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Response to Reviewers: Dear Editor,

Thank you for the opportunity to submit a revised version of the manuscript GIGA-D-
18-00198, which addresses the final points raised by the reviewers. Please find our
point-by-point response below. New text that has been added to the revised
manuscript is shown in red.

Response to the Reviewers:

Reviewer #1: I thank the authors for taking the time to address my previous comments.
I believe the manuscript is much stronger as a result and I have no further comments
to add.

We thank the reviewer for his constructive criticism that has strengthened the
manuscript.

Reviewer #2: The authors successfully address various of my and my colleagues
requests. However, certain issues remain, which I will list in the following:

# Major

* In the introduction, the authors say that frameworks like Galaxy can be inconvenient
on large scale projects. Why is that? I think such a claim should be support by a
detailed reasoning.

Frameworks like Galaxy are generally web-based. For large scale projects, uploading
large datasets to a platform can be time/resource intensive. In general, when projects
get larger, it is more efficient to bring the software to the data and not upload the data
to the software location.

We have adjusted the text to say:

“… such tools can be inconvenient for large scale projects due to having to move
sizeable datasets to the platform”.

* When mentioning that WMSs rarely provide pre-built pipelines ready for production
analysis, the authors should also mention that they nevertheless support development
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of such pipelines by the community of users, including linking out to examples like nf-
core and github.com/snakemake-workflows.

We have edited the text accordingly:

“It is important to note that GenPipes, as well as several other WMSs, like Nextflow
[58] and SnakeMake [59], support community-developed pipelines, however, those
have not been included in the comparison.”

* In my previous comment, I mentioned that the feature table is biased. While the
authors added the columns suggested, these where only meant as examples. I would
have thought that the authors take this as incentive to get a less biased view, which is
arguably very hard. However, even when only taking the reviewer comments as a
base, there are plenty of other columns which should go into the table. For example,
the authors should add "DRMAA support", "status/progress monitoring" as a column.
Moreover, the level of cloud support in GenPipes is quite different from what is offered
by e.g. Nextflow and Snakemake. There, you have full Kubernetes support, in case of
Snakemake even without the requirement of a shared filesystem. Maybe split the cloud
column into "basic cloud support" and "kubernetes support".

Our intentions with Table1 was to provide the reader with an overview of the features
of several tools in the field but not necessarily an exhaustive list. We did not design the
table to be biased towards GenPipes as we only modified one of the most
comprehensive tables we found in recent manuscripts (Griffith & Griffith et al.). Based
on that initial table and reviewers’ comments, we added 3 features and 1 WMS.
Although more could be added, it would also start cluttering the table and make it
difficult to extract meaningful information.

“status/progress monitoring” is already included in the table under “Tracking”. We have
modified the column name to make it less ambiguous.

Concerning “DRMAA support” and splitting the “cloud support” column into “basic
cloud” and “kubernetes support”, we feel that this is highly technical/specific for the
average user.

* The installation mechanism for new software tools (outside of what is provided out of
the box) (explained here:
https://bitbucket.org/mugqic/genpipes/src/master/#markdown-header-modules), seems
like manually redoing all the work that is already solved by package managers like
conda or container engines like singularity. For example, Bioconda provides a library of
over 4000 bioinformatics software packages which can be readily used from any WMS
that supports conda, and Biocontainers provides the same for container based
deployment (which lacks conda's ability to rapidly compose custom combinations of
tools though). In order to make the comparison fair, the feature table should therefore
contain two columns called "package-manager-integration" and "container-integration".
For an example of what level of integration I am referring to, see
https://snakemake.readthedocs.io/en/stable/snakefiles/deployment.html#integrated-
package-management and
https://www.nextflow.io/docs/latest/conda.html?highlight=conda.

Bioconda offers a collection of packages and not an integrated system and can be
quite heavy in memory requirements. Hence, we think that “package-manager-
integration” is not necessarily an indication of the strength of the WMS. It is a specific
choice, one that offers ease of installation but has its pitfalls as well. GenPipes does
not use package managers by design. GenPipes manages its own libraries making
sure there is no conflicting libraries in the process. For users who do not want to install
GenPipes manually, we offer a Docker container that has also been tested with
Singularity. We have updated the GenPipes’ bitbucket documentation to highlight the
availability of the GenPipes’ Docker container.

“container-integration” has already been included in the table under the
“Cloud/Container” column.
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* I am pleased to see that GenPipes indeed supports aggregation over many samples.
What remains is the question whether the only entity to aggregate over are samples. If
so, only over all samples or is it possible to express e.g. an arbitrary grouping of
samples? Moreover, what about other properties, e.g. for scanning a parameter
space? I suggest to somehow reflect the different ways of aggregation in the feature
table, maybe using the terms that I mentioned in my first review.

GenPipes is a flexible python framework that aggregates over readsets, samples and
other entities, like chromosomes, based on the pipeline. Arbitrary groupings of samples
can be defined in pipelines that use design files, like chipseq and rnaseq. Scanning
parameter space can be done by adjusting the configuration files. There isn’t a set of
limited/defined aggregation methods we use; aggregation is used based on each
pipeline’s needs. The user can refer to the documentation of each pipeline to see what
is possible. For user implemented pipelines, there is no restriction on the aggregations
possible.

We have added the following lines to the text to highlight some of these points:

“… GenPipes can aggregate and merge samples as indicated by the readset file.”
“… Configuration files are customizable, allowing users to adjust different parameters.”
“… Custom sample groupings can be defined in the design file.”

# Minor
* Please mention in the caption of the feature table that community based workflows
are not considered in the comparison. It might otherwise be that readers overlook this
in the main text.

We have added test to the caption as follows:

“Modified from Griffith & Griffith et al.  [57]. Note that community-built pipelines are not
considered in the Pipelines section of the table.”

* Figure S1 contains a lot of typos, e.g. "reasdet", which I guess is supposed to be
readset?

Thank you, we have corrected the typos in Figure S1.

Additional Information:

Question Response

Are you submitting this manuscript to a
special series or article collection?

No

Experimental design and statistics

Full details of the experimental design and
statistical methods used should be given
in the Methods section, as detailed in our
Minimum Standards Reporting Checklist.
Information essential to interpreting the
data presented should be made available
in the figure legends.

Have you included all the information
requested in your manuscript?

Yes

Resources Yes
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A description of all resources used,
including antibodies, cell lines, animals
and software tools, with enough
information to allow them to be uniquely
identified, should be included in the
Methods section. Authors are strongly
encouraged to cite Research Resource
Identifiers (RRIDs) for antibodies, model
organisms and tools, where possible.

Have you included the information
requested as detailed in our Minimum
Standards Reporting Checklist?

Availability of data and materials

All datasets and code on which the
conclusions of the paper rely must be
either included in your submission or
deposited in publicly available repositories
(where available and ethically
appropriate), referencing such data using
a unique identifier in the references and in
the “Availability of Data and Materials”
section of your manuscript.

Have you have met the above
requirement as detailed in our Minimum
Standards Reporting Checklist?

Yes
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ABSTRACT  

With the decreasing cost of sequencing and the rapid developments in genomics technologies and 

protocols, the need for validated bioinformatics software that enables efficient large-scale data processing 

is growing. Here we present GenPipes, a flexible Python-based framework that facilitates the development 

and deployment of multi-step workflows optimized for High Performance Computing clusters and the cloud. 

GenPipes already implements 12 validated and scalable pipelines for various genomics applications, 

including RNA-Seq, ChIP-Seq, DNA-Seq, Methyl-Seq, Hi-C, capture Hi-C, metagenomics and PacBio long 

read assembly. The software is available under a GPLv3 open source license and is continuously updated 

to follow recent advances in genomics and bioinformatics. The framework has been already configured on 

several servers and a docker image is also available to facilitate additional installations. In summary, 

GenPipes offers genomic researchers a simple method to analyze different types of data, customizable to 

their needs and resources, as well as the flexibility to create their own workflows. 

Manuscript Click here to
access/download;Manuscript;GenPipes_GigaScience_Resubmis
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INTRODUCTION 

Sequencing has become an indispensable tool in our quest to understand biological processes. 

Moreover, facilitated by a significant decline in overall costs, new technologies and experimental protocols 

are being developed at a fast pace. This has resulted in massive amounts of sequencing data being 

produced and deposited in various public archives. For instance, a number of national initiatives, such as 

Genomics England and All of US, plan to sequence hundreds of thousands of individual genomes in an 

effort to further develop precision medicine. Similarly, a number of large initiatives, such as ENCODE [1] 

and the International Human Epigenome Consortium (IHEC) [2], plan to generate thousands of 

epigenomics datasets to better understand gene regulation in normal and disease processes. Despite this 

rapid progress in sequencing, genomics technologies and available datasets, processing and analyses 

have struggled to keep up. Indeed, the need for robust, open-source and scalable bioinformatics pipelines 

has become a major bottleneck for genomics [3].  

Available bioinformatics tools for genomic data can be categorized into three different groups: 1) 

analysis platforms/workbenches, 2) workflow management systems (WMS)/frameworks, and 3) individual 

analysis pipelines/workflows. Platforms of the first type, like Galaxy [4] or DNA Nexus [5], provide a full 

workbench for data upload and storage, and are accompanied with a set of available tools. While they 

provide fast and easy user services, such tools can be inconvenient for large scale projects due to having 

to move sizeable datasets to the platform. In the second type, WMSs such as Snakemake [6], Nextflow [7], 

BPipe [8], BigDataScript [9] and declarative workflow description languages, such as CWL or WDL are 

dedicated to providing a customizable framework to build bioinformatics pipelines. Such solutions are 

flexible and can help in pipeline implementation but rarely provide robust pre-built pipelines which are ready 

for production analysis. Finally, tools of the third type are individual analysis pipelines for various 

applications that have been validated and published. These are useful for specific applications but can 

sometimes be challenging to implement, difficult to modify or scale-up. They have also rarely been tested 

on multiple computing infrastructures. 

Here we present GenPipes, an open-source, Python-based WMS for pipeline development. As part 

of its implementation, GenPipes includes a set of high-quality, standardized analysis pipelines, designed 

for High Performance Computing (HPC) resources and cloud environments. GenPipes’ WMS and pipelines 

have been tested, benchmarked and used extensively over the past four years. GenPipes is continuously 

updated and is configured on several different HPC clusters with different properties. By combining both 

WMS and extensively validated End-to-End analysis workflows, GenPipes offers turnkey analyses for a 

wide range of bioinformatics applications in the genomics field while also enabling flexible and robust 

extensions. 
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MATERIAL AND METHODS 

Overview of the GenPipes Framework 

GenPipes is an object-oriented framework consisting of Python scripts and libraries which create a 

list of jobs to be launched as Bash commands (Figure 1). There are four main objects that manage the 

different components of the analysis workflow, namely, Pipeline, Step, Job and Scheduler. The main object 

is the “Pipeline” object which controls the workflow of the analysis. Each specific analysis workflow is thus 

defined as a specific Pipeline object. Pipeline objects can inherit from one another. The Pipeline object 

defines the flow of the analysis by calling specific “Step” objects. The Pipeline instance could call all steps 

implemented in a pipeline or only a set of steps selected by the user. Each step of a pipeline is a unit block 

that encapsulates a part of the analysis (e.g., trimming or alignment). The Step object is a central unit object 

which corresponds to a specific analysis task. The execution of the task is directly managed by the code 

defined in each Step instance; some steps may execute their task on each sample individually while other 

steps execute their task using all the samples collectively. The main purpose of the Step object is to 

generate a list of “Job” objects which correspond to the consecutive execution of single tasks. The Job 

object defines the commands that will be submitted to the system. It contains all the elements needed to 

execute the commands, such as input files, modules to be loaded, as well as job dependencies and 

temporary files. Each Job object will be submitted to the system using a specific “Scheduler” object. The 

Scheduler object creates execution commands that are compatible with the user’s computing system. Four 

different Scheduler objects have already been implemented (PBS, SLURM, Batch and Daemon), see 

below.  

GenPipes’ object-oriented framework simplifies the development of new features and its adaptation 

to new systems; new workflows can be created by implementing a Pipeline object which inherits features 

and steps from other existing Pipeline objects. Similarly, deploying GenPipes on a new system may only 

require the development of the corresponding Scheduler object along with specific configuration files. 

GenPipes’ command execution details have been implemented using a shared library system which allows 

the modification of tasks by simply adjusting input parameters. This simplifies code maintenance and makes 

changes in software versions consistent across all pipelines. 

 

Freely distributed and pre-installed on a number of HPC resources  
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GenPipes is an open-source framework freely distributed and open for external contributions from 

the developer community. GenPipes can be installed from scratch on any Linux cluster supporting Python 

2.7 by following the available instructions (https://bitbucket.org/mugqic/genpipes/src/master/). GenPipes 

can also be used via a Docker image which simplifies the setup process and can be used on a range of 

platforms, including cloud platforms. This allows system-wide installations, as well as local user installations 

via the Docker image without needing special permissions. 

Through a partnership with the Compute Canada consortium (https://www.computecanada.ca), the 

pipelines and third-party tools have also been configured on 6 different Compute Canada HPC centers. It 

allows any Canadian researcher to use GenPipes along with the needed computing resources by simply 

applying to the consortium [10]. To ensure consistency of pipeline versions and used dependencies (such 

as genome references and annotation files) and to avoid discrepancy between compute sites, pipeline 

setup has been centralized to one location which is then distributed on a real-time shared file system: the 

CERN Virtual Machine File System [11].  

 

Running GenPipes 

 GenPipes is a command line tool. Its use has been simplified to accommodate general users. A 

full tutorial is available [12]. Briefly, to launch GenPipes, the following is needed: 

 A readset file that contains information about the samples, indicated using the flag “-r”. GenPipes 

can aggregate and merge samples as indicated by the readset file. 

 Configuration/ini files that contain parameters related to the cluster and the third-party tools, 

indicated using the flag “-c”. Configuration files are customizable, allowing users to adjust different 

parameters. 

 The specific steps to be executed, indicated by the flag “-s”. 

The generic command to run GenPipes is: 

<pipeline>.py -c myConfigurationFile -r myReadSetFile -s 1-X > Commands.txt && bash Commands.txt 

Where <pipeline> can be any of the 12 available pipelines and X is the step number desired. Commands.txt 

contains the commands that the system will execute. 

Pipelines that conduct sample comparisons, like ChIP-Seq and RNA-Seq, require a design file that 

describes each contrast. Custom sample groupings can be defined in the design file. Design files are 

indicated by the flag “-d”. The tumour_pair pipeline requires normal-tumour pairing information provided in 

a standard CSV file using the “-p” option.  For more information on the design file and the content of each 

file type, please consult the GenPipes tutorial and the online documentation. 
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 When the GenPipes command is launched, required modules and files will be searched for and 

validated. If all required modules and files are found, the analysis commands will be produced. GenPipes 

will create a directed acyclic graph (DAG) that defines job dependency based on input and output of each 

step. For a representation of the DAG of each pipeline, refer to supplementary figures S1-14. Once 

launched, the jobs are sent to the scheduler and queued. As jobs complete successfully, their dependent 

jobs are released by the scheduler to run. If a job fails, all its dependent jobs are terminated and an email 

notification is sent to the user. When GenPipes is re-run, it will detect which steps have successfully 

completed, as described in section ‘Smart relaunch features’, and skip them but will create the command 

script for the jobs that were not completed successfully. To force the entire command generation, despite 

successful completion, the “-f” option should be added. 

RESULTS 

 GenPipes was first released in 2014. Since then, it has grown to implement 12 pipelines and is 

currently installed and maintained on 13 different clusters (Figure 2a-b). GenPipes has been actively used 

for the last four years to quality control and analyze thousands of samples each year (Figure 2c). It has also 

been used to analyze data for several large-scale projects such as IHEC [2] and eFORGE [13].  

 

Key features of GenPipes 

GenPipes’ framework has been optimized to facilitate large scale data analysis. Several features 

make this possible (Figure 2a): 

Multiple schedulers 

GenPipes is optimized for HPC processing. It can currently accommodate four different types of 

schedulers: 

 PBSScheduler creates a batch script that is compatible with a PBS (TORQUE) system. 

 SLURMscheduler creates a batch script that is compatible with a SLURM system. 

 BatchScheduler creates a batch script which contains all the instructions to run all the jobs one 

after the other. 

 DaemonScheduler creates a log of the pipeline command in a JSON file. 

 

Job dependencies 

In order to minimize the overall analysis time, GenPipes uses a dependency model based on input 

files, which is managed at the Job object level. A job does not need to wait for the completion of a previous 

step unless it is dependent on its output. Jobs thus become active and can be executed as soon as all their 

dependencies are met, regardless of the status of previous jobs or of other samples. Thus, when a pipeline 
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is run on multiple samples, it creates several dependency paths, one per sample, each of which completes 

at its own pace.   

Smart relaunch features 

Large scale data analysis is subject to failure which could occur due to system failure (e.g. power 

outage, system reboot, etc...) or user failure (errors in set parameters, or resources). To limit the micro-

management and time required to relaunch the pipeline from scratch, GenPipes includes a system of 

reporting which provides the status of every job in the analysis in order to facilitate the detection of jobs 

which have failed. Additionally, a relaunch system is implemented which allows restarting the analysis at 

the exact state before the failure. The relaunch system uses two features: md5sum hash and time stamps. 

When GenPipes is launched, a md5sum hash is produced for each command. Upon relaunch following a 

failure, the newly produced hash is compared to that of the completed job to detect changes in the 

commands. If the hashes are different, the job is relaunched. To detect updates in input files, GenPipes 

compares the time stamp on the input and output files of already completed jobs. If the date stamp on the 

input files is more recent than that on the output files then the job is relaunched. If neither the hash code 

nor the time stamp flag the job to be relaunched then it is considered complete and up-to-date and it will be 

skipped in the pipeline restart process.    

Configuration files 

Running large-scale analyses requires a very large number of parameters to be set. GenPipes 

implements a superposed configuration system to reduce the time required to set-up or modify parameters 

needed during the analysis. Configuration files, also referred to as “ini” files, are provided among the 

arguments of the GenPipes command. These files follow the standard INI format, which was selected for 

its readability and ease of use by non-expert users. Each pipeline reads all configuration files, one after the 

other, based on a user defined order. The order is of major importance as the system will overwrite a 

parameter each time it is specified in a new ini file. The system allows the use of the default configuration 

files provided in GenPipes alone or in combination with user specific configuration files. Configuration files 

provided with GenPipes are the result of years of experience along with intensive benchmarking. 

Additionally, several configuration files adjusted for different compute systems or different model organisms 

are available. The main advantage of this system is to reduce the users’ task; only parameters that need 

to be modified (e.g system parameters, genomic resources, user specific parameters) have to be adjusted 

during the set-up phase of the analysis. To track and enable reproducibility, GenPipes always outputs a file 

containing the final list of parameters used for the analysis.  

Choice among multiple inputs 

GenPipes represents a series of Step objects that are interdependent based on inputs and outputs. 

Many of the pipeline steps implemented in GenPipes, represent filtering, manipulation or modification of 
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specific genomics files share common formats (e.g. bam, fastq, vcf). To ensure more flexibility in the 

analysis, a system of ordered list to be interpreted as input files is used. For a given Step, each Job can be 

given a series of inputs. The Job will browse its list of possible inputs and will consider them based on the 

order in the list. The first input file found either on disk or in the overall output list will be chosen as input. 

The chosen input will determine the dependency of the Job to the other Jobs in the pipeline. This system 

is really flexible and allows users to skip specific steps in the pipeline if they consider them unnecessary.  

Customizable workflows 

Despite the benchmarking and testing made on the standard analysis procedures implemented in 

GenPipes, some users may be interested in modifying pipelines. In order to make GenPipes more flexible, 

a protocol system is used. The system allows the implementation of different workflows into a single Pipeline 

object. As a result, one can replace specific steps by other user specific ones. In that case, the user will 

only need to implement these new Steps and define an additional protocol which will use part of the initial 

Steps and the newly developed ones. As an example, this has been used to incorporate the Hi-C analysis 

workflow and the capture Hi-C analysis workflow into GenPipes’ hicseq pipeline. A flag (-t hic or -t capture) 

can be used to specify the workflow to be executed. This system has been developed to reduce the amount 

of work for external users that decide to contribute to code development and to limit the number of Pipeline 

objects to maintain. This will also allow us to provide multiple workflows per pipeline to appeal to different 

tool preferences in each field. 

Facilitating dependency installation  

Genomic analyses require third party tools, as well as genome sequence files, annotation files and 

indices. GenPipes comes configured with a large set of reference genomes and their respective annotation 

files, as well as indices for most aligners. It also includes a large set of third party tools. If GenPipes is being 

installed from scratch on new clusters, automatic bash scripts that download all tools and genomes are 

included to ease the setup process. These scripts support local installations without the need for super-

user privileges. Tools and dependencies are versioned and are loaded by GenPipes in a version-specific 

manner. This allows different pipelines to use different software versions based on need. It also allows 

retention of the same parameters and tools for any given project for reproducibility. GenPipes is also 

provided as a container version for which no dependency installation is required. 

 

Available workflows 

GenPipes implements 12 standardized genomics workflows including: DNA-Seq, Tumour Analysis, 

RNA-Seq, de novo RNA-Seq, ChIP-Seq, PacBio assembly, Methyl-Seq, Hi-C, capture Hi-C, and 

Metagenomics (Figure 2c). All pipelines have been implemented following a robust design and development 
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routine by following established gold standards standard operating protocols (SOP). Below we summarize 

GenPipes’ workflows; more details are available in the GenPipes documentation. For more details 

concerning computational resources used by each pipeline, refer to supplementary Table S1. All workflows 

accept a bam or a fastq file as input. 

DNA-Seq Pipeline: 

DNA-Seq has been implemented optimizing the GATK best practices SOPs [14]. This procedure 

entails trimming raw reads derived from whole genome or exome data followed by alignment to a known 

reference, post alignment refinements and variant calling. Trimmed reads are aligned to a reference by the 

Burrows-Wheeler Aligner, bwa-mem [15]. Refinements of mismatches near indels and base qualities are 

performed using GATK indels realignment and base recalibration [14] to improve read quality post 

alignment. Processed reads are marked as fragment duplicates using picard mark duplicates [14] and SNP 

and small indels are identified using either GATK haplotype callers or samtools mpileup [16]. The Genome 

in a Bottle [17] dataset was used to select steps and parameters minimizing the false positive rate and 

maximizing the true positive variants to achieve a sensitivity of 99.7%, precision of 99.1% and F1-score of 

99.4% (For more details, refer to Supplementary Materials). Finally, additional annotations are incorporated 

using dbNSFP [18] and/or Gemini [19XX] and quality control metrics are collected at various stages and 

visualized using MulitQC [20]. This pipeline has two different protocols, the default protocol based on the 

GATK variant caller, haplotype_caller, (“-t mugqic”, Figure 3) and one based on the mpileup/bcftools caller 

(“-t mpileup”, Figure S1). Another pipeline that is optimized for deep coverage samples, 

dnaseq_high_coverage, can be found in Figure S2. 

RNA-Seq Pipeline: 

This pipeline aligns reads with STAR [21] 2-passes mode, assembles transcripts with Cufflinks [22] 

and performs differential expression with Cuffdiff [23]. In parallel, gene-level expression is quantified using 

htseq-count [24], which produces raw read counts that are subsequently used for differential gene 

expression with both DESeq [25] and edgeR [26]. Several common quality metrics (rRNA content, 

expression saturation estimation etc.) are also calculated through the use of RNA-SeQC [27] and in-house 

scripts. Gene Ontology terms are also tested for over-representation using GOseq [28]. Expressed short 

SNVs and indels calling is also performed by this pipeline, which optimizes GATK best practices to reach 

a sensitivity 92.8%, precision 87.7% and F1-score 90.1%. A schema of pipeline steps can be found in 

Figure S3. Another pipeline, rnaseq_light, based on Kallisto [29] and used for quick quality control can be 

found in Figure S4. 

De-Novo RNASeq Pipeline: 

This pipeline is adapted from the Trinity-Trinotate suggested workflow [30] [31]. It reconstructs 

transcripts from short reads, predicts proteins and annotates leveraging several databases. Quantification 
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is computed using RSEM and differential expression is tested in a manner identical to the RNA-seq pipeline. 

We observed that the default parameters of the Trinity suite are very conservative which could result in the 

loss of low-expressed but biologically relevant transcripts. In order to provide the most complete set of 

transcripts, the pipeline was designed with lower stringency during the assembly step in order to produce 

every possible transcript and not miss low expressed mRNA. A stringent filtration step is included afterward 

in order to provide a set of transcripts that make sense biologically. A schema of pipeline steps can be 

found in Figure S5. 

ChIP-Seq Pipeline: 

The ChIP-Seq workflow is based on the ENCODE [1] workflow. It aligns reads using the Burrows-

Wheeler Aligner. It creates tag directories using Homer [32]. Peaks are called using MACS2 [33] and 

annotated using Homer. Binding motifs are also identified using Homer. Metrics are calculated based on 

IHEC requirements [34]. The ChIP-Seq pipeline can also be used for ATAC-Seq samples. However, we 

are developing a pipeline that is specific to ATAC-Seq. A schema of pipeline steps can be found in Figure 

S6. 

The Tumour Analysis Pipeline: 

The Tumour Pair workflow inherits the bam processing protocol from DNA-seq implementation to 

retain the benchmarking optimizations but differs in alignment refinement and mutation identification by 

maximizing the information utilizing both tumour and normal samples together. The pipeline is based on an 

ensemble approach, which was optimized using both the DREAM3 challenge [35] and the CEPH mixture 

datasets to select the best combination of callers for both SNV and SV detection. For SNVs, multiple callers 

such as GATK mutect2, VarScan2 [36], bcftools and VarDict [37] were combined to achieve a sensitivity of 

97.5%, precision of 98.8% and F1-score of 98.1% for variants found in 2 or more callers. Similarly, SVs 

were identified using multiple callers: DELLY [38], LUMPY [39], WHAM [40], CNVkit [41] and Svaba [42] 

and combined using MetaSV [43] to achieve a sensitivity of 84.6%, precision of 92.4% and F1-score of 

88.3% for duplication variants found in the DREAM3 dataset (For more details, refer to Supplementary 

Material). The pipeline also integrates specific cancer tools to estimate tumour purity, tumour ploidy of 

sample pair normal-tumour. Additional annotations are incorporated to the SNV calls using dbNSFP [18] 

and/or Gemini [19] and quality control metrics were collected at various stages and visualized using MulitQC 

[20]. This pipeline has 3 protocols (sv, ensemble or fastpass). Schemas of pipeline steps for the three 

protocols can be found in Figures S7, 8 and 9. 

Whole Genome Bisulfite Seq Pipeline (WGBS or Methyl-Seq): 

The Methyl-Seq workflow is adapted from the Bismark pipeline [44]. It aligns paired-end reads with 

botiwe2 default mode. Duplicates are removed with Picard and methylation calls are extracted using 

bismark [44]. Wiggle tracks for both read coverage and methylation profile are generated for visualization. 
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Variants calls can be extracted from the WGBS data directly using bisSNP [45]. Bisulfite conversion rates 

are estimated with lambda genome or from human non-CpG methylation directly. Several metrics based 

on IHEC requirements are also calculated. Methyl-Seq can also process capture data if provided with a 

capture bed file. A schema of pipeline steps can be found in Figure S10. 

Hi-C Pipeline: 

The HiC-Seq workflow aligns reads using HiCUP [46]. It creates tag directories, produces 

interaction matrices, identifies compartments and significant interactions using Homer. It identifies 

Topologically Associating Domains using TopDom [47] and RobusTAD (bioRxiv 293175). It also creates 

“.hic” files using JuiceBox [48] and metrics reports using MultiQC [20]. The HiC-Seq workflow can also 

process capture Hi-C data with the flag “-t capture” using CHICAGO [49]. Schemas for the HiC and capture 

HiC protocols of this pipeline can be found in Figure S11 and Figure S12 respectively. 

The Metagenomic Pipeline (rRNA gene amplification analysis): 

This pipeline is based on the established Qiime procedure [50] for amplicon-based metagenomics. 

It assembles read pairs using FLASH [51], detects chimeras with uchime [52] and picks OTUs using vsearch 

[53]. OTUs are then aligned using PyNAST [54] and clustered with FastTree [55]. Standard diversity indices, 

taxonomical assignments and ordinations are then calculated and reported graphically. A schema of 

pipeline steps can be found in Figure S13. 

 

 

The PacBio Pipeline: 

The PacBio whole genome assembly pipeline is built following the HGAP method [31], including 

additional features, such as base modification detection 

(https://github.com/PacificBiosciences/Bioinformatics-Training/wiki/Methylome-Analysis-Technical-Note) 

and genome circularization [56]. De novo assembly is performed using PacBio's SMRT Link software 

(https://github.com/PacificBiosciences/SMRT-Link/wiki). Assembly contigs are generated using HGAP4. 

Alignments are then corrected and used as seeds by FALCON 

(https://github.com/PacificBiosciences/FALCON/wiki/) to create contigs. The resulting contigs are then 

polished and processed by “Arrow” (https://github.com/PacificBiosciences/GenomicConsensus) which 

ultimately generates high quality consensus sequences. An optional step allowing assembly circularization 

is integrated at the end of the pipeline. A schema of pipeline steps can be found in Figure S14. 

 

Comparison with other solutions for NGS analysis 
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Data collected for select tools modified from Griffith & Griffith et al. [57] (Table 1), shows that 

GenPipes’ strength lies in its robust WMS that comes with one of the most diverse selection of analysis 

pipelines which have been thoroughly tested. The pipelines in the framework cover a wide range of 

sequencing applications (Figure 2a). The pipelines are end-to-end workflows running complete 

bioinformatics analyses. While many available pipelines conclude with a bam file or run limited post-bam 

analysis steps, the pipelines included in GenPipes are extensive, often having as many as 40 different 

steps that cover a wide range of post-bam processing. It is important to note that GenPipes, as well as 

several other WMSs, like Nextflow [58] and SnakeMake [59], support community-developed pipelines, 

however, those have not been included in the comparison. 

GenPipes is compatible with HPC computing, as well as cloud computing [60] and includes a 

workflow manager that can be adapted to new systems. GenPipes also provides job status tracking through 

JSON files that can then be displayed on a web portal (an official portal for GenPipes will be released soon). 

GenPipes’ available pipelines facilitate bioinformatics processing, while the framework makes it flexible for 

modifications and new implementations. 

GenPipes developers offer continuous support through a Google forum page [61] and a help desk 

email address (pipelines@computationalgenomics.ca). Since the release of version 2.0.0 in 2014, a 

community of users has run GenPipes to conduct approximately 3000 analyses processing around 100,000 

samples (Figure 2b-c). 

 

DISCUSSION and CONCLUSION 

GenPipes is a workflow management system that facilitates building robust genomic workflows. 

GenPipes is a unique solution which combines both a framework for development and end-to-end analysis 

pipelines for a very large set of genomics fields. The efficient framework for pipeline development has 

resulted in a broad community of developers with over 30 active branches and more than 10 forks of the 

GenPipes repository. GenPipes has several optimized features that adapt it to large scale data analysis, 

namely: 

● Multiple schedulers: GenPipes is optimized for HPC processing. It currently accommodates 4 

schedulers. 

● Job dependencies: GenPipes establishes dependencies among its different steps. This enables 

launching all the steps at the same time and minimizes queue waiting time and management. 

● Smart relaunch: GenPipes sets and detects flags at each successful step in the pipeline. This 

allows the detection of successfully completed steps and easy relaunch of failed steps.  

● Parameter encapsulation: Genpipes uses a superposed configuration system to parse all 

required parameters from configuration files. This simplifies the use of the framework and makes 

it more flexible to user adjustments. Tested configuration files that are tailored to different clusters 

and different species are included with GenPipes. 
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● Diverse inputs: GenPipes has been developed to launch using different starting inputs, making 

it more flexible. 

● Flexible workflows: GenPipes implements a workflow in steps. Users can choose to run specific 

steps of interest, limiting waste of time and resources. 

 

GenPipes is under continuous development to update established pipelines and to create new 

pipelines for emerging technologies. For instance, new genomics pipelines are being developed for ATAC-

Seq, single cell RNA-Seq and HiChIP. GenPipes is also being redeveloped to use the Common Workflow 

Language (CWL) to provide a cloud compatible version more seamlessly and more Scheduler objects, like 

DRMAA, are being added to expand compatibility with more platforms. GenPipes has become a reliable 

bioinformatics solution that has been used in various genomics publications for DNA-Seq [62-69], RNA-

Seq [70] and ChIP-Seq [71] analyses. GenPipes is currently available as source code, as well as a Docker 

image for easy installation and use. GenPipes has been optimized for HPC systems but can run on a laptop 

computer on small datasets. 

 

Availability and requirements 

● Project name: GenPipes 

● Project home page: http://www.c3g.ca/genpipes 

● Operating system(s):  Linux; Can be used on Windows and Mac OS using Docker 

● Programming language: Python 

● Other requirements: Workflow-dependant; detailed in documentation 

● License: GNU GPLv3 

● SciCrunch RRID: SCR_016376 

 

SUPPLEMENTARY DATA 

No Supplementary Data 
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TABLE AND FIGURES LEGENDS 
 

Figure 1 - General workflow of GenPipes  

 

Diagram showing how the information flows from the user command line input through the 4 different 

objects (Pipeline, Step, Job and Scheduler) in order to generate system specific executable outputs. 

  

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 

17 

Figure 2 - GenPipes properties 

 

 

 

GenPipes’ properties and growth. (a) Diagram showing GenPipes’ features, compatible computing 

platforms and available pipelines. (b) GenPipes’ available pipelines and maintained servers since the 

release of GenPipes in 2014. (c) Bar plot showing the number of GenPipes runs per year since its release. 
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Figure 3 – GenPipes DNASeq pipeline diagram 

 

 

 

 

 

 

Schematic representation of GenPipes’ dnaseq.py pipeline. Hexagons represent steps in the pipeline. 

White hexagons represent steps that process input from a single sample, while grey ones represent steps 

that process input from several samples. Arrows show step dependencies.  
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Table 1 - Comparison of available solutions for NGS analysis.  

 

Modified from Griffith & Griffith et al.  [57]. Note that community-built pipelines are not considered in the 

Pipelines section of the table. 
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Dear Editor,  

 

 

 Thank you for the opportunity to submit a revised version of the manuscript GIGA-D-18-

00198, which addresses the final points raised by the reviewers. Please find our point-by-point 

response below. New text that has been added to the revised manuscript is shown in red. 

 

 

Response to the Reviewers: 

 

 

Reviewer #1: I thank the authors for taking the time to address my previous comments. I believe 

the manuscript is much stronger as a result and I have no further comments to add. 

 

We thank the reviewer for his constructive criticism that has strengthened the manuscript.  

 

Reviewer #2: The authors successfully address various of my and my colleagues requests. 

However, certain issues remain, which I will list in the following: 

 

# Major 

 

* In the introduction, the authors say that frameworks like Galaxy can be inconvenient on large 

scale projects. Why is that? I think such a claim should be support by a detailed reasoning. 

 

Frameworks like Galaxy are generally web-based. For large scale projects, uploading large 

datasets to a platform can be time/resource intensive. In general, when projects get larger, it is 

more efficient to bring the software to the data and not upload the data to the software location.  
 

We have adjusted the text to say: 

 
“… such tools can be inconvenient for large scale projects due to having to move sizeable datasets to the 

platform”. 

 

* When mentioning that WMSs rarely provide pre-built pipelines ready for production analysis, 

the authors should also mention that they nevertheless support development of such pipelines by 

the community of users, including linking out to examples like nf-core and 

github.com/snakemake-workflows. 

 

We have edited the text accordingly: 

 
“It is important to note that GenPipes, as well as several other WMSs, like Nextflow [58] and SnakeMake 

[59], support community-developed pipelines, however, those have not been included in the comparison.” 

 

* In my previous comment, I mentioned that the feature table is biased. While the authors added 

the columns suggested, these where only meant as examples. I would have thought that the authors 

take this as incentive to get a less biased view, which is arguably very hard. However, even when 

only taking the reviewer comments as a base, there are plenty of other columns which should go 
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into the table. For example, the authors should add "DRMAA support", "status/progress 

monitoring" as a column. Moreover, the level of cloud support in GenPipes is quite different from 

what is offered by e.g. Nextflow and Snakemake. There, you have full Kubernetes support, in case 

of Snakemake even without the requirement of a shared filesystem. Maybe split the cloud column 

into "basic cloud support" and "kubernetes support". 

 

 Our intentions with Table1 was to provide the reader with an overview of the features of 

several tools in the field but not necessarily an exhaustive list. We did not design the table to be 

biased towards GenPipes as we only modified one of the most comprehensive tables we found in 

recent manuscripts (Griffith & Griffith et al.). Based on that initial table and reviewers’ comments, 

we added 3 features and 1 WMS. Although more could be added, it would also start cluttering the 

table and make it difficult to extract meaningful information.   

 

“status/progress monitoring” is already included in the table under “Tracking”. We have 

modified the column name to make it less ambiguous. 

 

Concerning “DRMAA support” and splitting the “cloud support” column into “basic 

cloud” and “kubernetes support”, we feel that this is highly technical/specific for the average user. 

 

 

* The installation mechanism for new software tools (outside of what is provided out of the box) 

(explained here: https://bitbucket.org/mugqic/genpipes/src/master/#markdown-header-modules), 

seems like manually redoing all the work that is already solved by package managers like conda 

or container engines like singularity. For example, Bioconda provides a library of over 4000 

bioinformatics software packages which can be readily used from any WMS that supports conda, 

and Biocontainers provides the same for container based deployment (which lacks conda's ability 

to rapidly compose custom combinations of tools though). In order to make the comparison fair, 

the feature table should therefore contain two columns called "package-manager-integration" and 

"container-integration". For an example of what level of integration I am referring to, see 

https://snakemake.readthedocs.io/en/stable/snakefiles/deployment.html#integrated-package-

management and 

https://www.nextflow.io/docs/latest/conda.html?highlight=conda. 
 

Bioconda offers a collection of packages and not an integrated system and can be quite 

heavy in memory requirements. Hence, we think that “package-manager-integration” is not 

necessarily an indication of the strength of the WMS. It is a specific choice, one that offers ease of 

installation but has its pitfalls as well. GenPipes does not use package managers by design. 

GenPipes manages its own libraries making sure there is no conflicting libraries in the process. 

For users who do not want to install GenPipes manually, we offer a Docker container that has also 

been tested with Singularity. We have updated the GenPipes’ bitbucket documentation to highlight 

the availability of the GenPipes’ Docker container. 

 

“container-integration” has already been included in the table under the “Cloud/Container” 

column. 

 

https://www.nextflow.io/docs/latest/conda.html?highlight=conda
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* I am pleased to see that GenPipes indeed supports aggregation over many samples. What remains 

is the question whether the only entity to aggregate over are samples. If so, only over all samples 

or is it possible to express e.g. an arbitrary grouping of samples? Moreover, what about other 

properties, e.g. for scanning a parameter space? I suggest to somehow reflect the different ways of 

aggregation in the feature table, maybe using the terms that I mentioned in my first review. 

 

GenPipes is a flexible python framework that aggregates over readsets, samples and other 

entities, like chromosomes, based on the pipeline. Arbitrary groupings of samples can be defined 

in pipelines that use design files, like chipseq and rnaseq. Scanning parameter space can be done 

by adjusting the configuration files. There isn’t a set of limited/defined aggregation methods we 

use; aggregation is used based on each pipeline’s needs. The user can refer to the documentation 

of each pipeline to see what is possible. For user implemented pipelines, there is no restriction on 

the aggregations possible.  
 

We have added the following lines to the text to highlight some of these points: 

 
“… GenPipes can aggregate and merge samples as indicated by the readset file.” 

“… Configuration files are customizable, allowing users to adjust different parameters.” 

“… Custom sample groupings can be defined in the design file.” 

 

 

# Minor 

* Please mention in the caption of the feature table that community based workflows are not 

considered in the comparison. It might otherwise be that readers overlook this in the main text. 

 

We have added test to the caption as follows: 

 
“Modified from Griffith & Griffith et al.  [57]. Note that community-built pipelines are not considered in 

the Pipelines section of the table.” 

 

* Figure S1 contains a lot of typos, e.g. "reasdet", which I guess is supposed to be readset? 

 

Thank you, we have corrected the typos in Figure S1. 


