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Response to Reviewers: Dear GigaScience Editorial Office,

Thank you for opportunity to submit a revised version of the manuscript GIGA-D-18-
00198 that addresses the points raised by the two reviewers. Following the
constructive comments and suggestions, we have made several major improvements
to the manuscript, including:
-The reviewers had comments about the dependencies between steps, as well as
whether steps worked on single samples or a cohort of samples. To help answer these
questions, we have added a diagram summarizing each pipeline to the supplementary.
-We have added extensive benchmark metrics for two pipelines, dnaseq and
tumour_pair.
-We have added documentation on how to run GenPipes on a cloud platform on our
website and now referenced it in the manuscript.
-GenPipes is now registered in the SciCrunch database under the RRID SCR_016376.
The RRID has been included in the revised manuscript under the ‘Availability and
requirements’ section.
-We have re-organized the text a bit to better explain the unique features of GenPipes

See below for our point-by-point response to the reviewers. New text that has been
added is shown in red in the revised manuscript.

Response to the Reviewers:
  Reviewer #1: The authors present in this manuscript both a new workflow
management system (GenPipe), as well as a set of bioinformatics pipelines that are
built to run on this system.  The authors contribution is likely be of interest to many
genome centres and bioinformaticians, who wish to leverage existing pre-built and
tested pipelines.  The manuscript is clear and well written and the source code is well
structured, extensive, and is well documented. The developers have also taken steps
to ease installation and configuration issues that might occur when trying to install the
software in other environments.
  However, I have reservations regarding the structure and content of the manuscript.  I
find it lacks detail and analysis that would convince a reader to adopt their system, both
with regards to GenPipe itself, as well as the pipelines. This is unfortunate as I think
the authors have provided a large contribution to the field in making available their
resources.
 We thank the reviewer for evaluating the manuscript and for his positive view of our
contribution to the bioinformatics community. We have now re-organized the text a bit
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to better explain the unique features of GenPipes and have added more information to
the manuscript that should provide the users with a better overview of its advantages
(see below).
Major points:
  1. The authors only provide a superficial comparison to existing systems.  A more
detailed analysis of why new pipeline developers should use GenPipe over an
alternatives?  What distinguishes this as a WMS from SnakeMake for example?  From
what I can see in the manuscript there are several implementation details within
GenPipe that appear sub-optimal, which I'll elaborate on in the points below.

In our original submission, we attempted to provide a comparison of GenPipes to other
available WMSs. While far from exhaustive, we had compared GenPipes to 18 popular
WMSs by looking at 9 different features and 9 different pipelines (Table 1). In the
revised submission, we have added SnakeMake to the WMS list and included 3 more
features suggested by reviewer #2 (see below). We have also added a detailed
workflow for each pipeline (Figure 3 and S1-14) and have added new benchmarking
metrics for some of the pipelines. We also included estimate resource usage for each
pipeline across different servers (Table S1). We have also moved the description of the
unique features of GenPipes to the Result section of the manuscript. We think that this
new information will hopefully give potential users a better idea of how GenPipes
compares to some of the existing frameworks available and its advantages.
  2. I would also like to see a proper analysis for each pipeline (can be provided in
supplemental information) describing comparisons to existing pipelines in terms of
accuracy, resource usage, runtime stats, etc.

We agree with the reviewer that benchmarking the individual pipelines for accuracy,
resource usage and runtime statistics is important. Along those lines, we have added
benchmarks for several pipelines to the Supplementary Material. In terms of resource
usage and runtime statistics, it has been our experience that these metrics vary widely
depending on system hardware, software versions and sample sequencing depth.
However, we agree that a ballpark estimate of these resources would be useful for the
user and have added Table S1.

In terms of accuracy, it is important to remember that GenPipes is a framework that is
built around open source, third party tools that are available to the scientific community.
Accuracy is not as easily assessed in certain fields due to the lack of a good quality
“truth” set to benchmark against. Generally, we have tried to model GenPipes pipelines
following large scale projects like GATK best practices SOPs and ENCODE and have
relied on public benchmarking, in addition to our own.
   Minor points:
  1. Introduction: "Such solutions are flexible and can help in pipeline implementation but
do not provide robust standardized pipelines which are ready for production-scale
analysis."  In my experience, it's simply not true that WMS solutions are not suitable for
production scale analysis. There are many examples of people doing exactly this, and
moreover I've built several myself which are run multiple times every day without issue.
 In my experience they can work very reliably, and ability to tolerate and resume from
errors is easy to code in.  It is also unclear what the authors mean by standardisation in
this context.  I'd request that the authors either justify this point and provide concrete
examples of exactly what the source of the perceived issues are, or remove this
sentence.

We agree with the reviewer that the sentence is not delivering the idea we intended.
The sentence has been edited in the manuscript to highlight the fact that not all WMSs
come with pre-built pipelines that are ready for use. We agree with the reviewer that
many WMSs are robust and powerful. We are simply trying to appeal to both the
advanced user with GenPipes’s WMS and the novice user with the pre-built and tested
pipelines.

The sentence now reads:
“Such solutions are flexible and can help in pipeline implementation but rarely provide
robust pre-built pipelines which are ready for production analysis.”
 
2. Introduction: "These are useful for specific applications but can be challenging to
implement, difficult to modify or scale-up. They have also rarely been tested on multiple
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computing infrastructures."  This seems too strong a statement.  In some cases this
might be true but there are many examples of robust pipelines that efficiently leverage
data centre hardware.

We agree with the reviewer that the statement might be generalized beyond context.
We have edited the text to explicitly prevent the statement from applying to all
pipelines.

The sentence now reads:
“These are useful for specific applications but can sometimes be challenging to
implement, difficult to modify or scale-up.”
  3. Introduction: "GenPipes has been tested, benchmarked ...".  It is not clear whether
the "testing and benchmarking" refers to the pipelines or the WMS itself.  This should
be clarified. 
Both GenPipes’s pipelines and the WMS have been tested extensively. The pipelines
have been benchmarked and have been used to process thousands of samples. The
WMS has been stress-tested and adapted to different computing infrastructure and is
currently run on at least 6 super computers that we help maintain. We have modified
the text to clarify this.

The sentence now reads:
“GenPipes’ WMS and pipelines have been tested, benchmarked and used extensively
over the past four years.”
 4. Schedulers: Ideally, GenPipes should offer the ability to implement scheduling via
DRMMA which would increase the potential sites that could potentially run genpipe.
 For example, currently any data centres running Platform LSF could not use genpipe
but via4 DRMMA this would be possible.

We thank the reviewer for his suggestion. We generally like to minimize the number of
layers between GenPipes and the system it is running on, and did not consider
DRMAA previously. We have added the DRMAA scheduler to our potential future
projects and have mentioned it in the discussion.
  5. Job dependencies: I have reservations that the approach taken here is optimal.  If I
understand correctly, job dependencies are setup using the selected scheduler and all
jobs, across steps, are launched at the same time.  I suspect for very large pipelines
containing many thousands jobs (not uncommon) this would put an undue burden on
the scheduler and therefore would not scale very well.  Could the authors elaborate on
this point and highlight details such as what happens when a pipeline fails?  Are
existing jobs explicitly terminated?  Or somehow left running and continue after the
pipeline is resumed?

We agree with the reviewer that this feature may be optimized and have been working
on this for a future GenPipes release. It is not ready yet, as we would like to optimize
and test all supported schedulers before releasing the new feature. The current
process works by creating the full script which is communicated to the scheduler.  This
approach has been initially chosen for its low level of complexity and reproducibility;
the script is readable and editable by a minimally trained user and can also be re-run
later on. This also avoid having to generate local processes which would need to stay
in active mode in order to monitor the job submission process. In order to help
monitoring the pipeline progress, GenPipes includes a script (logReport.pl) that
generates a report of the current status of the pipeline. We have also included a JSON
log file system that could be used to develop a local web-portal displaying the pipeline
job status in real time.
We have been using GenPipes on hundreds of samples every day, submitting
thousands of jobs, and has not run into any issues with our compute providers so far.
However, we do intend to optimize the process by using job arrays.

In terms of what happens when the pipeline fails, we have added a section to the text
under “Running GenPipes” to elaborate on this point:

“… Once launched, the jobs are sent to the scheduler and queued. As jobs complete
successfully, their dependent jobs are released by the scheduler to run. If a job fails, all
its dependent jobs are terminated and an email notification is sent to the user. When
GenPipes is re-run, it will detect which steps have successfully completed, as
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described in section ‘Smart relaunch features’, and skip them but will create the
command script for the jobs that were not completed successfully...”

 6. Configuration Files: "Configuration files, also referred to as "ini" files, are provided
among the  arguments of the GenPipes command.".  The authors should change the
wording here.  "Ini" is a legacy windows-based configuration file format.  I'm not asking
for the authors to change the configuration format used but it would be useful to have
some justification for this unusual choice.  Alternatives, like "yaml" for example allow
for stricter and richer structuring and is therefore much easier to parse and in turn
normally results in less buggy code.
  
We agree with the reviewer that many file configuration formats exist and that some
might be considered more optimal than the legacy ini file format. However, we chose
the ini format for its readability and the ease of use of the ini schema (section, key and
value). It can be edited manually with any text editor without the need to worry about
syntax or indentation which is easier for standard analysts using GenPipes for their
analysis. Additionally, the python language offers a standard library (configParser) that
is made to easily integrate this standard configuration format.
   Reviewer #2: The manscript presents GenPipes, a Python-based framework for
defining and executing data analysis workflows.
 GenPipes is based on a handful of Python classes that can be inherited and
implemented to achieve a formal and executable description of a workflow in terms of
steps. During execution, steps are specialized to jobs that perform concrete operations
on input files.
 For me, the most important, and definitely valuable addition of this work is the
comprehensive collection of well-tested workflows covering the most important
applications of sequencing.
 In general, I think this should be emphasized more, at the expense of removing some
of the weaker aspects of the paper. I will outline this below.

 # Major Comments
 * The manuscript argues that a major advantage of GenPipes is the rich collection of
production-ready workflows that are delivered with the system. The list of workflows is
indeed impressive, it should be mentioned though that both Snakemake and Nextflow
also provide (community-maintained) collections of tested workflows,
like github.com/snakemake-workflows, nf-core.github.io and sequana. I agree though
that it might very well be that these are still less mature (except sequana), as they are
probably newer.

We thank the reviewer for seeing value in our growing collection of pipelines. In our
manuscript, we avoided reference to community-maintained workflows. While
community-maintained workflows are a great testament to the usefulness of a WMS,
they are hard to keep track of and evaluate. GenPipes supports community-maintained
workflows as well, however, those too have not been mentioned in the manuscript. The
pipelines that have been mentioned are pipelines that have been validated and are
maintained by the tool authors, which we think is an important distinction.

We have made this clear in the text, as follows:
“It is important to note that GenPipes, as well as several other WMSs, have
community-supported pipelines, however, those have not been included in the
comparison.”

 * The manuscript claims that GenPipes supports cloud execution, but I cannot find a
scheduler for this purpose in the list of schedulers on page 4. Also, the feature table
says that cloud support is pending.

Yes, GenPipes supports cloud execution via a container image and not a particular
scheduler. Through the container image, any available scheduler can be used,
depending on the cloud architecture in place. We apologize for the omission in Table1,
we have fixed it. We have now also documented the use of GenPipes in the cloud and
added a user manual at:
http://www.computationalgenomics.ca/genpipes-in-the-cloud/
 * On page 7, when describing deployment of software and reference information, it is
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unclear whether installation happens system wide (needing admin rights) or local. This
should be clearly stated, since system-wide installation would be a major disadvantage
compared to systems like Nextflow, Snakemake or CWL based WMSs. Moreover, it
should be mentioned how those dependencies are updated, and in what sense such
updates would affect previous runs, which could potentially loose reproducibility, if
updates happen globally.

GenPipes installation can happen both system-wide or locally as the pipeline will only
use software and modules provided in a specific path defined through an environment
variable. All the third part tool installation scripts provided with the pipeline have been
designed to work on a local path system and do not require root privileges. We also
developed a container image of GenPipes which runs GenPipes with little software
installation. This allows larger processing centers to install GenPipes for all users, but
also allows individuals the flexibility to adopt GenPipes for their own needs without
needing special permissions or setup.

We have added text in the result section to explain these points and to expand on the
dependency updates:

“These scripts support local installations without the need for super-user privileges.
Tools and dependencies are versioned and are loaded by GenPipes in a version-
specific manner. This allows different pipelines to use different software versions based
on need. It also allows retention of the same parameters and tools for any given project
for reproducibility. GenPipes is also provided as a container version for which no
dependency installation is required.”
 * In the discussion, it is mentioned that GenPipes is currently being reimplemented in
WDL. It is a good choice to use one of the established, more feature-rich systems.
However, then, large parts of this paper are in fact obsolete, as they will be replaced
with WDL. The major contribution that remains after that step is the collection of
workflows, which is totally fine, since this is a very valuable addition. I therefore
suggest to put more focus on the workflows, and simply outline that they are currently
implemented in GenPipes and soon will be avaialble in WDL. Morevoer, choice of
tools, parameters and how the benchmarking was done (in a more concrete way
instead of simply saying "we used GIAB") should be described in detail.

Actually, based on recent developments, we are probably going to go with CWL over
WDL. That being said, we do not fully agree with the reviewer that this will make
GenPipes WMS obsolete. While CWL or WDL can help increase the compatibility of
GenPipes with different systems, it will add a layer of complexity to GenPipes; one that
is not needed on HPC systems. We agree with the reviewer that the pipelines are a
major contribution of GenPipes and that they deserve a more detailed description. We
have now added more descriptions and benchmarks as supplementary material. We
have also added workflow diagrams representing pipeline workflow and dependencies
in the supplementary.

 * Table 1 provides a feature comparison. As with every single feature comparison I
have seen so far, it is highly biased, showing only features that GenPipes itself
provides. For example, GUI (as provided e.g. by Galaxy) and automatic reports are
missing. Per-step/job software deployment and container support is missing. Config file
validation is missing. Items are not sufficiently explained (e.g., what is meant with
tracking, and in what sense is Nextflow not providing it). A popular system is
completely missing from the table: Snakemake. Via nf-core and other projects,
Nextflow and Snakemake provide several of the mentioned pipelines. Finally, I cannot
actually find that table in reference [62], although the authors claim that it is a modified
version of the table from that paper.

We thank the reviewer for his excellent suggestions. We have added 3 more features
to the comparison table (GUI, Reports and Config validation). We have also added
SnakeMake to the comparison. In evaluating the pipelines available, we have looked at
the published manuscript if it exists or the code base and documentation of each tools.
Community-maintained pipelines were not considered, as it becomes difficult to draw
the line on what to include in the comparison and it is hard to assess the reliability of
these pipelines without extensive benchmarking. Only pipelines provided by the tool
authors were considered.
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Finally, the comparison Table1 was modified from Griffith et al. in supplementary
material (Table S6) which contains a simple version of the table. following the link in
the figure leads to the full version of the table:
 
https://journals.plos.org/ploscompbiol/article/file?id=info%3Adoi/10.1371/journal.pcbi.1
004274.s021&type=supplementary
  # Minor Comments
  * On page 2, when mentioning other WMSs, the authors should also mention Nextflow.
Moreover, CWL and WDL are not WMSs, and should be listed separately as
"declarative workflow description languages".

We have edited the text as suggested.
 * On page 5, when relaunch features are mentioned, common functions of other
systems like manual forcing or handling of missing files are not mentioned. Are these
not available?

GenPipes supports manual forcing through the “-f” option. GenPipes validates the
existence of all required modules and genome files and input files in the config file
before creating the commands. If any are missing, it looks for alternative files using the
ordered list of input implementation described in the “Key GenPipes features options”.
If none of the possible files are found, GenPipes will throw a Missing File exception and
terminate. The text has been edited to clarify this.
 * On page 6, the description of input choice does not really make it clear how multiple
input files or aggregation is handled. It would be beneficial to see examples for (a) a 1-
in-1-out job, (b) an aggregating job, (c) a scattering job, (d) a mixed job (n-in-m-out).

GenPipes has an array of steps with different behaviors. Some steps operate on a
single sample input while others operate on the cohort of available samples (metric
steps). To try to distinguish these, we added color coding (back/white) to the workflow
diagrams we added in supplementary Figure 1. The dependencies between steps are
mapped by GenPipes through input and output files required and communicated to the
scheduler which then coordinated job launch. For a full list of pipelines and steps,
please refer to Figure S1-14.
 * On page 8: "all workflows acceps a bam or fastq file as input". I guess they accept
multiple bams or fastqs, right? Otherwise they could only be applied to a single sample
at a time...

To take full advantage of HPC power and reduce processing times, GenPipes runs
each sample separately, when possible. Some steps aggregate inputs from many
samples at a time. Those have been colored in black in supplementary Figure2 S1-14.
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ABSTRACT  

With the decreasing cost of sequencing and the rapid developments in genomics technologies and 

protocols, the need for validated bioinformatics software that enables efficient large-scale data processing 

is growing. Here we present GenPipes, a flexible Python-based framework that facilitates the development 

and deployment of multi-step workflows optimized for High Performance Computing clusters and the cloud. 

GenPipes already implements 12 validated and scalable pipelines for various genomics applications, 

including RNA-Seq, ChIP-Seq, DNA-Seq, Methyl-Seq, Hi-C, capture Hi-C, metagenomics and PacBio long 

read assembly. The software is available under a GPLv3 open source license and is continuously updated 

to follow recent advances in genomics and bioinformatics. The framework has been already configured on 

several servers and a docker image is also available to facilitate additional installations. In summary, 

GenPipes offers genomic researchers a simple method to analyze different types of data, customizable to 

their needs and resources, as well as the flexibility to create their own workflows. 

Keywords: genomics; workflow management systems; frameworks; workflow; pipeline; bioinformatics. 
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INTRODUCTION 

Sequencing has become an indispensable tool in our quest to understand biological processes. 

Moreover, facilitated by a significant decline in overall costs, new technologies and experimental protocols 

are being developed at a fast pace. This has resulted in massive amounts of sequencing data being 

produced and deposited in various public archives. For instance, a number of national initiatives, such as 

Genomics England and All of US, plan to sequence hundreds of thousands of individual genomes in an 

effort to further develop precision medicine. Similarly, a number of large initiatives, such as ENCODE [1] 

and the International Human Epigenome Consortium (IHEC) [2], plan to generate thousands of 

epigenomics datasets to better understand gene regulation in normal and disease processes. Despite this 

rapid progress in sequencing, genomics technologies and available datasets, processing and analyses 

have struggled to keep up. Indeed, the need for robust, open-source and scalable bioinformatics pipelines 

has become a major bottleneck for genomics [3].  

Available bioinformatics tools for genomic data can be categorized into three different groups: 1) 

analysis platforms/workbenches, 2) workflow management systems (WMS)/frameworks, and 3) individual 

analysis pipelines/workflows. Platforms of the first type, like Galaxy [4] or DNA Nexus [5], provide a full 

workbench for data upload and storage, and are accompanied with a set of available tools. While they 

provide fast and easy user services, such tools can be inconvenient for large scale projects. In the second 

type, WMSs such as Snakemake [6], Nextflow [7], BPipe [8], BigDataScript [9] and declarative workflow 

description languages, such as CWL or WDL are dedicated to providing a customizable framework to build 

bioinformatics pipelines. Such solutions are flexible and can help in pipeline implementation but rarely 

provide robust pre-built pipelines which are ready for production analysis. Finally, tools of the third type are 

individual analysis pipelines for various applications that have been validated and published. These are 

useful for specific applications but can sometimes be challenging to implement, difficult to modify or scale-

up. They have also rarely been tested on multiple computing infrastructures. 

Here we present GenPipes, an open-source, Python-based WMS for pipeline development. As part 

of its implementation, GenPipes includes a set of high-quality, standardized analysis pipelines, designed 

for High Performance Computing (HPC) resources and cloud environments. GenPipes’ WMS and pipelines 

have been tested, benchmarked and used extensively over the past four years. GenPipes is continuously 

updated and is configured on several different HPC clusters with different properties. By combining both 

WMS and extensively validated End-to-End analysis workflows, GenPipes offers turnkey analyses for a 

wide range of bioinformatics applications in the genomics field while also enabling flexible and robust 

extensions. 
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MATERIAL AND METHODS 

Overview of the GenPipes Framework 

GenPipes is an object-oriented framework consisting of Python scripts and libraries which create a 

list of jobs to be launched as Bash commands (Figure 1). There are four main objects that manage the 

different components of the analysis workflow, namely, Pipeline, Step, Job and Scheduler. The main object 

is the “Pipeline” object which controls the workflow of the analysis. Each specific analysis workflow is thus 

defined as a specific Pipeline object. Pipeline objects can inherit from one another. The Pipeline object 

defines the flow of the analysis by calling specific “Step” objects. The Pipeline instance could call all steps 

implemented in a pipeline or only a set of steps selected by the user. Each step of a pipeline is a unit block 

that encapsulates a part of the analysis (e.g., trimming or alignment). The Step object is a central unit object 

which corresponds to a specific analysis task. The execution of the task is directly managed by the code 

defined in each Step instance; some steps may execute their task on each sample individually while other 

steps execute their task using all the samples collectively. The main purpose of the Step object is to 

generate a list of “Job” objects which correspond to the consecutive execution of single tasks. The Job 

object defines the commands that will be submitted to the system. It contains all the elements needed to 

execute the commands, such as input files, modules to be loaded, as well as job dependencies and 

temporary files. Each Job object will be submitted to the system using a specific “Scheduler” object. The 

Scheduler object creates execution commands that are compatible with the user’s computing system. Four 

different Scheduler objects have already been implemented (PBS, SLURM, Batch and Daemon), see 

below.  

GenPipes’ object-oriented framework simplifies the development of new features and its adaptation 

to new systems; new workflows can be created by implementing a Pipeline object which inherits features 

and steps from other existing Pipeline objects. Similarly, deploying GenPipes on a new system may only 

require the development of the corresponding Scheduler object along with specific configuration files. 

GenPipes’ command execution details have been implemented using a shared library system which allows 

the modification of tasks by simply adjusting input parameters. This simplifies code maintenance and makes 

changes in software versions consistent across all pipelines. 

 

Freely distributed and pre-installed on a number of HPC resources  

GenPipes is an open-source framework freely distributed and open for external contributions from 

the developer community. GenPipes can be installed from scratch on any Linux cluster supporting Python 

2.7 by following the available instructions (https://bitbucket.org/mugqic/genpipes/src/master/). GenPipes 

can also be used via a Docker image which simplifies the setup process and can be used on a range of 
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platforms, including cloud platforms. This allows system-wide installations, as well as local user installations 

via the Docker image without needing special permissions. 

Through a partnership with the Compute Canada consortium (https://www.computecanada.ca), the 

pipelines and third-party tools have also been configured on 6 different Compute Canada HPC centers. It 

allows any Canadian researcher to use GenPipes along with the needed computing resources by simply 

applying to the consortium [10]. To ensure consistency of pipeline versions and used dependencies (such 

as genome references and annotation files) and to avoid discrepancy between compute sites, pipeline 

setup has been centralized to one location which is then distributed on a real-time shared file system: the 

CERN Virtual Machine File System [11].  

 

Running GenPipes 

 GenPipes is a command line tool. Its use has been simplified to accommodate general users. A 

full tutorial is available [12]. Briefly, to launch GenPipes, the following is needed: 

 A readset file that contains information about the samples, indicated using the flag “-r”. 

 Configuration/ini files that contain parameters related to the cluster and the third-party tools, 

indicated using the flag “-c”. 

 The specific steps to be executed, indicated by the flag “-s”. 

The generic command to run GenPipes is: 

<pipeline>.py -c myConfigurationFile -r myReadSetFile -s 1-X > Commands.txt && bash Commands.txt 

Where <pipeline> can be any of the 12 available pipelines and X is the step number desired. Commands.txt 

contains the commands that the system will execute. 

Pipelines that conduct sample comparisons, like ChIP-Seq and RNA-Seq, require a design file that 

describes each contrast. Design files are indicated by the flag “-d”. The tumour_pair pipeline requires 

normal-tumour pairing information provided in a standard CSV file using the “-p” option.  For more 

information on the design file and the content of each file type, please consult the GenPipes tutorial and 

the online documentation. 

 When the GenPipes command is launched, required modules and files will be searched for and 

validated. If all required modules and files are found, the analysis commands will be produced. GenPipes 

will create a directed acyclic graph (DAG) that defines job dependency based on input and output of each 

step. For a representation of the DAG of each pipeline, refer to supplementary figures S1-14. Once 

launched, the jobs are sent to the scheduler and queued. As jobs complete successfully, their dependent 
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jobs are released by the scheduler to run. If a job fails, all its dependent jobs are terminated and an email 

notification is sent to the user. When GenPipes is re-run, it will detect which steps have successfully 

completed, as described in section ‘Smart relaunch features’, and skip them but will create the command 

script for the jobs that were not completed successfully. To force the entire command generation, despite 

successful completion, the “-f” option should be added. 

 

RESULTS 

 GenPipes was first released in 2014. Since then, it has grown to implement 12 pipelines and is 

currently installed and maintained on 13 different clusters (Figure 2a-b). GenPipes has been actively used 

for the last four years to quality control and analyze thousands of samples each year (Figure 2c). It has also 

been used to analyze data for several large-scale projects such as IHEC [2] and eFORGE [13].  

 

Key features of GenPipes 

GenPipes’ framework has been optimized to facilitate large scale data analysis. Several features 

make this possible (Figure 2a): 

Multiple schedulers 

GenPipes is optimized for HPC processing. It can currently accommodate four different types of 

schedulers: 

 PBSScheduler creates a batch script that is compatible with a PBS (TORQUE) system. 

 SLURMscheduler creates a batch script that is compatible with a SLURM system. 

 BatchScheduler creates a batch script which contains all the instructions to run all the jobs one 

after the other. 

 DaemonScheduler creates a log of the pipeline command in a JSON file. 

 

Job dependencies 

In order to minimize the overall analysis time, GenPipes uses a dependency model based on input 

files, which is managed at the Job object level. A job does not need to wait for the completion of a previous 

step unless it is dependent on its output. Jobs thus become active and can be executed as soon as all their 

dependencies are met, regardless of the status of previous jobs or of other samples. Thus, when a pipeline 

is run on multiple samples, it creates several dependency paths, one per sample, each of which completes 

at its own pace.   
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Smart relaunch features 

Large scale data analysis is subject to failure which could occur due to system failure (e.g. power 

outage, system reboot, etc...) or user failure (errors in set parameters, or resources). To limit the micro-

management and time required to relaunch the pipeline from scratch, GenPipes includes a system of 

reporting which provides the status of every job in the analysis in order to facilitate the detection of jobs 

which have failed. Additionally, a relaunch system is implemented which allows restarting the analysis at 

the exact state before the failure. The relaunch system uses two features: md5sum hash and time stamps. 

When GenPipes is launched, a md5sum hash is produced for each command. Upon relaunch following a 

failure, the newly produced hash is compared to that of the completed job to detect changes in the 

commands. If the hashes are different, the job is relaunched. To detect updates in input files, GenPipes 

compares the time stamp on the input and output files of already completed jobs. If the date stamp on the 

input files is more recent than that on the output files then the job is relaunched. If neither the hash code 

nor the time stamp flag the job to be relaunched then it is considered complete and up-to-date and it will be 

skipped in the pipeline restart process.    

Configuration files 

Running large-scale analyses requires a very large number of parameters to be set. GenPipes 

implements a superposed configuration system to reduce the time required to set-up or modify parameters 

needed during the analysis. Configuration files, also referred to as “ini” files, are provided among the 

arguments of the GenPipes command. These files follow the standard INI format, which was selected for 

its readability and ease of use by non-expert users. Each pipeline reads all configuration files, one after the 

other, based on a user defined order. The order is of major importance as the system will overwrite a 

parameter each time it is specified in a new ini file. The system allows the use of the default configuration 

files provided in GenPipes alone or in combination with user specific configuration files. Configuration files 

provided with GenPipes are the result of years of experience along with intensive benchmarking. 

Additionally, several configuration files adjusted for different compute systems or different model organisms 

are available. The main advantage of this system is to reduce the users’ task; only parameters that need 

to be modified (e.g system parameters, genomic resources, user specific parameters) have to be adjusted 

during the set-up phase of the analysis. To track and enable reproducibility, GenPipes always outputs a file 

containing the final list of parameters used for the analysis.  

Choice among multiple inputs 

GenPipes represents a series of Step objects that are interdependent based on inputs and outputs. 

Many of the pipeline steps implemented in GenPipes, represent filtering, manipulation or modification of 

specific genomics files share common formats (e.g. bam, fastq, vcf). To ensure more flexibility in the 

analysis, a system of ordered list to be interpreted as input files is used. For a given Step, each Job can be 

given a series of inputs. The Job will browse its list of possible inputs and will consider them based on the 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 

7 

order in the list. The first input file found either on disk or in the overall output list will be chosen as input. 

The chosen input will determine the dependency of the Job to the other Jobs in the pipeline. This system 

is really flexible and allows users to skip specific steps in the pipeline if they consider them unnecessary.  

Customizable workflows 

Despite the benchmarking and testing made on the standard analysis procedures implemented in 

GenPipes, some users may be interested in modifying pipelines. In order to make GenPipes more flexible, 

a protocol system is used. The system allows the implementation of different workflows into a single Pipeline 

object. As a result, one can replace specific steps by other user specific ones. In that case, the user will 

only need to implement these new Steps and define an additional protocol which will use part of the initial 

Steps and the newly developed ones. As an example, this has been used to incorporate the Hi-C analysis 

workflow and the capture Hi-C analysis workflow into GenPipes’ hicseq pipeline. A flag (-t hic or -t capture) 

can be used to specify the workflow to be executed. This system has been developed to reduce the amount 

of work for external users that decide to contribute to code development and to limit the number of Pipeline 

objects to maintain. This will also allow us to provide multiple workflows per pipeline to appeal to different 

tool preferences in each field. 

Facilitating dependency installation  

Genomic analyses require third party tools, as well as genome sequence files, annotation files and 

indices. GenPipes comes configured with a large set of reference genomes and their respective annotation 

files, as well as indices for most aligners. It also includes a large set of third party tools. If GenPipes is being 

installed from scratch on new clusters, automatic bash scripts that download all tools and genomes are 

included to ease the setup process. These scripts support local installations without the need for super-

user privileges. Tools and dependencies are versioned and are loaded by GenPipes in a version-specific 

manner. This allows different pipelines to use different software versions based on need. It also allows 

retention of the same parameters and tools for any given project for reproducibility. GenPipes is also 

provided as a container version for which no dependency installation is required. 

 

Available workflows 

GenPipes implements 12 standardized genomics workflows including: DNA-Seq, Tumour Analysis, 

RNA-Seq, de novo RNA-Seq, ChIP-Seq, PacBio assembly, Methyl-Seq, Hi-C, capture Hi-C, and 

Metagenomics (Figure 2c). All pipelines have been implemented following a robust design and development 

routine by following established gold standards standard operating protocols (SOP). Below we summarize 

GenPipes’ workflows; more details are available in the GenPipes documentation. For more details 
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concerning computational resources used by each pipeline, refer to supplementary Table S1. All workflows 

accept a bam or a fastq file as input. 

DNA-Seq Pipeline: 

DNA-Seq has been implemented optimizing the GATK best practices SOPs [14]. This procedure 

entails trimming raw reads derived from whole genome or exome data followed by alignment to a known 

reference, post alignment refinements and variant calling. Trimmed reads are aligned to a reference by the 

Burrows-Wheeler Aligner, bwa-mem [15]. Refinements of mismatches near indels and base qualities are 

performed using GATK indels realignment and base recalibration [14] to improve read quality post 

alignment. Processed reads are marked as fragment duplicates using picard mark duplicates [14] and SNP 

and small indels are identified using either GATK haplotype callers or samtools mpileup [16]. The Genome 

in a Bottle [17] dataset was used to select steps and parameters minimizing the false positive rate and 

maximizing the true positive variants to achieve a sensitivity of 99.7%, precision of 99.1% and F1-score of 

99.4% (For more details, refer to Supplementary Materials). Finally, additional annotations are incorporated 

using dbNSFP [18] and/or Gemini [19XX] and quality control metrics are collected at various stages and 

visualized using MulitQC [20]. This pipeline has two different protocols, the default protocol based on the 

GATK variant caller, haplotype_caller, (“-t mugqic”, Figure 3) and one based on the mpileup/bcftools caller 

(“-t mpileup”, Figure S1). Another pipeline that is optimized for deep coverage samples, 

dnaseq_high_coverage, can be found in Figure S2. 

RNA-Seq Pipeline: 

This pipeline aligns reads with STAR [21] 2-passes mode, assembles transcripts with Cufflinks [22] 

and performs differential expression with Cuffdiff [23]. In parallel, gene-level expression is quantified using 

htseq-count [24], which produces raw read counts that are subsequently used for differential gene 

expression with both DESeq [25] and edgeR [26]. Several common quality metrics (rRNA content, 

expression saturation estimation etc.) are also calculated through the use of RNA-SeQC [27] and in-house 

scripts. Gene Ontology terms are also tested for over-representation using GOseq [28]. Expressed short 

SNVs and indels calling is also performed by this pipeline, which optimizes GATK best practices to reach 

a sensitivity 92.8%, precision 87.7% and F1-score 90.1%. A schema of pipeline steps can be found in 

Figure S3. Another pipeline, rnaseq_light, based on Kallisto [29] and used for quick quality control can be 

found in Figure S4. 

De-Novo RNASeq Pipeline: 

This pipeline is adapted from the Trinity-Trinotate suggested workflow [30] [31]. It reconstructs 

transcripts from short reads, predicts proteins and annotates leveraging several databases. Quantification 

is computed using RSEM and differential expression is tested in a manner identical to the RNA-seq pipeline. 

We observed that the default parameters of the Trinity suite are very conservative which could result in the 
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loss of low-expressed but biologically relevant transcripts. In order to provide the most complete set of 

transcripts, the pipeline was designed with lower stringency during the assembly step in order to produce 

every possible transcript and not miss low expressed mRNA. A stringent filtration step is included afterward 

in order to provide a set of transcripts that make sense biologically. A schema of pipeline steps can be 

found in Figure S5. 

ChIP-Seq Pipeline: 

The ChIP-Seq workflow is based on the ENCODE [1] workflow. It aligns reads using the Burrows-

Wheeler Aligner. It creates tag directories using Homer [32]. Peaks are called using MACS2 [33] and 

annotated using Homer. Binding motifs are also identified using Homer. Metrics are calculated based on 

IHEC requirements [34]. The ChIP-Seq pipeline can also be used for ATAC-Seq samples. However, we 

are developing a pipeline that is specific to ATAC-Seq. A schema of pipeline steps can be found in Figure 

S6. 

The Tumour Analysis Pipeline: 

The Tumour Pair workflow inherits the bam processing protocol from DNA-seq implementation to 

retain the benchmarking optimizations but differs in alignment refinement and mutation identification by 

maximizing the information utilizing both tumour and normal samples together. The pipeline is based on an 

ensemble approach, which was optimized using both the DREAM3 challenge [35] and the CEPH mixture 

datasets to select the best combination of callers for both SNV and SV detection. For SNVs, multiple callers 

such as GATK mutect2, VarScan2 [36], bcftools and VarDict [37] were combined to achieve a sensitivity of 

97.5%, precision of 98.8% and F1-score of 98.1% for variants found in 2 or more callers. Similarly, SVs 

were identified using multiple callers: DELLY [38], LUMPY [39], WHAM [40], CNVkit [41] and Svaba [42] 

and combined using MetaSV [43] to achieve a sensitivity of 84.6%, precision of 92.4% and F1-score of 

88.3% for duplication variants found in the DREAM3 dataset (For more details, refer to Supplementary 

Material). The pipeline also integrates specific cancer tools to estimate tumour purity, tumour ploidy of 

sample pair normal-tumour. Additional annotations are incorporated to the SNV calls using dbNSFP [18] 

and/or Gemini [19] and quality control metrics were collected at various stages and visualized using MulitQC 

[20]. This pipeline has 3 protocols (sv, ensemble or fastpass). Schemas of pipeline steps for the three 

protocols can be found in Figures S7, 8 and 9. 

Whole Genome Bisulfite Seq Pipeline (WGBS or Methyl-Seq): 

The Methyl-Seq workflow is adapted from the Bismark pipeline [44]. It aligns paired-end reads with 

botiwe2 default mode. Duplicates are removed with Picard and methylation calls are extracted using 

bismark [44]. Wiggle tracks for both read coverage and methylation profile are generated for visualization. 

Variants calls can be extracted from the WGBS data directly using bisSNP [45]. Bisulfite conversion rates 

are estimated with lambda genome or from human non-CpG methylation directly. Several metrics based 
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on IHEC requirements are also calculated. Methyl-Seq can also process capture data if provided with a 

capture bed file. A schema of pipeline steps can be found in Figure S10. 

Hi-C Pipeline: 

The HiC-Seq workflow aligns reads using HiCUP [46]. It creates tag directories, produces 

interaction matrices, identifies compartments and significant interactions using Homer. It identifies 

Topologically Associating Domains using TopDom [47] and RobusTAD (bioRxiv 293175). It also creates 

“.hic” files using JuiceBox [48] and metrics reports using MultiQC [20]. The HiC-Seq workflow can also 

process capture Hi-C data with the flag “-t capture” using CHICAGO [49]. Schemas for the HiC and capture 

HiC protocols of this pipeline can be found in Figure S11 and Figure S12 respectively. 

The Metagenomic Pipeline (rRNA gene amplification analysis): 

This pipeline is based on the established Qiime procedure [50] for amplicon-based metagenomics. 

It assembles read pairs using FLASH [51], detects chimeras with uchime [52] and picks OTUs using vsearch 

[53]. OTUs are then aligned using PyNAST [54] and clustered with FastTree [55]. Standard diversity indices, 

taxonomical assignments and ordinations are then calculated and reported graphically. A schema of 

pipeline steps can be found in Figure S13. 

The PacBio Pipeline: 

The PacBio whole genome assembly pipeline is built following the HGAP method [31], including 

additional features, such as base modification detection 

(https://github.com/PacificBiosciences/Bioinformatics-Training/wiki/Methylome-Analysis-Technical-Note) 

and genome circularization [56]. De novo assembly is performed using PacBio's SMRT Link software 

(https://github.com/PacificBiosciences/SMRT-Link/wiki). Assembly contigs are generated using HGAP4. 

Alignments are then corrected and used as seeds by FALCON 

(https://github.com/PacificBiosciences/FALCON/wiki/) to create contigs. The resulting contigs are then 

polished and processed by “Arrow” (https://github.com/PacificBiosciences/GenomicConsensus) which 

ultimately generates high quality consensus sequences. An optional step allowing assembly circularization 

is integrated at the end of the pipeline. A schema of pipeline steps can be found in Figure S14. 

 

Comparison with other solutions for NGS analysis 

Data collected for select tools, modified from Griffith & Griffith et al. [57] (Table 1), shows that 

GenPipes’ strength lies in its robust WMS that comes with one of the most diverse selection of analysis 

pipelines which have been thoroughly tested. The pipelines in the framework cover a wide range of 

sequencing applications (Figure 2a). The pipelines are end-to-end workflows running complete 
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bioinformatics analyses. While many available pipelines conclude with a bam file or run limited post-bam 

analysis steps, the pipelines included in GenPipes are extensive, often having as many as 40 different 

steps that cover a wide range of post-bam processing. It is important to note that GenPipes, as well as 

several other WMSs, have community-supported pipelines, however, those have not been included in the 

comparison.  

GenPipes is compatible with HPC computing, as well as cloud computing [58] and includes a 

workflow manager that can be adapted to new systems. GenPipes also provides job status tracking through 

JSON files that can then be displayed on a web portal (an official portal for GenPipes will be released soon). 

GenPipes’ available pipelines facilitate bioinformatics processing, while the framework makes it flexible for 

modifications and new implementations. 

GenPipes developers offer continuous support through a Google forum page [59] and a help desk 

email address (pipelines@computationalgenomics.ca). Since the release of version 2.0.0 in 2014, a 

community of users has run GenPipes to conduct approximately 3000 analyses processing around 100,000 

samples (Figure 2b-c). 

 

DISCUSSION and CONCLUSION 

GenPipes is a workflow management system that facilitates building robust genomic workflows. 

GenPipes is a unique solution which combines both a framework for development and end-to-end analysis 

pipelines for a very large set of genomics fields. The efficient framework for pipeline development has 

resulted in a broad community of developers with over 30 active branches and more than 10 forks of the 

GenPipes repository. GenPipes has several optimized features that adapt it to large scale data analysis, 

namely: 

● Multiple schedulers: GenPipes is optimized for HPC processing. It currently accommodates 4 

schedulers. 

● Job dependencies: GenPipes establishes dependencies among its different steps. This enables 

launching all the steps at the same time and minimizes queue waiting time and management. 

● Smart relaunch: GenPipes sets and detects flags at each successful step in the pipeline. This 

allows the detection of successfully completed steps and easy relaunch of failed steps.  

● Parameter encapsulation: Genpipes uses a superposed configuration system to parse all 

required parameters from configuration files. This simplifies the use of the framework and makes 

it more flexible to user adjustments. Tested configuration files that are tailored to different clusters 

and different species are included with GenPipes. 

● Diverse inputs: GenPipes has been developed to launch using different starting inputs, making 

it more flexible. 

● Flexible workflows: GenPipes implements a workflow in steps. Users can choose to run specific 

steps of interest, limiting waste of time and resources. 
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GenPipes is under continuous development to update established pipelines and to create new 

pipelines for emerging technologies. For instance, new genomics pipelines are being developed for ATAC-

Seq, single cell RNA-Seq and HiChIP. GenPipes is also being redeveloped to use the Common Workflow 

Language (CWL) to provide a cloud compatible version more seamlessly and more Scheduler objects, like 

DRMAA, are being added to expand compatibility with more platforms. GenPipes has become a reliable 

bioinformatics solution that has been used in various genomics publications for DNA-Seq [60-67], RNA-

Seq [68] and ChIP-Seq [69] analyses. GenPipes is currently available as source code, as well as a Docker 

image for easy installation and use. GenPipes has been optimized for HPC systems but can run on a laptop 

computer on small datasets. 

 

Availability and requirements 

● Project name: GenPipes 

● Project home page: http://www.c3g.ca/genpipes 

● Operating system(s):  Linux; Can be used on Windows and Mac OS using Docker 

● Programming language: Python 

● Other requirements: Workflow-dependant; detailed in documentation 

● License: GNU GPLv3 

● SciCrunch RRID: SCR_016376 

 

SUPPLEMENTARY DATA 

No Supplementary Data 
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Figure 1 - General workflow of GenPipes  

 

Diagram showing how the information flows from the user command line input through the 4 different 

objects (Pipeline, Step, Job and Scheduler) in order to generate system specific executable outputs. 
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Figure 2 - GenPipes properties 

 

 

 

GenPipes’ properties and growth. (a) Diagram showing GenPipes’ features, compatible computing 

platforms and available pipelines. (b) GenPipes’ available pipelines and maintained servers since the 

release of GenPipes in 2014. (c) Bar plot showing the number of GenPipes runs per year since its release. 
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Figure 3 – GenPipes DNASeq pipeline diagram 

 

 

 

 

 

 

Schematic representation of GenPipes’ dnaseq.py pipeline. Hexagons represent steps in the pipeline. 

White hexagons represent steps that process input from a single sample, while black ones represent steps 

that process input from several samples. Arrows show step dependencies.  
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Table 1 - Comparison of available solutions for NGS analysis.  

 

Modified from Griffith & Griffith et al.  [57]. 
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Dear GigaScience Editorial Office,  

 

 

 Thank you for opportunity to submit a revised version of the manuscript GIGA-D-18-

00198 that addresses the points raised by the two reviewers. Following the constructive comments 

and suggestions, we have made several major improvements to the manuscript, including: 

- The reviewers had comments about the dependencies between steps, as well as whether 

steps worked on single samples or a cohort of samples. To help answer these questions, we 

have added a diagram summarizing each pipeline to the supplementary. 

- We have added extensive benchmark metrics for two pipelines, dnaseq and tumour_pair. 

- We have added documentation on how to run GenPipes on a cloud platform on our website 

and now referenced it in the manuscript. 

- GenPipes is now registered in the SciCrunch database under the RRID SCR_016376. The 

RRID has been included in the revised manuscript under the ‘Availability and 

requirements’ section. 

- We have re-organized the text a bit to better explain the unique features of GenPipes  

 

See below for our point-by-point response to the reviewers. New text that has been added is shown 

in red in the revised manuscript. 

 

 

 

Response to the Reviewers: 

 

 

Reviewer #1: The authors present in this manuscript both a new workflow management system 

(GenPipe), as well as a set of bioinformatics pipelines that are built to run on this system.  The 

authors contribution is likely be of interest to many genome centres and bioinformaticians, who 

wish to leverage existing pre-built and tested pipelines.  The manuscript is clear and well written 

and the source code is well structured, extensive, and is well documented. The developers have 

also taken steps to ease installation and configuration issues that might occur when trying to install 

the software in other environments. 

 

 

However, I have reservations regarding the structure and content of the manuscript.  I find it lacks 

detail and analysis that would convince a reader to adopt their system, both with regards to 

GenPipe itself, as well as the pipelines. This is unfortunate as I think the authors have provided a 

large contribution to the field in making available their resources. 

 

We thank the reviewer for evaluating the manuscript and for his positive view of our contribution 

to the bioinformatics community. We have now re-organized the text a bit to better explain the 

unique features of GenPipes and have added more information to the manuscript that should 

provide the users with a better overview of its advantages (see below). 

Resubmission Letter and Answers Click here to access/download;Personal
Cover;GenPipes_GigaScience_Reviews.docx

http://www.editorialmanager.com/giga/download.aspx?id=50803&guid=16aa7da3-d6ea-4425-ae88-5ce91e01b335&scheme=1
http://www.editorialmanager.com/giga/download.aspx?id=50803&guid=16aa7da3-d6ea-4425-ae88-5ce91e01b335&scheme=1
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Major points: 

 

 

1. The authors only provide a superficial comparison to existing systems.  A more detailed analysis 

of why new pipeline developers should use GenPipe over an alternatives?  What distinguishes this 

as a WMS from SnakeMake for example?  From what I can see in the manuscript there are several 

implementation details within GenPipe that appear sub-optimal, which I'll elaborate on in the 

points below. 

 

In our original submission, we attempted to provide a comparison of GenPipes to other 

available WMSs. While far from exhaustive, we had compared GenPipes to 18 popular WMSs by 

looking at 9 different features and 9 different pipelines (Table 1). In the revised submission, we 

have added SnakeMake to the WMS list and included 3 more features suggested by reviewer #2 

(see below). We have also added a detailed workflow for each pipeline (Figure 3 and S1-14) and 

have added new benchmarking metrics for some of the pipelines. We also included estimate 

resource usage for each pipeline across different servers (Table S1). We have also moved the 

description of the unique features of GenPipes to the Result section of the manuscript. We think 

that this new information will hopefully give potential users a better idea of how GenPipes 

compares to some of the existing frameworks available and its advantages. 

 

 

2. I would also like to see a proper analysis for each pipeline (can be provided in supplemental 

information) describing comparisons to existing pipelines in terms of accuracy, resource usage, 

runtime stats, etc. 

 

We agree with the reviewer that benchmarking the individual pipelines for accuracy, 

resource usage and runtime statistics is important. Along those lines, we have added benchmarks 

for several pipelines to the Supplementary Material. In terms of resource usage and runtime 

statistics, it has been our experience that these metrics vary widely depending on system hardware, 

software versions and sample sequencing depth. However, we agree that a ballpark estimate of 

these resources would be useful for the user and have added Table S1. 

 

In terms of accuracy, it is important to remember that GenPipes is a framework that is built 

around open source, third party tools that are available to the scientific community. Accuracy is 

not as easily assessed in certain fields due to the lack of a good quality “truth” set to benchmark 

against. Generally, we have tried to model GenPipes pipelines following large scale projects like 

GATK best practices SOPs and ENCODE and have relied on public benchmarking, in addition to 

our own.  

  

 

Minor points: 

 

 

1. Introduction: "Such solutions are flexible and can help in pipeline implementation but do not 

provide robust standardized pipelines which are ready for production-scale analysis."  In my 

experience, it's simply not true that WMS solutions are not suitable for production scale analysis. 
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There are many examples of people doing exactly this, and moreover I've built several myself 

which are run multiple times every day without issue.  In my experience they can work very 

reliably, and ability to tolerate and resume from errors is easy to code in.  It is also unclear what 

the authors mean by standardisation in this context.  I'd request that the authors either justify this 

point and provide concrete examples of exactly what the source of the perceived issues are, or 

remove this sentence. 

 

We agree with the reviewer that the sentence is not delivering the idea we intended. The 

sentence has been edited in the manuscript to highlight the fact that not all WMSs come with pre-

built pipelines that are ready for use. We agree with the reviewer that many WMSs are robust and 

powerful. We are simply trying to appeal to both the advanced user with GenPipes’s WMS and 

the novice user with the pre-built and tested pipelines. 

 

The sentence now reads: 

“Such solutions are flexible and can help in pipeline implementation but rarely provide robust pre-

built pipelines which are ready for production analysis.” 

 

 

2. Introduction: "These are useful for specific applications but can be challenging to implement, 

difficult to modify or scale-up. They have also rarely been tested on multiple computing 

infrastructures."  This seems too strong a statement.  In some cases this might be true but there are 

many examples of robust pipelines that efficiently leverage data centre hardware. 

 

We agree with the reviewer that the statement might be generalized beyond context. We 

have edited the text to explicitly prevent the statement from applying to all pipelines. 

 

The sentence now reads: 

“These are useful for specific applications but can sometimes be challenging to implement, 

difficult to modify or scale-up.” 

 

 

3. Introduction: "GenPipes has been tested, benchmarked ...".  It is not clear whether the "testing 

and benchmarking" refers to the pipelines or the WMS itself.  This should be clarified. 

 

Both GenPipes’s pipelines and the WMS have been tested extensively. The pipelines have 

been benchmarked and have been used to process thousands of samples. The WMS has been stress-

tested and adapted to different computing infrastructure and is currently run on at least 6 super 

computers that we help maintain. We have modified the text to clarify this. 

 

The sentence now reads: 

“GenPipes’ WMS and pipelines have been tested, benchmarked and used extensively over the past 

four years.” 

 

4. Schedulers: Ideally, GenPipes should offer the ability to implement scheduling via DRMMA 

which would increase the potential sites that could potentially run genpipe.  For example, currently 
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any data centres running Platform LSF could not use genpipe but via4 DRMMA this would be 

possible. 

 

We thank the reviewer for his suggestion. We generally like to minimize the number of 

layers between GenPipes and the system it is running on, and did not consider DRMAA 

previously. We have added the DRMAA scheduler to our potential future projects and have 

mentioned it in the discussion. 

 

 

5. Job dependencies: I have reservations that the approach taken here is optimal.  If I understand 

correctly, job dependencies are setup using the selected scheduler and all jobs, across steps, are 

launched at the same time.  I suspect for very large pipelines containing many thousands jobs (not 

uncommon) this would put an undue burden on the scheduler and therefore would not scale very 

well.  Could the authors elaborate on this point and highlight details such as what happens when a 

pipeline fails?  Are existing jobs explicitly terminated?  Or somehow left running and continue 

after the pipeline is resumed? 

 

 We agree with the reviewer that this feature may be optimized and have been working on 

this for a future GenPipes release. It is not ready yet, as we would like to optimize and test all 

supported schedulers before releasing the new feature. The current process works by creating the 

full script which is communicated to the scheduler.  This approach has been initially chosen for its 

low level of complexity and reproducibility; the script is readable and editable by a minimally 

trained user and can also be re-run later on. This also avoid having to generate local processes 

which would need to stay in active mode in order to monitor the job submission process. In order 

to help monitoring the pipeline progress, GenPipes includes a script (logReport.pl) that generates 

a report of the current status of the pipeline. We have also included a JSON log file system that 

could be used to develop a local web-portal displaying the pipeline job status in real time. 

We have been using GenPipes on hundreds of samples every day, submitting thousands of jobs, 

and has not run into any issues with our compute providers so far. However, we do intend to 

optimize the process by using job arrays.  

 

In terms of what happens when the pipeline fails, we have added a section to the text under 

“Running GenPipes” to elaborate on this point: 

 
“… Once launched, the jobs are sent to the scheduler and queued. As jobs complete successfully, their dependent jobs 

are released by the scheduler to run. If a job fails, all its dependent jobs are terminated and an email notification is 

sent to the user. When GenPipes is re-run, it will detect which steps have successfully completed, as described in 

section ‘Smart relaunch features’, and skip them but will create the command script for the jobs that were not 

completed successfully...” 

 

 

6. Configuration Files: "Configuration files, also referred to as "ini" files, are provided among the  

arguments of the GenPipes command.".  The authors should change the wording here.  "Ini" is a 

legacy windows-based configuration file format.  I'm not asking for the authors to change the 

configuration format used but it would be useful to have some justification for this unusual 
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choice.  Alternatives, like "yaml" for example allow for stricter and richer structuring and is 

therefore much easier to parse and in turn normally results in less buggy code. 

   

We agree with the reviewer that many file configuration formats exist and that some might 

be considered more optimal than the legacy ini file format. However, we chose the ini format for 

its readability and the ease of use of the ini schema (section, key and value). It can be edited 

manually with any text editor without the need to worry about syntax or indentation which is easier 

for standard analysts using GenPipes for their analysis. Additionally, the python language offers a 

standard library (configParser) that is made to easily integrate this standard configuration format.  

 

 

 

Reviewer #2: The manscript presents GenPipes, a Python-based framework for defining and 

executing data analysis workflows. 

 

GenPipes is based on a handful of Python classes that can be inherited and implemented to achieve 

a formal and executable description of a workflow in terms of steps. During execution, steps are 

specialized to jobs that perform concrete operations on input files. 

 

For me, the most important, and definitely valuable addition of this work is the comprehensive 

collection of well-tested workflows covering the most important applications of sequencing. 

 

In general, I think this should be emphasized more, at the expense of removing some of the weaker 

aspects of the paper. I will outline this below. 

 

 

 

# Major Comments 

 

* The manuscript argues that a major advantage of GenPipes is the rich collection of production-

ready workflows that are delivered with the system. The list of workflows is indeed impressive, it 

should be mentioned though that both Snakemake and Nextflow also provide (community-

maintained) collections of tested workflows, like github.com/snakemake-workflows, nf-

core.github.io and sequana. I agree though that it might very well be that these are still less mature 

(except sequana), as they are probably newer. 

 

We thank the reviewer for seeing value in our growing collection of pipelines. In our 

manuscript, we avoided reference to community-maintained workflows. While community-

maintained workflows are a great testament to the usefulness of a WMS, they are hard to keep 

track of and evaluate. GenPipes supports community-maintained workflows as well, however, 

those too have not been mentioned in the manuscript. The pipelines that have been mentioned are 

pipelines that have been validated and are maintained by the tool authors, which we think is an 

important distinction. 

 

We have made this clear in the text, as follows: 

http://github.com/snakemake-workflows
http://nf-core.github.io/
http://nf-core.github.io/
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“It is important to note that GenPipes, as well as several other WMSs, have community-supported pipelines, 

however, those have not been included in the comparison.” 

 

 

* The manuscript claims that GenPipes supports cloud execution, but I cannot find a scheduler for 

this purpose in the list of schedulers on page 4. Also, the feature table says that cloud support is 

pending. 

 

 Yes, GenPipes supports cloud execution via a container image and not a particular 

scheduler. Through the container image, any available scheduler can be used, depending on the 

cloud architecture in place. We apologize for the omission in Table1, we have fixed it. We have 

now also documented the use of GenPipes in the cloud and added a user manual at: 

http://www.computationalgenomics.ca/genpipes-in-the-cloud/ 

 

* On page 7, when describing deployment of software and reference information, it is unclear 

whether installation happens system wide (needing admin rights) or local. This should be clearly 

stated, since system-wide installation would be a major disadvantage compared to systems like 

Nextflow, Snakemake or CWL based WMSs. Moreover, it should be mentioned how those 

dependencies are updated, and in what sense such updates would affect previous runs, which could 

potentially loose reproducibility, if updates happen globally. 

 

GenPipes installation can happen both system-wide or locally as the pipeline will only use 

software and modules provided in a specific path defined through an environment variable. All the 

third part tool installation scripts provided with the pipeline have been designed to work on a local 

path system and do not require root privileges. We also developed a container image of GenPipes 

which runs GenPipes with little software installation. This allows larger processing centers to 

install GenPipes for all users, but also allows individuals the flexibility to adopt GenPipes for their 

own needs without needing special permissions or setup. 

 

We have added text in the result section to explain these points and to expand on the 

dependency updates: 

 

“These scripts support local installations without the need for super-user privileges. Tools and dependencies 

are versioned and are loaded by GenPipes in a version-specific manner. This allows different pipelines to use different 

software versions based on need. It also allows retention of the same parameters and tools for any given project for 

reproducibility. GenPipes is also provided as a container version for which no dependency installation is required.” 

 

* In the discussion, it is mentioned that GenPipes is currently being reimplemented in WDL. It is 

a good choice to use one of the established, more feature-rich systems. However, then, large parts 

of this paper are in fact obsolete, as they will be replaced with WDL. The major contribution that 

remains after that step is the collection of workflows, which is totally fine, since this is a very 

valuable addition. I therefore suggest to put more focus on the workflows, and simply outline that 

they are currently implemented in GenPipes and soon will be avaialble in WDL. Morevoer, choice 

of tools, parameters and how the benchmarking was done (in a more concrete way instead of 

simply saying "we used GIAB") should be described in detail. 
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 Actually, based on recent developments, we are probably going to go with CWL over 

WDL. That being said, we do not fully agree with the reviewer that this will make GenPipes WMS 

obsolete. While CWL or WDL can help increase the compatibility of GenPipes with different 

systems, it will add a layer of complexity to GenPipes; one that is not needed on HPC systems. 

We agree with the reviewer that the pipelines are a major contribution of GenPipes and that they 

deserve a more detailed description. We have now added more descriptions and benchmarks as 

supplementary material. We have also added workflow diagrams representing pipeline workflow 

and dependencies in the supplementary. 

  

 

* Table 1 provides a feature comparison. As with every single feature comparison I have seen so 

far, it is highly biased, showing only features that GenPipes itself provides. For example, GUI (as 

provided e.g. by Galaxy) and automatic reports are missing. Per-step/job software deployment and 

container support is missing. Config file validation is missing. Items are not sufficiently explained 

(e.g., what is meant with tracking, and in what sense is Nextflow not providing it). A popular 

system is completely missing from the table: Snakemake. Via nf-core and other projects, Nextflow 

and Snakemake provide several of the mentioned pipelines. Finally, I cannot actually find that 

table in reference [62], although the authors claim that it is a modified version of the table from 

that paper. 

 

We thank the reviewer for his excellent suggestions. We have added 3 more features to the 

comparison table (GUI, Reports and Config validation). We have also added SnakeMake to the 

comparison. In evaluating the pipelines available, we have looked at the published manuscript if 

it exists or the code base and documentation of each tools. Community-maintained pipelines were 

not considered, as it becomes difficult to draw the line on what to include in the comparison and 

it is hard to assess the reliability of these pipelines without extensive benchmarking. Only pipelines 

provided by the tool authors were considered. 

 Finally, the comparison Table1 was modified from Griffith et al. in supplementary material 

(Table S6) which contains a simple version of the table. following the link in the figure leads to 

the full version of the table: 

 

https://journals.plos.org/ploscompbiol/article/file?id=info%3Adoi/10.1371/journal.pcbi.1004274.

s021&type=supplementary 

 

 

# Minor Comments 

 

 

* On page 2, when mentioning other WMSs, the authors should also mention Nextflow. Moreover, 

CWL and WDL are not WMSs, and should be listed separately as "declarative workflow 

description languages". 

 

 We have edited the text as suggested. 

https://journals.plos.org/ploscompbiol/article/file?id=info%3Adoi/10.1371/journal.pcbi.1004274.s021&type=supplementary
https://journals.plos.org/ploscompbiol/article/file?id=info%3Adoi/10.1371/journal.pcbi.1004274.s021&type=supplementary
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* On page 5, when relaunch features are mentioned, common functions of other systems like 

manual forcing or handling of missing files are not mentioned. Are these not available? 

 

GenPipes supports manual forcing through the “-f” option. GenPipes validates the 

existence of all required modules and genome files and input files in the config file before creating 

the commands. If any are missing, it looks for alternative files using the ordered list of input 

implementation described in the “Key GenPipes features options”. If none of the possible files are 

found, GenPipes will throw a Missing File exception and terminate. The text has been edited to 

clarify this. 

 

* On page 6, the description of input choice does not really make it clear how multiple input files 

or aggregation is handled. It would be beneficial to see examples for (a) a 1-in-1-out job, (b) an 

aggregating job, (c) a scattering job, (d) a mixed job (n-in-m-out). 

 

 GenPipes has an array of steps with different behaviors. Some steps operate on a single 

sample input while others operate on the cohort of available samples (metric steps). To try to 

distinguish these, we added color coding (back/white) to the workflow diagrams we added in 

supplementary Figure 1. The dependencies between steps are mapped by GenPipes through input 

and output files required and communicated to the scheduler which then coordinated job launch. 

For a full list of pipelines and steps, please refer to Figure S1-14. 

 

* On page 8: "all workflows acceps a bam or fastq file as input". I guess they accept multiple bams 

or fastqs, right? Otherwise they could only be applied to a single sample at a time... 

 

To take full advantage of HPC power and reduce processing times, GenPipes runs each 

sample separately, when possible. Some steps aggregate inputs from many samples at a time. 

Those have been colored in black in supplementary Figure2 S1-14. 


