>>NFIB	SLASPLOLRI	HLA-A02:01	421.08	0.894	0.894	SLPFSPSQLR	MYB-NFIB	
ACC P11	MYB>>NFIB	SLASPLOLRI	HLA-A02:02	17.15	0.5527	0.894	LPFSPSQL	MYB-NFIB	
ACC P11	MYB>>NFIB	SLASPLOLRI	HLA-A02:03	28.72	0.3469	0.894	AETLOFIDSS	MYB-NFIB	
ACC P11	MYB>>NFIB	LOLRICOWTM	HLA-A02:06	103.75	9.0628	14.3081	SLRICDWTM	MYB-NFIB / MYBL1-NFIB	
ACC P11	MYB>>NFIB	SLASPLOSWYL	HLA-A02:01	96.81	0.9213	0.9213	MOLRICDWTM	MYBL1-NFIB	
ACC P11	MYB>>NFIB	SLASPLOSWYL	HLA-A02:02	17.99	0.6348	0.9213	ISDMOSWYL	MYBL1-NFIB	
ACC P11	MYB>>NFIB	LASPLOSWYL	HLA-A02:06	227.85	10.8546	14.1418	DMOSWYLG	MYBL1-NFIB	
ACC P11	MYB>>NFIB	PLOSWYLG	HLA-A02:11	264.27	83.5714	80	IVLRICDWTM	MYBL1-NFIB	
ACC P11	MYB>>NFIB	SLASPLOPT	HLA-A02:01	358.35	1.4285	1.4285	VLRICDWTM	MYBL1-NFIB	
ACC P11	MYB>>NFIB	SLASPLOPT	HLA-A02:02	102.89	1.1757	1.4285	KRIPSSWYL	MYBL1-NFIB	
ACC P11	MYB>>NFIB	SLASPLOPT	HLA-A02:03	20.61	0.604	1.4285	MMYSPICLTOT	NFIB-MYB	
ACC P11	MYB>>NFIB	SLASPLOPT	HLA-A02:06	149.34	1.5454	1.4285	YSPICLTOFL	NFIB-MYB	
ACC P11	MYB>>NFIB	SLASPLOPT	HLA-A02:11	21.46	0.8618	1.4285	FLHOOOFL	NFIB-MYB	
ACC P11	MYB>>NFTB	PLOPTOPOA	HLA-A02;16	171.36	8.4943	6.0986	FLHOOOFLNT	NFTB-MYB	
ACC P13	MYBL1>>NFTB	MOLETCOWTM	HLA-A02:06	45.44	5.866	10.7078	ASPTATTLK	NFTB-MYB	
ACC P13	MYBL1>>NFTR	ISDMOSWYL	HLA-A02:06	319.32	2,1031	3.4677	EAASPTATILK	NFIB-MYB	
ACC P13	MYBL1>>NFTR	DMOSWYLG	HLA-A02:11	196.4	76.6667	78	GEAASPTATI	NFIB-MYB	
ACC P13	MYBL1>>NFTB	TVLRICDWTM	HLA-A02:06	424.18	11.5055	12.5907	EAASPTATT	NFTB-MYB	
ACC P13	MYBL1>>NFTR	VLRICDWTM	HLA-A02:11	364.85	6.5228	6.1286	SPOTSOFL	NFIB-MYB	
ACC P13	MYBL1>>NFTR	VLRICDWTM	HLA-A02:16	264.36	7.1899	6.1286	SSPOTSOFL	NFIB-MYB	
ACC P14	MYB>>NFIB	SLASPLOSWYL	HLA-A02:02	17.99	0.6348	0.9213			
ACC P14	MYB>>NFTB	LASPLOSWYL	HLA-A02:06	227.85	10.8546	14.1418			
ACC P14	MYB>>NFTB	PLOSWYLG	HLA-A02:11	264.27	83.5714	80			
ACC P15	MYBL1>>NFTB	SLRICDWTM	HLA-A02:16	115.26	5.6458	5.0656			
ACC P15	MVBL1>>NFTB	KRIDSSWVI.	HLA-A02:06	254 21	1 0669	2 4367			
ACC_M18	MYB>>NFTB	SLASPLOLET	HLA-A02:01	421.08	0.894	0.894			
ACC_M19	MYB>>NETP	LOLRICOWTM	HI.A-A02:06	103 75	9.0628	14 3081			
Pit0	*** D < < NE TD	PARTCONTR.		200.10	2.0000	11.0001			

QQVLPSWYL	MYB-NFIB
ELKGQQSWYL	MYB-NFIB
QQLRICDWTM	MYB-NFIB
TLQFIDSLRI	MYB-NFIB
LQFIDSLRI	MYB-NFIB
LQFIDSSWYL	MYB-NFIB
FIDSSWYL	MYB-NFIB
QFIDSSWYL	MYB-NFIB
SLPFSPSQL	MYB-NFIB
SQLRICDWTM	MYB-NFIB
SLASPLQLRI	MYB-NFIB
LQLRICDWTM	MYB-NFIB
SLASPLQSWYL	MYB-NFIB
LASPLQSWYL	MYB-NFIB
PLQSWYLG	MYB-NFIB
SLASPLQPT	MYB-NFIB
PLQPTQPQA	MYB-NFIB
ETLQFIDSLR	MYB-NFIB
AETLQFIDSL	MYB-NFIB
LQFIDSSWY	MYB-NFIB
AETLQFIDSSW	MYB-NFIB
SLPFSPSQLR	MYB-NFIB
LPFSPSQL	MYB-NFIB
AETLQFIDSS	MYB-NFIB
SLRICDWTM	MYB-NFIB / MYBL1-NFIB
MQLRICDWTM	MYBL1-NFIB
ISDMQSWYL	MYBL1-NFIB
DMQSWYLG	MYBL1-NFIB
IVLRICDWTM	MYBL1-NFIB
VLRICDWTM	MYBL1-NFIB
KRIPSSWYL	MYBL1-NFIB
MMYSPICLTQT	NFIB-MYB
YSPICLTQFL	NFIB-MYB
FLHQQQFL	NFIB-MYB
FLHQQQFLNT	NFIB-MYB
ASPTATILK	NFIB-MYB
EAASPTATILK	NFIB-MYB
GEAASPTATI	NFIB-MYB
EAASPTATI	NFIB-MYB
SPOTSOFT.	NETB-MVB
01 810 81 1	MI 10 1110

HLA-A*02:01 peptides are highlighted

Peptide in which Patient ACC_M9 autologous T cells have reactivity towards

Supplementary Table 9 - Primer sequences for cloning MYB-NFIB / NFIB-MYB fusions. The cloning strategy is shown with the appropriate primer pairs.

Primer name	Sequence	Comments	Template
MYB-N-term			
MYB-1F	CACACA-CGTCTC-GAATTC-ATGGCCCCGAAGACCCCCGGCACAG	PCR with MYB-1F + MYB-6R, digest with BsmBI	ACC_M9 cDNA (from fresh frozen tumor RNA)
MYB-6R	CACACA-CGTCTC-GGATCC-AGAATCTATAAATTGGAGTGTT		
MYB-NFIB Fusion 1			
MYB-1F	CACACA-CGTCTC-GAATTC-ATGGCCCGAAGACCCCCGGCACAG	PCR with MYB-1F + MYB-3R, digest with BsmBI	ACC_M9 cDNA (from fresh frozen tumor RNA)
MYB-3R	TGTGTG-CGTCTCA-AGAATCTATAAATTGGAGTGTT		
NFIB-4F	CACACA-CGTCTCA-TTCTCTGAGGATTTGTGACTGG	PCR with NFIB-4F + NFIB-2R, digest with BamHI	ACC_M9 cDNA (from fresh frozen tumor RNA)
NFIB-2R	TGTGTG-GGATCC-GTTGCTTGTTTCTGCTTGAAGG		
MYB-NFIB Fusion 2			
MYB-1F	CACACA-CGTCTC-GAATTC-ATGGCCCGAAGACCCCGGCACAG	PCR with MYB-IF + MYB-8R, digest with BsmBI	ACC_M9 cDNA (from fresh frozen tumor RNA)
MYB-8R	CACACA-CGTCTC-GGATCC-GCCCAGGTACCAGGA-AGAATCTATAAATTGGAGTGTT		
MYB-NFIB Fusion 3		DOD with MUD 10 . MUD OD direct with Dept	ACC MO -DNA (from fromb from to born DNA)
MIB-IF		PCR WITH WIB-IF + WIB-2R, digest with BSMBI	ACC_M9 CDNA (IFOM IFESH IFOZEN CUMOF RNA)
MIB-2R	IGIGIG-CGICICA-ICAG-CIGCGAGGAGAGAGAGGGIAG		
NET D - 3 F	CA CA CA _ COTOTO A _ CTCA GCA TTTTCTCA CTCCA CC	DCP with NETR-3E + NETR-2P digest with Pamur	ACC M9 (DNA (from fresh frozen tumor PNA)
NETB-2D		For with Wrib SF (Wrib ZK, digest with baunt	Rec_M9 CDNR (110m 11eBh 1102eh cumoi RNR)
AT LD MA			
NFIB-MYB Fusion 7			
NFIB-6F	CACACA-CGTCTC-GAATTC-ATGATGTATTCTCCCCATCTGTCTCACTCAG-ACACAGAACCACACACGAGCTAC	PCR with NFIB-6F + MYB-1R, digest with BsmBI	ACC M12 cDNA (from fresh frozen tumor RNA)
MYB-1R	TGTGTG-CGTCTC-GGATCC-CATGACCAGCGTCCGGGCTGAGA	,	
MYB-NFIB Fusion 8			
MYB-1F	CACACA-CGTCTC-GAATTC-ATGGCCCGAAGACCCCGGCACAG	PCR with MYB-1F + NFIB-6R, digest with BsmBI	ACC_M12 cDNA (from fresh frozen tumor RNA)
NFIB-6R	CACACA-CGTCTC-GGATCC-GCCCAGGTACCAGGACTGCAAGGGGCTCGC		
MYB-NFIB Fusion 9			
MYB-1F	CACACA-CGTCTC-GAATTC-ATGGCCCGAAGACCCCGGCACAG	PCR with MYB-1F + NFIB-7R, digest with BsmBI	ACC_M12 cDNA (from fresh frozen tumor RNA)
NFIB-7R	CACACA-CGTCTC-GGATCC-GTCCCACATATCGATTGGCTTGAGATGTGCCTGAGGCTGTGTAGG-CTGCAAGGGGCTCGC		