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beneficial health effects including protection against allergies and gastroesophageal
diseases. The majority of H. pylori-colonized individuals, an estimated 85%, do not
present any detrimental effects. The mechanisms that promote host tolerance to the
bacterium in the gastrointestinal mucosa and systemic regulatory effects requires
further study hence we investigated the dynamics of immunoregulatory mechanisms
triggered by H. pylori infection using a high-performance computing driven ENteric
Immunity Simulator (ENISI) multiscale model. The immune responses were simulated
in a high-resolution model integrating agent-based model, ordinary and partial
differential equations.
Results: The outputs were analyzed using two sequential stages wherein the first stage
used a partial rank correlation coefficient regression-based and the second employed a
metamodel-based global sensitivity analysis. The influential parameters screened from
the first stage were selected to be varied for the second stage. The outputs from both
stages were combined as a ‘training dataset’ to build a spatiotemporal metamodel. The
Sobol’ indices measured the time-varying impact of input parameters during the
initiation, peak and chronic phases of infection. The data analytics methods identified
epithelial cell proliferation and epithelial cell death as key parameters that control
infection outcomes. In-silico validation showed that colonization with H. pylori
decreased with a decrease in epithelial cell proliferation which was linked to regulatory
macrophages and tolerogenic dendritic cells.
Conclusion: The hybrid model of H. pylori infection identified epithelial cell proliferation
as a key factor for successful colonization of the gastric niche and highlighted the role
of tolerogenic dendritic cells and regulatory macrophages in both modulating the host
responses and shaping infection outcomes.
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Order of Authors Secondary Information:

Response to Reviewers: Point by point response to the Reviewer reports

We would like to thank the reviewers and editors involved for dedicating valuable time
to review our manuscript entitled “High-Resolution Computational Modeling of Immune
Responses in the Gut”. We are extremely grateful to both reviewers and the editors for
their time and attention to our submission. The review was very helpful to us, and the
recommended changes have allowed us to provide better documentation and clarity to
the present work. The review process has been helpful in the improvement of our
submission. We have considered the comments that were made and have prepared
the following point-by-point response.

Reviewer #1: In this manuscript, the authors constructed a multi-scale systems biology
model of Helicobacter pylori infection to study the interaction between bacterial
infection and the immune system. Some modifications could be considered to improve
the quality of this manuscript:

1.      The model needs to be more clearly described in the text. Some details might be
available from the code; nevertheless, it would be helpful for readers to understand if
the authors can include more information regarding the model. For example:

We thank the reviewer for their valuable suggestion. We agree with the reviewer’s
comment and accordingly we updated the manuscript with the response described
below in detail.

 a.  Agent-based model:
        i.      What is the spatial discretization? The authors mentioned it's a 30*10 2D grid
cell, but resident macrophages are in thousands. So multiple cells are allowed in the
same grid location? How many?

Response: i) The model has a spatial discretization such that the dimension of the
entire (two-dimensional) grid is 30nm x 10 nm). An individual grid cell is 1nm x 1nm,
however, this is a configurable run parameter and can be changed without modifying
the model. An individual grid cell is a unit wherein all the agents located within that
location have the same cytokine environment, i.e., for all the agents in that location,
ENISI-MSM would send the same concentration of the cytokines to COPASI. The
resulting time series of cytokine concentrations will be used to update the cytokine
value in the ABM/PDE system and COPASI would simulate a different model for each
of the relevant cell type within that individual grid cell. Below is a figure describing the
grid, also added in the Additional file Fig S2.

The entire grid is divided within into 4 functionally and anatomically distinct sized
compartments such that the dimensions of the 4 compartments are lumen (2nm),
epithelium (1nm), lamina propria (5nm) and gastric lymph node (2nm).
The following compartments are adjacent to each other:
•Lumen - epithelium
•Epithelium - lamina propria
•Lamina propria – gastric lymph node

In the model, there are multiple cells and cell types (i.e., agents) within this dimensional
grid. At the beginning of each simulation cycle, the agents were randomly placed
separated by the four compartments within the 2D grid. The separation of different
types of agents, corresponding to different cell types, into compartments within the grid
is based on the conceptual framework that underlines the model, which is based on
author’s expertise and available information. Currently the individual agents do not
have any physical size meaning that there is no limit of agents within each individual
spatial grid cell. The model is initialized with the concentration of different cell types
(i.e. agents for e.g. macrophages) at the beginning of the simulation by the user. We
demonstrate below how we obtain a count of thousands of resident macrophages. For
e.g., if the initial concentration of resident macrophages in the lamina propria is 30, the
total number of these resident macrophages can be calculated by the equation (1)
described below -
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n(resident macrophages) = sizecompartment(lamina propria) x concentrationintial
(resident macrophages)(1).

n(resident macrophages) = (30 x 5) x 30 = 4500.

The manuscript has been updated with the above addressed points, please refer to
Line129 - Line147, and L217-245.

ii.  What is the time step size?
Response: The time step size is 1 tick ~ 1 day which was obtained during the process
of fitting the output to the results from the mouse model of H. pylori infection. For e.g.
the peak of resident macrophages in lamina propria (refer Fig 2b,d) is observed at ~21
days which is similar to the results obtained in Fig 2A described in ((Viladomiu,
Bassaganya-Riera et al. 2017) (also described in detail in point by point response 2.b).
The manuscript has been updated with the above addressed points, please refer to
Line247  - Line253.
iii.  How is migration implemented for cells and bacteria agents?
Response: The cells and bacteria agents presented in the model have Brownian
motion and move randomly within the compartment. Brownian movement is an
inherent property of a cell. Depending on cell phenotypes the movement can vary, but
all cells with the same phenotype exhibit similar movements. Additionally, chemokine-
driven movement is dependent on chemokine concentration in a tissue site. The
capability of chemokine-driven movement exists in ENISI-MSM if the right chemokines
are represented in the model. However, the focus of this model was to investigate
changes in cell phenotype and not chemokine-driven movement of cells. Thus, the
chemokines driving the movement are not represented in the current model. Cell
migration is implemented in the code as the move() function for each of the cells and
agents, which call the moveRandom() function from the
(https://github.com/NIMML/ENISI-MSM/src/compartment/Compartment.cpp) file.

The manuscript has been updated with the above addressed points, please refer to
Line294  - Line307.

 b.  ODE: What's the COPASI setup for the solver? How is the solver in sync with the
ABM?
Response: The COPASI setup for the solver uses the LSODA (Livermore Solver for
Ordinary Differential Equations) differential equation solver. The default values for the
setup such as the - relative tolerance (1e-6), absolute tolerance (1e-12) and maximum
internal steps of 10000 were maintained. The ENISI MSM sends the current
concentrations of the cytokines
to COPASI. COPASI uses those values to integrate the deterministic
model for one tick, i.e., 1 day. The resulting time series of cytokine
concentrations are used to update the cytokine value in the ABM/PDE
system. COPASI simulates different model for each relevant cell type.

The manuscript has been updated with the above addressed points, please refer to
Line266 - Line274.

 c.  PDE: What package and numerical scheme is used to solve the PDEs? What's the
setting?
Response: ENISI MSM is a multiscale agent-based modeling platform for
computational immunology which was building on our previous works, ENISI MSM that
integrated COPASI, the ODE solver, ENISI, an agent based simulator (Mei, Abedi et al.
2015).
The ENISI MSM PDE solver uses a simple numerical scheme to solve the PDEs
(https://github.com/NIMML/ENISI-MSM/tree/master/src/diffuser) and process
distributed value layer (https://github.com/NIMML/ENISI-
MSM/blob/master/src/grid/ValueLayer.h). The ValueLayer stores the value for a grid
space and provides methods to change the values of individual grid cells. The Diffuser
is used to diffuse the values of the ValueLayer using diffusion (d) and degradation
(delta) constants as described in (Mei, Abedi et al. 2015). The diffusion constant
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determines the migration of values of a grid cell to its neighboring grid cells. As
implemented in ValueLayer library, the diffusion of cytokines follows the equation
shown below also described in Mei el al, 2015. Here, vn is the value of the grid cell
itself at step n. The values of cdelta and cd are degradation and diffusion constant
respectively.
vn = vn-1 + cdelta * [ ∑( cd neighbor *vn-1neighbor) - 6.0 * vn-1]
0.3
1.2
0.3
1.2
-6.0
1.2
0.3
1.2
0.3

The PDE solver uses the above number scheme cd neighbor for the diffusion process.
The step size cdelta is automatically adjusted at the beginning of the simulation based
on the degradation and diffusion constants to avoid underflow errors, i.e., multiple PDE
steps are in general executed per tick. The grid size is the identical with the spatial
discretization for the agents.
We updated the manuscript details to solve PDEs and the setting, please refer to L275-
L293.
2.      The authors listed the values of parameters in Table S1.
    a.  However, it's not clear what their units are (the baseline column seems to include
characters such as "I^2", "#" or "d". are these units? Please clarify).
Response: We thank the reviewer for pointing this out. Those were the units for the
parameters in the COPASI ODE models. The parameters described in Table S1 are
probability values (ranging from 0 to 1) and hence do not have any units. The
characters have been removed and the column 3 of Table_S1 has been updated.

    b.  Also, the sources of the parameter values are not very clear, except for the vague
statement "expert judgement" (Saltelli, Tarantola et al. 2000 is cited, but this is an
article on SA and does not contain parameters).
Response: The values of the parameters for the model presented here are obtained
via best guess based on the qualitative comparison of the computer model outputs with
that of the experimental results obtained from the mouse model of H. pylori infection
(Viladomiu, Bassaganya-Riera et al. 2017) published by NIMML (described here below
in the last paragraph detail).

We want to clarify the practice of using expert opinion is known in the SA field and
hence we cited Saltelli, Tarantola et al. 2000 as it supports the statement. As
discussed in (Thorne, Bailey et al. 2007), one of the challenges encountered using
ABM is the process of determining the parameter values, for e.g. this may include the
lack of the availability of experimental techniques to measure such parameters. Since,
the source of the parameters is not known we estimated the values to fit the data
obtained from the mouse model of infection.

The experimental results in the mouse model indicated that between weeks 2 and 3
post-infection a decrease in bacterial burden in the stomach of LysMcre mice was
observed as shown in Fig 1A of Viladomiu, Bassaganya-Riera et al. 2017. The
decrease in bacterial burden led to a significant and sustained lower colonization levels
when compared to WT and CD4Cre. Similar to the results observed in the mouse
model, we observed a significant decrease (Fig 2a,d) in the bacterial burden in the
simulated LysMcre group as compared to the simulated WT and CD4cre groups.
Furthermore, the results from the mouse model indicated that a significant increase in
numbers of F4/80hiCD11b+ CD64+ CX3CR1+ cells (here referred to as resident
macrophages in this paper), was observed in WT mice in comparison with LysMcre
mice as shown in Fig. 2A, 2E of Viladomiu, Bassaganya-Riera et al. 2017. These cells
accumulated in the stomach mucosa starting on day 14 post-infection in the WT mice
but not in the LysMcre mice. We observed a similar increase (Fig 2b,e and Fig 2c,f) in
the number of resident macrophages as well as monocyte derived macrophages in the
simulated WT groups in comparison to the simulated LysMcre group.
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We updated the manuscript accordingly, please refer to L340-L350 and L654-671.

c. Please in the table explain what mechanism each parameter corresponds to. Some
can be inferred from the name, but it's not very clear.
Response: We thank the reviewer for this valuable suggestion. We added column 2 in
Table S1 that describes the detailed mechanism that each parameter corresponds to.
We updated the manuscript accordingly, please refer to L236-L238.
For e.g. 3 rows of the Table S1 are shown below –

Table S1

Name of parameters

Description
p_epiinfbactdamage
Epithelial cell damage due to infectious bacteria
p_epith1damage
Epithelial cell damage due to Th1 cells
p_epith17damage
Epithelial cell damage due to Th17 cells

d.  Some parameters are not included in the table. For example, the diffusivity of the
cytokines are not listed.
We thank the reviewer for this valuable observation. We listed the diffusivity of the
cytokines and updated the Table_S1.

3.      In Table 1 and Table 2, there is a T cell class named "Tr", which is not explained
in the text. Please clarify.
Response: We thank the reviewer for pointing this out. The Tr cells are the type 1
regulatory (Tr1) T cells that are regulatory subset of T cells, whose expansion is
dependent on environmental IL-10 (produced by Mreg). These are different than iTreg
which are T cells differentiated from naïve T cell in presence of tolerogenic dendritic
cells and TGF-β cytokine. We clarified this point and updated the manuscript, please
refer L208-211.

4.      The authors used a Gaussian emulator as surrogate model for the hybrid model.
In line 582, the authors mentioned that performance is evaluated using diagnostic plots
in Figure S4. Please clarify what the "Observed" data refers to. Are these the same
simulations from the training set which the emulator fitted to, or are these new
simulations done? If these are the training set results, the authors need to run
simulations and emulation on a new testing set and evaluate the performance; if it's
already done, please clarify how its done (range of parameters, number of simulations,
etc.)
Response: We thank the reviewer for your careful reading and bringing up the issues
in the description of the original plot. Below please find our response to your
comments.
First, the “observed” data, i.e. the ‘x’ axis in the first half of lower panel in Figure S4
(shown here below as Fig 1a) (please note in the revised manuscript the Figure S4 is
now updated and referred to as by Fig S5.), refers to the observed output values of the
simulations obtained after running the hybrid computer model, whereas the ‘y’ axis
refers to the predicted values obtained from the cross validated model. These
diagnostic plots denote the black circles which are the cross validated prediction.
Cross validation is in the sense that for predictions made at design point x, all
observations at design point x are removed from the training set. The second half of
lower panel refers to the standard residual plot wherein the ‘x’ axis represents the
observed values obtained from the simulation and the ‘y’ axis refers to the residual
error ({error (predicted values – observed values) / standard deviation (error)})
obtained.

In fact, the models used for plotting are the cross-validated ones and are not fit using
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the entire dataset. Cross-Validation (section 7.10 of The Elements of Statistical
Learning (Trevor, Robert et al. 2009), is a legitimate approach for model assessment
and it is especially suitable in our case because the simulation data is expensive to
obtain (each simulation takes ~9-10 minutes to run, thus 267 parameter sets with 20
replicates = 5,340 simulations. The entire simulation dataset took us about 2 months to
obtain.

Nevertheless, we would like to show that using separate testing and training dataset for
model assessment we obtained similar conclusions as those using the cross validated
model.
We randomly split the observed output simulation dataset for one of the datasets (Fig
S4 “a”), Helicobacter pylori in Lamina propria into training (80%) and testing (20%) sets
and built the Gaussian emulator using the mlegp package. As observed in the Fig 1b
and Fig 1c below, we plotted the predicted (values predicted using mlegp) vs. the
observed simulation data values for both the training set (top panel of Fig 1b) and
testing sets (top panel of Fig 1c). In the top panels of Fig 1b, the black circles denote
the cross validated prediction points for the training dataset. Similarly, the top panel of
Fig 1c, the black open circles are obtained after plotting the predictions for testing
dataset, made using the model trained on the 80% of the randomly split dataset, vs.
the observed values (known) for the 20% of the randomly split used as testing dataset
here. Additionally, we calculated the standardized residuals for each of the 80% and
20% randomly split datasets and plotted the standardized residual plots in the lower
panels of Fig. 1b and Fig 1c respectively.
As observed in the bottom panels of the Fig 1a, 1b and 1c the amount of standard
residuals obtained for the cross validated model (Fig S4 a) from the paper and also the
one mentioned in previous paragraph), the training dataset (80% randomly split
dataset), and testing dataset (20% randomly split dataset) respectively, were similar.
Thus, here we demonstrated that the results obtained from the cross-validated model
built using mlegp (from Figure S4 a) and as shown here in Fig 1a) were similar to the
results obtained using the cross-validation technique by randomly splitting the data into
80% and 20% (shown here in Fig 1b and Fig 1c).

Fig 1a. Original plot from Fig S4 a). The plot shows the predicted vs. observed
simulation values for the Cross Validated (CV) model (top panel) and residual error plot
for the CV model (bottom panel).

Fig 1b. The plot shows the predicted vs. observed simulation values for the randomly
split 80% of the dataset (top panel) and residual error plot for the randomly split 80% of
the dataset(bottom panel).

 Fig 1b. The plot shows the predicted vs. observed simulation values for the randomly
split 20% of the dataset (top panel) and residual error plot for the randomly split 20% of
the dataset(bottom panel).

We clarified that the observed data refers to observed simulation values and recreated
the Figure S4 (now updated to Fig S5 with updated legends. Please refer to L1045-
L1058 in the manuscript.
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Reviewer #2: The authors present results from a multi-scale hybrid model of host
immune responses to H pylori exposure in the gut. The paper addresses outstanding
questions in this complex system and overall the results are interesting. Some
comments/questions to be addressed are outlined below.

1.A key component of the introduction ("double edge sword, p 1 line 4") as well as in
the discussion (p28 line 672 "dual role as pathogen and beneficial organism") mentions
the conflicting roles of H pylori infection - however the results do not clearly connect to
help answer this dichotomy. More detailed analysis/discussion of the results should be
provided to clarify the conclusion or the focus of the intro/discussion should be
adjusted to relate more closely to the results currently presented.
Response: We thank the reviewer for this valuable suggestion. This study addresses
the dichotomy in the introduction but mostly focuses on investigating the dynamics that
promote the tolerance to the bacterium in the gastrointestinal mucosa and its systemic
immunoregulatory effects. We view the dichotomy represented by the beneficial effects
of regulatory responses (immune tolerance to the bacterium) in lesion development
versus the detrimental actions of effector responses. Since, the majority of H. pylori-
colonized individuals, approximately 85%, do not present any detrimental effect, we
wanted to contribute towards the further investigation of the dynamics of
immunoregulatory mechanisms underlying H. pylori infection using computational
modeling. We emphasized the need for investigation of the immunoregulatory role and
the adjusted the focus of the introduction and discussion to relate more closely to the
results highlighting regulatory immune cells here. We updated the manuscript
accordingly, please refer to L4-L7, L52-L54, L62-L65 in introduction and L850-L854 in
discussion.

2.Section 3.4 and p 29 line 694 discuss the involvement of regulatory macrophages
and tolerogenic DCs on the colonization of H pylori. These conclusions appear to be
drawn based on correlation between responses in H pylori and macrophage/DC
populations upon epithelial cell proliferation adjustment (Fig 5). A causal connection
between the macrophages/DCs and H pylori is not made (or is not clear to me from the
text). If such a connection is embedded in the mechanisms included in Table 1 it
should be outlined in the results section where the conclusion is made otherwise
simulations targeting the macrophage/DC populations would be needed to confirm this
hypothesis.
Response: We thank the reviewer for pointing this out. We want to clarify that
computational modeling based studies are capable of providing predictive modeling
derived insights, however, any definitive causal connection should be validated in an
experimental or clinical setting. In this study, based on the results obtained from the
metamodel based global SA, the epithelial cell proliferation parameter was shown to an
impact on the H. pylori population.

Following these findings which highlighted the importance of epithelial cell proliferation,
the biological hypothesis derived from this prediction is that the epithelial cell
proliferation parameter is responsible for the higher colonization of H. pylori. Prior to
conducting any experimental studies, we wanted to explore the hypothesis using our
hybrid computer model in silico and study the model outputs obtained after we
changed the epithelial cell proliferation parameter. Thus, we varied the epithelial cell
proliferation parameter across a varying range of values (0.9-0.1) and studied its effect
on the different output cell population (obtained after running the simulations). These
outputs were the ones obtained after running the simulation using the hybrid
computational model, as we varied the epithelial cell proliferation parameter. We
analyzed the outputs from the hybrid computer model and observed upon decreasing
the Epiprolifer from a range of values 0.9-0.1, the output cell populations with
regulatory function, namely regulatory macrophages and tolerogenic dendritic cells
were found to vary. Overall, these cell populations varied due to the variation in the
epithelial cell proliferation parameter.
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We want to clarify that such connection was not embedded in the mechanisms
included in Table 1 but it represents an emergent behavior from the simulations
predicting the involvement of regulatory and tolerogenic dendritic cells in the
mechanisms of immunoregulation during H. pylori infection. Finally, the simulations
targeting the epithelial cell proliferation caused a change in regulatory and tolerogenic
dendritic cell population. This shows that the simulations indirectly targeted the
regulatory and tolerogenic dendritic cell population. Thus, we hypothesize that
epithelial cell proliferation might be responsible for the higher colonization of H. pylori
through a mechanism that involves the regulatory macrophages and tolerogenic cells.
This is in line with our own conclusions drawn from a previous paper (Viladomiu,
Bassaganya-Riera et al. 2017) where we show that the presence of cells with
regulatory phenotype favor higher levels of H. pylori colonization. The results from the
sensitivity analysis presented in this paper suggest that epithelial proliferation might be
a crucial part of the mechanisms by which these regulatory responses are induced and
that there is a link between these parameters. The exact biological process however
cannot be inferred from the current model and it will be investigated in follow-up in vivo
studies.

We updated the manuscript with the detailed clarification, please refer to L788-826 and
L908-L915.

3.   Clarity is needed on some parts of the methods description:
3.1   P6, line 131: what are the units of the grid dimensions given. Are these the
dimensions of a single grid cell or the entire grid? How are the 4 compartments
separated on the grid?
Response : We thank the reviewer for pointing this out. These are the dimensions of
the entire grid. An individual grid cell is 1nm x 1nm. The 4 compartments are separated
by border implementation such that the dimensions of the 4 compartments are lumen
(2nm), epithelium (1nm), lamina propria (5nm) and gastric lymph node (2nm). The
following compartments are adjacent to each other:
•Lumen - epithelium
•Epithelium - lamina propria
•Lamina propria – gastric lymph node
We updated the manuscript with detailed model description, please refer to L222-L232.
We also added a figure describing the grid in the Additional file Fig S2.

3.2   P6 line 149: what data were the ODEs calibrated to? Is there a reference?
Response: The CD4+ ODE model was calibrated using the experimental data provided
in the Table S1 of the reference - Carbo, Hontecillas et al. 2013. The Particle Swarm
algorithm implemented in COPASI was used to determine unknown model parameter
values and fully calibrate the model. The intracellular macrophage ODE model was
calibrated using a combination of sourced and new data generated from in
vitro macrophage differentiation studies, compiled into a dataset provided within S2 file
of Leber, Bassaganya-Riera et al. 2016.
We accordingly updated the manuscript, please refer to L155-L166.

3.3   P6 line 150, and p22 line 524: ABM parameters were calibrated to "qualitatively
resemble" the patterns observed in in vivo model. What patterns? What is considered
to be qualitatively similar enough? Do the simulations reproduce the dynamics as well
and the endpoint experimental observations? Inclusion of experimental data alongside
the simulations in figure 2 or a description of the key dynamics (e.g. fold-changes, peak
values etc.) would go a long way in communicating confidence in the model
parameters.

Response: We thank the reviewer for their valuable suggestion. The values of the
parameters are obtained based on the qualitative comparison of the model outputs
with the experimental results obtained from the mouse model of H. pylori infection. The
simulations reproduced similar dynamics as described below -
The results in the mouse model indicated that between weeks 2 and 3 post-infection a
decrease in bacterial burden in the stomach of LysMcre mice (lacking PPARg in
myeloid cells) was observed as shown in Fig 1A of (Viladomiu, Bassaganya-Riera et al.
2017). The decrease in bacterial burden led to a significant and sustained lower
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colonization levels when compared to WT and CD4Cre (lacking PPARg in T cells).
Similar to the results observed in the mouse model, we observed a significant
decrease (Fig 2a,d) in the bacterial burden in the simulated LysMcre group as
compared to the simulated WT and CD4cre groups.

Furthermore, the results from the mouse model indicated that a significant increase in
numbers of F4/80hiCD11b+ CD64+ CX3CR1+ cells (here referred to as resident
macrophages in this paper), was observed in WT mice in comparison with LysMcre
mice as shown in Fig. 2A, 2E of (Viladomiu, Bassaganya-Riera et al. 2017). These
cells accumulated in the stomach mucosa starting on day 14 post-infection in the WT
mice but not in the LysMcre mice. We observed a similar increase (Fig 2b,e and Fig
2c,f) in the number of resident macrophages as well as monocyte derived
macrophages in the simulated WT groups in comparison to the simulated LysMcre
group. As shown below, the peak of resident macrophages in lamina propria (refer Fig
2b of this paper) was observed at ~16-21 days which was similar to the peak observed
in the CD64+F480hi macrophages at day 21, in Fig 2a described in (Viladomiu,
Bassaganya-Riera et al. 2017). We included the experimental data alongside the
simulation and revised the Fig 2 as shown below.

We accordingly updated the manuscript, please refer to L344-L350, L654-L671 and
updated legend for Fig 2, L647-L649.

3.4   P11 line 246: the authors state that they perform global SA of the hybrid computer
model. I believe they mean the metamodel here?
Response: We thank the reviewer for pointing this out. Although, a metamodel was
built using the hybrid computer model, overall the global SA that included two stages
–i) screening the influential inputs using PRCC (which was performed on the outputs
from hybrid computer model simulations) and building a metamodel (using the outputs
from the hybrid computer model) followed by calculating the Sobol’ indices. Hence, we
stated that we performed the global SA of the hybrid computer model.

3.5   P 21 line 480 and 484: parameter values were 'reduced' to emulate biological
KOs. By how much were the parameters reduced?
Response: We thank the reviewer for pointing this out. We added new columns in
Table S1 with the values of the parameters used to emulate the biological KOs. A
complete set of parameter for each of the biological KOs are included as separate
columns in Table S1.
To simulate the CD4Cre group, the probabilities of a naive T cell transitioning to an
iTreg cell (p_nTtoiTreg) and Th17 cell differentiating to iTreg (p_Th17toiTreg) were
reduced to 5% and 10% of the baseline (WT) value respectively (refer Table S1). As
described in (Carbo, Hontecillas et al. 2013), to simulate the LysMCre experimental
conditions, the probabilities of i) a monocyte transitioning to a regulatory macrophage
(p_MonotoMreg) and ii) immature dendritic cells switching to tolerogenic dendritic cells
(p_iDCtotDC) were reduced approximately to 60% and 30% of the baseline (WT)
value, respectively (refer Table S1).
 We updated the manuscript with the above listed values, please refer to L602-615.

3.6   The in vivo model is mentioned several times before it is clarified to be a mouse
model.
Response: We thank the reviewer for their valuable suggestion. We updated the
manuscript and clarified that the in vivo model is a mouse model.

Comment from the Editor: Further, our series Guest Editor, Paul Macklin has had a
quick look at the manuscript from a reproducibility point-of-view and suggests that you
include somewhere (e.g., in supporting info) the specific examples for this paper,
including detailed instructions on how to create the specific examples presented. Note
that our curators also asked for detailed instructions on how to require detailed
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instructions for usability - not just code.

In addition, please register any new software application in the SciCrunch.org
database to receive a RRID (Research Resource Identification Initiative ID) number,
and include this in your manuscript. This will facilitate tracking, reproducibility and re-
use of your tool.

Response: The RRID (Research Resource Identification Initiative ID) number as
assigned by the SciCrunch.org database is SCR_016918. We included this in the
manuscript, please refer to L180-L182.

Detailed instructions for the usability are described below and also included in
Additional file S1. Detailed instructions on how to create the specific examples
presented here are also included. We accordingly updated the manuscript, please refer
to L178-180.

Additional file S1

This file contains the detailed instruction to Install ENISI MSM (Step I), Run a
simulation (Step II) and Conduct Sensitivity Analysis (Step III). The jupyter (.ipynb)
notebooks (Fig2-Code.ipynb, Fig3-Code.ipynb, Fig4-Code.ipynb and Fig5-Code.ipynb)
include detailed instructions on how to create the specific figures presented in the
paper.

A.How to install ENISI MSM
1.Create a folder for the hybrid computer model: mkdir ENISI
2.Change directory to the newly created folder: cd ENISI
3.Clone the dependencies required from the ENISI-Dependencies from the NIMML
GitHub repository -
i.git clone --recursive https://github.com/NIMML/ENISI-Dependencies
4.Change the path to the ENISI-Dependencies folder: cd ENISI-Dependencies
5.Create a directory build within the folder: mkdir build
6.Change directory to the directory created in step 5: cd build
7.Start the installation: cmake ../
make
8.Change the directory cd
9.Change the directory to the one created in step 1: cd ENISI
10.Clone the ENISI-MSM model from the NIMML GitHub repository –
i.git clone —recursive https://github.com/NIMML/ENISI-MSM
11.Change the directory to ENISI-MSM: cd ENISI-MSM
12.Create a directory build within the folder: mkdir build
13.Change the directory to the directory created in step 12: cd build
14.Start the installation:
cmake -DENISI_MSM_DEPENDENCY_DIR=PATH TO ENISI-Dependencies
FOLDER/install ..
make

B.How to run a simulation

1.Create a folder FolderName to save the simulation results. It is important to place all
the results of every experiment and its respective files in different folders.
2.Place the files i) config.props ii) run.props iii) job.sh (required only if running on
cluster) iv) CD4.cps v) MregDiff.cps vi) model.props all in the folder where you want the
output files to be saved (i.e FolderName).
3.model.props is the parameter file wherein you can change the parameters.
4.run.props and config.props are the configurable files where you can change the
number of TICKS (that is a measure of computational time, i.e stop.at = number of
TICKS) and the size of the grid (in the current model that is set to 1nm).
5.For running locally, use run.sh
6.To run on a cluster, use job.sh.
7.For the -output folder path, change the CONFIG variable and provide path to your
folder i.e /home/username/FolderName.
8.ENISI executable to be used in the job.sh file is located in /PATH: ENISI/ENISI-

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation



MSM/bin folder that is created in the (installation step, Section A).
9.Run your job by typing -> sh run.sh (OR) ./ run.sh "path of the folder where you want
the results or sh job.sh (specify the CONFIG variable within).
10.After the job iscompleted, you will have .log files, .tsv files for all the compartments.
11.The .log file will contain debugging statements if there are any issued in the code.
Additional statments can be added to the source code for confirmation and monitoring
the output.
C.Sensitivity Analysis
Stage 1 Initialization
1.Parameters.xlsx -> Contains the maximum and minimum values of the input
parameters and information about which parameters are fixed.
2.Generate the Input parameter design matrix (P1) using -
design_matrix_generation.m; (NOTE: Comment out the Stage 2 part of the code).
3.Each row in P1 corresponds to the different values of the parameters to be used in
the model.props files.
4.Run the simulation using the hybrid computer code as described in Section B.
Stage 1 Analysis
1.Run the simulations (152 x 20 replicates) for each input parameter setting obtained
from P1 (see above, step 2 in the initialization stage).
2.Convert the data into .csv file format:
a.1st column: time points information (i.e. Ticks),
b.2nd column mean values and
c.3rd column standard deviations
All the information will be obtained from the ENISI-MSM output runs.
3.Run Stage1-PRCC.ipynb - Formats the data to be used for the PRCC analysis and
calculates the PRCC coefficients. (The code generates a data frame with rows from the
Parameters.xlsx file and average of the output obtained for that parameter setting in
the last column).
4.Plot the PRCC graphs using Stage1-PRCC_barplots.R
5.Alternatively, use Fig3-Code.ipynb jupyter notebook to recreate the figures in the
paper.
6.Create an excel sheet with information about the active and inactive inputs from
PRCC - PRCC_activeinactiveinputs-added.xlsx.
Stage 2 Initialization
•Generate the Input parameter design matrix (P2) using – i)
design_matrix_generation.m (NOTE: Comment out the Stage 1 part of the code) and ii)
information regarding the active and inactive inputs present in
PRCC_activeinactiveinputs-added.xlsx file.
•Run the simulation using the hybrid computer code as described in Section B.
Stage 2 Analysis
1.Run the simulations (115 x 20 replicates) for each input parameter setting obtained
from P2 (see above, step 1 in the initialization stage).
2.Convert the data into .csv file format:
a.1st column: time points information (i.e. Ticks),
b.2nd column mean values and
c.3rd column standard deviations.
All the information will be obtained from the ENISI-MSM output runs.
3.Combine all the outputs obtained from P2 and P1. (outputs obtained after running
simulation for P1 from Stage 1, Section C and for P2 from Stage 2, Section C).
Create folders for each of the cell (cells are represented as agents in each
compartment) populations and save the files from step 2, Sage 2, Section C.
4.Run Stage2-inputfilegeneration.m and save the output as .mat file to be used to build
a temporal metamodel.
5.Build a temporal metamodel using Stage2-BuildTempMM.R and save the output as
.Rdata dataset.
6.Calculate the Sobol Indices using Stage2-SA-temporal6tps.R. The input to the code
includes the .Rdata obtained from the previous step 6 (stage 2 Analysis, Section C)
and the datasets obtained after running SobolIndex_data_generation.m.
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 1 

Abstract  1 

Background: Helicobacter pylori causes gastric cancer in 1-2% of cases, but it 2 

exerts beneficial health effects including protection against allergies and 3 

gastroesophageal diseases. The majority of H. pylori-colonized individuals, an 4 

estimated 85%, do not present any detrimental effects. The mechanisms that 5 

promote host tolerance to the bacterium in the gastrointestinal mucosa and 6 

systemic regulatory effects requires further study hence we investigated the 7 

dynamics of immunoregulatory mechanisms triggered by H. pylori infection using 8 

a high-performance computing driven ENteric Immunity Simulator (ENISI) 9 

multiscale model. The immune responses were simulated in a high-resolution 10 

model integrating agent-based model, ordinary and partial differential equations.  11 

Results: The outputs were analyzed using two sequential stages wherein the first 12 

stage used a partial rank correlation coefficient regression-based and the second 13 

employed a metamodel-based global sensitivity analysis. The influential 14 

parameters screened from the first stage were selected to be varied for the 15 

second stage. The outputs from both stages were combined as a ‘training 16 

dataset’ to build a spatiotemporal metamodel. The Sobol’ indices measured the 17 

time-varying impact of input parameters during the initiation, peak and chronic 18 

phases of infection. The data analytics methods identified epithelial cell 19 

proliferation and epithelial cell death as key parameters that control infection 20 

outcomes. In-silico validation showed that colonization with H. pylori decreased 21 

with a decrease in epithelial cell proliferation which was linked to regulatory 22 

macrophages and tolerogenic dendritic cells.  23 

Conclusion: The hybrid model of H. pylori infection identified epithelial cell 24 

proliferation as a key factor for successful colonization of the gastric niche and 25 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 2 

highlighted the role of tolerogenic dendritic cells and regulatory macrophages in 26 

both modulating the host responses and shaping infection outcomes. 27 

1. Background 28 

Computational modeling of the immune response dynamics can provide 29 

novel insights and facilitate the systems level understanding of the interactions 30 

at the gastric mucosa during infection. Ordinary differential equation (ODE- 31 

based methods are deterministic and based on the average response of cells 32 

over time. Dynamical models are used in immunology for system-level analyses 33 

of CD4+ T cell differentiation (Carbo, Bassaganya-Riera et al. 2013), 34 

macrophage differentiation (Leber, Bassaganya-Riera et al. 2016), immune 35 

responses elicited by Clostridium difficile infection (Leber, Viladomiu et al. 2015), 36 

co-infections (Verma, Erwin et al. 2017), and in cancer and immunotherapy 37 

(Qomlaqi, Bahrami et al. 2017). However, ODE-based models lack the spatial 38 

aspects and the features to study the organ and immune cell topology over time. 39 

Agent-based models (ABM) employ a bottom-up approach that focuses on the 40 

spatial and temporal aspects of individual immune cells, unlike the ODE-based 41 

methods. This rule-based method includes agents that act as local entities which 42 

interact locally with other agents, move in space, and follow set of rules 43 

representing their role in a given system and contribute towards generating an 44 

emergent behavior. Since, the immune system is a complex dynamical system 45 

(Vodovotz, Xia et al. 2017) wherein the components i.e., the immune cells move 46 

in space and time changing their location, ABMs are useful tools that can be 47 

employed to understand biological mechanisms and the hidden insights.  48 

Helicobacter pylori is a gram-negative bacterium that has persistently 49 

colonized the human stomach since early evolution (Kusters, van Vliet et al. 50 
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 3 

2006) (Mane, Dominguez-Bello et al. 2010) and is currently found in over 50% 51 

(Cover and Blaser 2009) of the global population. H. pylori has co-evolved with 52 

humans for thousands of years, such that an estimated 85% of the H. pylori-53 

colonized individuals, do not present any detrimental effects. Thus, the vast 54 

majority of carriers (i.e., up to 75%) remain asymptomatic, while only 15% 55 

develop ulcers, and less than 3% develop cancer. Further, growing and 56 

sometimes contradictory evidence from recent experimental, clinical studies and 57 

epidemiological studies suggest that H. pylori might provide protection against 58 

obesity-related inflammation and type 2 diabetes (Bassaganya-Riera, 59 

Dominguez-Bello et al. 2012), esophageal, cardiac pathologies, childhood 60 

asthma and allergies (Oertli, Sundquist et al. 2012) and autoimmune diseases. 61 

In this context, it is crucial to understand the mechanisms that promote host 62 

tolerance to the bacterium in the gastrointestinal mucosa and its systemic 63 

regulatory effects since these have been linked to the beneficial commensal 64 

aspects of H. pylori-human host interaction. Computational models provide a 65 

cost-effective and predictive way to study the complex and dynamic immune 66 

system interactions and form a non-intuitive novel hypothesis. Solving the 67 

complex puzzle of immunoregulatory mechanisms that include large 68 

spatiotemporal scales ranging from cellular, intracellular, tissue and organ level 69 

scales is a major unsolved challenge that requires applying computational 70 

modeling and data analytics.  71 

An advanced hybrid model used to study the mucosal immune response 72 

during gut inflammation highlighted the mechanisms by which effector CD4+ T 73 

cell responses, contributed to tissue damage in the gut mucosa following 74 

immune dysregulation (Mei, Abedi et al. 2015). Other hybrid models with the 75 

integration of ABM, ODE, and PDE technologies, were developed to understand 76 
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 4 

the dynamics of tumor development (Gong, Milberg et al. 2017) and tumor 77 

growth models (Wang, Birch et al. 2009). These combined techniques have been 78 

used to develop multi-organ models in various situations, including the study of 79 

granuloma formation (Marino, El-Kebir et al. 2011) and pressure-driven ulcer 80 

formation in post spinal cord injury patients (Solovyev, Mi et al. 2013). The 81 

summary of different agent-based simulators with immunology related 82 

applications are discussed and summarized in (Bassaganya-Riera 2015, 83 

Cappuccio, Tieri et al. 2016). The comparison between different multiscale 84 

modeling tools and agent-based immune simulators, are discussed in (An, Mi et 85 

al. 2009, Mei, Abedi et al. 2015). 86 

In this study, we utilize a high-resolution ENteric Immunity SImulator (ENISI)-87 

based model of the stomach for simulating the mucosal immune responses to H 88 

pylori infection. The advanced hybrid multiscale modeling platform ENISI 89 

multiscale model (MSM) is capable of scaling up to 1012 agents (Abedi, 90 

Hontecillas et al. 2015). The host immune responses initiated during H. pylori 91 

infection and the underlying immunoregulatory mechanisms are captured using 92 

the ENISI multiscale hybrid model. The underlying intracellular mechanisms that 93 

control cytokine production, signaling and differentiation of macrophages and T 94 

cells are modeled by using ODEs, the diffusion of cytokine values is modeled 95 

using PDEs and the location and interactions among the immune cells, bacteria 96 

and epithelial cells are modeled by using ABMs. The hybrid model thereby 97 

represents a high-performance computing (HPC)-driven large-scale simulation 98 

of the massively interacting cells and molecules in the immune system, 99 

integrating the multiple modeling technologies from molecules to systems across 100 

multiple spatiotemporal scales. 101 
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 5 

To understand the dynamics and emergent immunological patterns 102 

described by this hybrid model, we employed sensitivity analysis (SA), an 103 

important part of the model analysis used to explore the influence of varying 104 

model parameters on the simulation outputs. The influence of the effects of 105 

changes in parameter values on the model output explains the model dynamics 106 

that underlay the outputs (Ligmann-Zielinska, Kramer et al. 2014, Ten Broeke, 107 

Van Voorn et al. 2016). Furthermore, SA examines the robustness of the model 108 

output at a different range of parameter values that correspond to a range of 109 

different assumptions.  We employed global SA and conducted a two-stage 110 

spatiotemporal global SA approach. First, we used a regression-based method 111 

such as the partial rank correlation coefficient (PRCC) and screened the 112 

important input parameters that were shown to have the most influence on the 113 

output cell populations obtained from the hybrid model. Second, the screened 114 

input parameters from the first stage were varied to build a second stage 115 

parameter design matrix, and the computer simulations were again run using the 116 

hybrid ENISI model. The outputs from both analytics stages were combined and 117 

used as a ‘training dataset’ to build a spatiotemporal Gaussian process based 118 

metamodel. Finally, variance-based decomposition global SA was used to 119 

compute the Sobol’ indices and the most influential parameters over the course 120 

of infection were identified. The data analytics methods conducted on the hybrid 121 

model identified the epithelial cell parameters such as epithelial cell proliferation 122 

as the most influential ones, required for the successful colonization of H. pylori 123 

in the gastric microenvironment.  124 
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 6 

2. Methods 125 

2.1 Hybrid multiscale Helicobacter pylori infection model  126 

 We developed a multi-compartment, high-resolution, hybrid ABM/ODE/PDE 127 

model to capture the dynamics of the immune response during H. pylori 128 

colonization of the gastric mucosa. The model has a spatial discretization such 129 

that the dimension of the entire (two-dimensional, (2D)) grid is 30nm x 10 nm. 130 

An individual grid cell for our simulation is 1nm x 1nm, however, this is a 131 

configurable run parameter and can be changed without modifying the model. 132 

An individual grid cell is a unit wherein all the agents located within that location 133 

have the same cytokine environment, i.e., for all the agents in that location, 134 

ENISI-MSM would send the same concentration of the cytokines to COPASI. 135 

The entire grid is divided within into four functionally and anatomically distinct 136 

sized compartments: lumen, epithelium, lamina propria and gastric lymph node. 137 

In the model, there are multiple cells and cell types (i.e., agents) within this 138 

dimensional grid. At the beginning of each simulation cycle, the cells (agents) 139 

are randomly placed within the within the 2D grid. The separation of different 140 

types of agents, corresponding to different cell types, into compartments within 141 

the grid is based on the conceptual framework that underlines the model, which 142 

is based on author’s expertise and available information. Currently the individual 143 

agents do not have any physical size meaning such that there is no limit of agents 144 

within each individual spatial grid. The model is initialized with the concentration 145 

of different cell types (i.e. agents for e.g. macrophages) at the beginning of the 146 

simulation by the user.  147 

 The use of a border implementation permits the migration of agents (cells) 148 

across compartments and facilitates the unidirectional and bidirectional 149 
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 7 

movement of the agents. At the cellular scale, ENISI MSM, simulated epithelial 150 

cells, macrophages, dendritic cells (DC), CD4+ T cells and bacteria that are 151 

implemented as agents in the model. At the intracellular scale, calibrated ODE-152 

based models of T cells (Carbo, Hontecillas et al. 2013) and macrophages 153 

(Leber, Bassaganya-Riera et al. 2016) were used to represent the intracellular 154 

pathways controlling cytokine production. The CD4+ T cell ODE model was 155 

calibrated using the experimental data provided in the Table S1 of (Carbo, 156 

Hontecillas et al. 2013). The Particle Swarm algorithm implemented in COPASI 157 

was used to determine unknown model parameter values and fully calibrate the 158 

CD4+T cell ODE model, the details are described in (Carbo, Hontecillas et al. 159 

2013). The intracellular macrophage ODE model was calibrated using a 160 

combination of sourced and new data generated from in vitro macrophage 161 

differentiation studies, that were compiled into a dataset provided within S2 file 162 

of (Leber, Bassaganya-Riera et al. 2016). The parameter values are specified 163 

within the previously published manuscripts - CD4+ T cell ODE model (Carbo, 164 

Hontecillas et al. 2013) and macrophages (Leber, Bassaganya-Riera et al. 165 

2016). The parameters of the calibrated ODEs were kept unchanged, and the 166 

ABM parameters were calibrated by approximating the output simulations such 167 

that they qualitatively resembled the patterns observed in a mouse model of H. 168 

pylori infection (Viladomiu, Bassaganya-Riera et al. 2017), also described in 169 

detail in section 3.1.  170 

Cytokines secreted by immune cells and their change in concentration were 171 

modeled by PDE. The degradation value of the cytokines and the diffusion 172 

constant determines the spread of the cytokine value of one grid cell to its 173 

neighboring grid cell similar to as described in (Mei, Abedi et al. 2015). The 174 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 8 

features of ABM, ODE, and PDE were combined to create a multiscale modeling 175 

environment which spanned across different orders of spatiotemporal scales.   176 

 The code for the hybrid model is freely accessible and can be downloaded 177 

at https://github.com/NIMML/ENISI-MSM. The detailed instructions for the 178 

usability, instructions on ‘how to run a simulation’ and codes for creating specific 179 

examples presented here are presented in Additional file S1.  The SciCrunch.org 180 

database assigned research identification initiative ID (RRID) for ENISI-MSM is 181 

RRID:SCR_016918. The design of the implementation of the code structure is 182 

depicted in the Additional file Fig S1. The hybrid model is implemented in C++ 183 

and utilized the Repast HPC library (https://repast.github.io/repast_hpc.html) 184 

(Collier and North 2011). For the ODEs, we utilized COPASI  (Hoops, Sahle et 185 

al. 2006), an ODE-based modeling tool used in computational biology. The rules 186 

in the model that described the interaction of H. pylori with the gastric mucosa 187 

and the immune responses resulting from the infection are derived from the 188 

findings in our previously published studies (Carbo, Bassaganya-Riera et al. 189 

2013, Leber, Bassaganya-Riera et al. 2016). Specifically, this hybrid model 190 

reproduced the immune responses generated by the interaction H. pylori and the 191 

resident macrophages as shown in the mouse model of H. pylori infection 192 

(Viladomiu, Bassaganya-Riera et al. 2017). The rules for each cell type in the H. 193 

pylori infection are summarized in Table 1. A pictorial representation of the rules 194 

is depicted in Fig 1. These cell types represented as agents, act according to the 195 

rules (as in Table 1) that are updated at discrete simulation cycle.  196 

 197 

 198 

Fig 1. Helicobacter pylori infection schematic diagram of the hybrid ABM 199 

ODE model  200 
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The model comprises four compartments, i) the lumen that contains H. pylori and 201 

bacteria, ii) epithelium that contains epithelial cells and dendritic cells, iii) lamina 202 

propria that contains variety of immune cells including the infiltrating effector 203 

(eDCs) and tolerogenic (tDCs) dendritic cells, monocytes, regulatory 204 

macrophages (both resident and monocyte-derived macrophages), T helper 205 

cells and naïve CD4+ T cells (nT), Th1, iTreg, Th17, Tr cells. and iv) gastric 206 

lymph node compartment that contains eDCs, tDCs, Th1, Th17, iTreg and nT. 207 

The Tr cells in the lamina propria are the type 1 regulatory (Tr1) T cells with 208 

regulatory function whose expansion is largely dependent on environmental IL-209 

10. These are different than iTreg which are T cells differentiated from naïve T 210 

cell in presence of tolerogenic dendritic cells and TGF-β cytokine The two 211 

calibrated ODEs for T cells and regulatory macrophages are integrated as the 212 

ODE components in the hybrid model. The cellular agents are simulated in a 213 

two-dimensional grid space with their behavior defined by a set of rules during a 214 

course of H. pylori infection.  215 

 216 

Model description  217 

ENISI MSM is a multiscale agent-based modeling platform for computational 218 

immunology which was built on our previous works, ENISI-MSM (Mei, Abedi et 219 

al. 2015)  that integrated COPASI, the ODE solver, ENISI, an agent based 220 

simulator.  221 

Spatial discretization  222 

The model has a spatial discretization such that the dimension of the entire (two 223 

dimensional) grid is 30nm x 10 nm. An individual grid cell is 1nm x 1nm, however, 224 

this is a configurable run parameter and can be changed without modifying the 225 

model. The four functionally and anatomically distinct sized compartments are 226 
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separated by border implementation such that the dimensions of the four 227 

compartments are lumen (2nm), epithelium (1nm), lamina propria (5nm) and 228 

gastric lymph node (2nm). The following compartments are adjacent to each 229 

other: lumen – epithelium, epithelium - lamina propria and lamina propria – 230 

gastric lymph node. A figure describing the spatial discretization is shown in the 231 

Additional file Fig S2. 232 

The parameters that define the initial concentration of the agents and the 233 

diffusivity of cytokines are obtained from a properties file (model.props in the 234 

Howtorunasimulation folder in the GitHub repository). All the value of the 235 

parameters as listed in Table S1. The detailed mechanism that each parameter 236 

corresponds to is described in the second column, parameter description, of 237 

Table S1.  We demonstrate below how we obtain a count of thousands resident 238 

macrophages. For e.g., if the initial concentration of resident macrophages in the 239 

lamina propria is 30, the total number of these resident macrophages can be 240 

calculated by the equation described below -  241 

 242 

n(resident macrophages) = sizecompartment(lamina propria) x concentrationintial 243 

(resident macrophages)        244 

n(resident macrophages) = (30 x 5) x 30 = 4500. 245 

 246 

Time Step size  247 

The time step size is 1 tick ~ 1 day which was obtained during the process of 248 

qualitatively comparing the output to the results from the mouse model of H. 249 

pylori infection. For e.g., the peak of resident macrophages in lamina propria 250 

(refer Fig 2b, d) is observed at ~21 days which is similar to the results obtained 251 
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in Fig 2A described in (Viladomiu, Bassaganya-Riera et al. 2017) (also described 252 

in detail in section 3.1).  253 

 254 

Updating   255 

Each agent has an ‘act’ function within the code that describes the rules 256 

implemented for each of the agent groups. At every simulation cycle, each agent 257 

inspects its location and updates its state. If the agents were T cells and 258 

macrophages, they obtained the cytokine concentration from the ValueLayers, 259 

sent that information to COPASI that calculated the differentiation subtype of the 260 

agent and cytokines to be secreted that into the environment (Mei, Abedi et al. 261 

2015).  The input to the ODEs were the cytokine values at the agent’s location. 262 

Thus, the intracellular ODE models were utilized to determine and update the 263 

state. Each agent proliferated, died, changed its state and moved across the 264 

compartment, following the set of rules defined for them.  265 

The COPASI setup for the solver used the LSODA (Livermore Solver for 266 

Ordinary Differential Equations) differential equation solver. The default values 267 

for the setup such as the - relative tolerance (1e-6), absolute tolerance (1e-12) 268 

and maximum internal steps of 10000 were maintained. The ENISI MSM sends 269 

the current concentrations of the cytokines 270 

to COPASI. COPASI uses those values to integrate the deterministic 271 

model for one tick, i.e., 1 day. The resulting time series of cytokine 272 

concentrations are used to update the cytokine value in the ABM/PDE 273 

system. COPASI simulates different model for each relevant cell type.  274 

The ENISI MSM PDE solver uses a simple numerical scheme to solve the PDEs 275 

(https://github.com/NIMML/ENISI-MSM/tree/master/src/diffuser) and process 276 

distributed value layer (https://github.com/NIMML/ENISI-277 
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MSM/blob/master/src/grid/ValueLayer.h). The ValueLayer stores the value for a 278 

grid space and provides methods to change the values of individual grid cells. 279 

The Diffuser is used to diffuse the values of the ValueLayer using diffusion (d) 280 

and degradation (delta) constants as described in (Mei, Abedi et al. 2015). The 281 

diffusion constant determines the migration of values of a grid cell to its 282 

neighboring grid cells. As implemented in ValueLayer library, the diffusion of 283 

cytokines follows the equation shown below also described in Mei el al, 2015. 284 

Here, vn is the value of the grid cell itself at step n. The values of cdelta and cd are 285 

degradation and diffusion constant respectively.  286 

vn = vn-1 + cdelta * [ ∑( cd
 neighbor *vn-1

neighbor) - 6.0 * vn-1] 287 

0.3 1.2 0.3 

1.2 -6.0 1.2 

0.3 1.2 0.3 

 288 

The PDE solver uses the above number scheme cd
 neighbor for the diffusion 289 

process. The step size cdelta is automatically adjusted at the beginning of the 290 

simulation based on the degradation and diffusion constants to avoid underflow 291 

errors, i.e., multiple PDE steps are in general executed per tick.  The grid size is 292 

the identical with the spatial discretization for the agents. 293 

Movement  294 
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The cells and bacteria agents presented in the model have Brownian motion and 295 

move randomly within the compartment. Brownian movement is an inherent 296 

property of a cell. Depending on cell phenotypes the movement can vary, but all 297 

cells with the same phenotype exhibit similar movements. Additionally, 298 

chemokine-driven movement is dependent on chemokine concentration in a 299 

tissue site. The capability of chemokine-driven movement exists in ENISI-MSM 300 

if the right chemokines are represented in the model. However, the focus of this 301 

model was to investigate changes in cell phenotype and not chemokine-driven 302 

movement of cells. Thus, the chemokines driving the movement are not 303 

represented in the current model. Cell migration is implemented in the code as 304 

the move() function for each of the cells and agents, which call the 305 

moveRandom() function from the (https://github.com/NIMML/ENISI-306 

MSM/src/compartment/Compartment.cpp) file.   307 

 308 

   The hybrid model simulations were run on an Ivy Bridge-EX E7-4890 v2 2.80 309 

GHz (3.40 GHz Turbo) quad processor nodes. The code was parallelized such 310 

that the simulation time on a single node with four parallel tasks, varied between 311 

9-10 minutes. This runtime was based on the model parameters at the initiation 312 

stage, which included the number of immune cell, bacteria, epithelial cells, 313 

number of time steps, and size of the two-dimensional grid.  To facilitate the 314 

investigation of the mechanisms underlying host responses during H. pylori 315 

infection, anatomical and functional compartments were spatially linked such that 316 

the agents had both unidirectional and bidirectional movement. All the agents 317 

worked in a synchronous format wherein the two agent populations 318 

(macrophages and T cells) made function calls to their respective ODE models 319 

(Leber, Bassaganya-Riera et al. 2016) (Carbo, Hontecillas et al. 2013). These 320 
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agents used the varying cytokine concentration (i.e., environment variable) in 321 

their grid spaces as inputs to the ODE model, and these models were run using 322 

COPASI (Hoops, Sahle et al. 2006). Table 2 shows information on the agents 323 

and the states that they can acquire. 324 

 325 

 326 

 327 

Table 2. List of all the agents and the states they can acquire.  328 

All the agents can acquire at least 1 and at the most 5 states. The names chosen 329 

for the acquired states are closely related to their functional properties based on 330 

the underlying “rules”. 331 

 332 

2.2 Global sensitivity analysis  333 

 334 

To conduct the global SA, we determined a list of 38 parameters to be varied 335 

that were selected based on the calibration process (wherein the parameters 336 

Name of agents States it can acquire Name of the states in the 
hybrid model 

Helicobacter pylori 0 H. pylori 

Macrophages 0 
1 
2 
3 

Monocyte 
Resident 

Regulatory 
Inflammatory 

Dendritic cells 0 
1 
2 

Immature 
Effector 

Tolerogenic 

T cell 0 
1 
2 
3 
4 

Naïve 
Th1 

Th17 
iTreg 

Tr 

Epithelial  0 
1 

Healthy 
Damaged 

Bacteria 1 
2 

Infectious 
Tolerogenic 
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that did not show a lot of variation were not included). A range of values 337 

(maximum and minimum) was specified for each of the parameters (refer to 338 

Additional File Table S1) by expert judgment, summarized by bounded intervals. 339 

The practice of using expert judgment is known in the SA field as supported in 340 

(Saltelli, Tarantola et al. 2000). As discussed in (Thorne, Bailey et al. 2007), one 341 

of the challenges encountered using ABM is the process of determining the 342 

parameter values, for e.g.  this may include the lack of the availability of 343 

experimental techniques to measure such parameters. The values of the 344 

parameters for the model presented here are obtained via the best guess based 345 

on the qualitative comparison of the computer model outputs with that of the 346 

experimental results obtained from the mouse model of H. pylori infection 347 

(Viladomiu, Bassaganya-Riera et al. 2017) (as described in detail in Section 3.1). 348 

Since, the source of the parameters is not known we estimated the values to fit 349 

the data obtained from the mouse model of infection.  350 

The values of these parameters were normalized within the range of 0 and 1 351 

for SA purposes. We employed a two-stage metamodeling methodology to 352 

determine the influence of each input parameter to the model output, in a high 353 

dimensional screening setting inspired by (Moon, Dean et al. 2012). The step-354 

wise procedure is described in the Additional file, Fig S3. All the files for global 355 

SA are freely accessible and can be downloaded at 356 

https://github.com/NIMML/Sensitivity-Analysis.  357 

The two-stage global SA is described in detail in the below section. To 358 

summarize, for the first stage the input parameter matrix was designed using the 359 

method described in Moon, Dean et al. 2012 and simulations were run using the 360 

hybrid computer model. The simulation output from the first stage was analyzed 361 

using PRCC as it was computationally efficient, and the active inputs (significant 362 
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effect) were screened to reduce the input parameter space. Second, the active 363 

parameters were varied whereas the inactive parameters from the first stage 364 

were maintained at a nominal value for the input parameter matrix design to be 365 

employed for the second stage. Third, the simulation outputs from both stages 366 

were combined and used as a training dataset to fit a spatio-temporal 367 

metamodel. Fourth, the unknown model parameters for the spatio-temporal 368 

metamodel were estimated using the maximum log-likelihood function. The 369 

spatio-temporal metamodel was used as a substitute for the hybrid computer 370 

model, and the variance-decomposition method was used to compute the Sobol’ 371 

total and first-order indices. Overall, we employed both approaches, PRCC 372 

based (for screening) and Sobol’ indices calculation to perform a complete global 373 

SA of the hybrid computer model. The following sections, describe a detailed 374 

step by step explanation of the procedure.  375 

 376 

Design of two-stage experiments and analysis  377 

 378 

The input for the hybrid model are varying parameter values obtained from 379 

the design matrix and the output are the number of cells (agents) that vary over 380 

time. The first stage experiment was focused on the screening of the input 381 

variables to reduce the number of input parameters to vary for the SA and to limit 382 

the computational cost. Computational costs are often a limiting factor that play 383 

an important role in the inclusion of model parameters in the SA (Ten Broeke, 384 

Van Voorn et al. 2016).  For the design, we assumed the total number of input 385 

parameters under consideration as d (in our case, 38). With an assumption of a 386 

maximum of 50% active inputs that is aimed to improve the screening 387 

performance, the number of runs for stage 1, was fixed to n1= 4d, such that n1 > 388 
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5*d*0.5 = 2.5d as in (Moon, Dean et al. 2012). To construct a n1 * (n1-1) 389 

preliminary input parameter design matrix, X*, needed to be constructed ((Moon, 390 

Dean et al. 2012)). The input parameter design matrix for first stage sampling 391 

was drawn from X*. 392 

The algorithm for the first stage design generated a design matrix X(1) that 393 

satisfied the below three listed properties as in (Moon, Dean et al. 2012) 394 

i) The columns of X* were uncorrelated thereby facilitating the independent 395 

assessments of the effects due to the input parameters.  396 

ii) The maximum and minimum value in each input parameter column were 397 

ensured to be 0 and 1 respectively, thereby preventing any input values 398 

with larger values to have a larger influence on the response, induced by 399 

the design.   400 

iii) The designs defined by X* had “space-filling” properties such that all the 401 

regions of the input space were exhaustively explored.  402 

 403 

First stage sampling plan:  404 

The first stage input parameter design matrix 𝑋(1) was obtained by selecting 405 

the first d columns of 𝑋∗, i.e. 𝑋(1) = (𝜉1, … . , 𝜉𝑑). The hybrid computer model was 406 

run and the simulation outputs at these 𝑛1design points were obtained.  407 

In our case, the model comprised of d = 38 input variables. The total number of 408 

distinct input parameter design points obtained using the above procedure was 409 

n1 = 152 (4*d = 4* 38). To account for the variability in the output, we run 20 410 

replicates (r). Thus, the total number of simulations run using the hybrid model 411 

computer simulator with 𝑋(1) as input parameter design matrix, were r x n1 = 20 412 

x 152 = 3040.  413 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 18 

 414 

First stage analysis  415 

We analyzed the outputs from first stage analysis and screened the active 416 

inputs from using PRCC. To measure the effect of input parameter on output, we 417 

performed both PRCC and the spearman rank correlation coefficient (SRCC) 418 

analysis. PRCC and SRCC were chosen because they were computationally 419 

efficient (accounting for the low computational budget). A correlation analysis 420 

provides a measure of the strength of linear association between input and 421 

output variable (Marino, Hogue et al. 2008).  A correlation coefficient between xj 422 

and y is calculated as follows: 423 

𝑟𝑥𝑗𝑦 =
𝐶𝑜𝑣(𝑥𝑗, 𝑦)

√𝑉𝑎𝑟(𝑥𝑗)𝑉𝑎𝑟(𝑦)

=
∑ (𝑥𝑖𝑗 − 𝑥)(𝑦𝑖 − 𝑦𝑁

𝑖=1 )

√∑ (𝑥𝑖𝑗 − 𝑥)2 ∑ (𝑦𝑖 − 𝑦)2𝑁
𝑖=1

𝑁
𝑖=1

 424 

𝑗 = 1,2, … , 𝑘. 425 

where  𝐶𝑜𝑣(𝑥𝑗, 𝑦) stands for the covariance between xj and y, and Var (xj ) and 426 

Var (y) are the variance of xj and y respectively.  427 

PRCC is performed when i) a non-linear but monotonic relation exists 428 

between the input and outputs, and ii) when little or no correlation exists between 429 

the input variables (which is guaranteed by the property (i) of our input parameter 430 

matrix, X(1) described above). As described in Marino, Hogue et al. 2008, the 431 

PRCC between rank transformed xj and y is the CC between the two residuals 432 

(𝑥𝑗 − 𝑥𝑗)̂ and (𝑦𝑗 − 𝑦𝑗)̂ where 𝑥𝑗̂ and 𝑦𝑗̂ are rank transformed and follow the linear 433 

regression models as follows:   434 
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𝑥𝑗̂ =  𝑐𝑜 +  ∑ 𝑐𝑝𝑥𝑝
𝑘
𝑝=𝑗
𝑝≠𝑗

 and 𝑦𝑗̂ =  𝑐𝑜 + ∑ 𝑐𝑝𝑥𝑝
𝑘
𝑝=𝑗
𝑝≠𝑗

 . 435 

We performed the PRCC analysis on the outputs obtained from the hybrid 436 

computer model with X(1) as an input, using ‘epi.prcc’ package in R (https://cran.r-437 

project.org/web/packages/epiR/epiR.pdf). The significance test evaluated the 438 

strength of influence each input parameters and assessed if the PRCC 439 

coefficients were significantly different than zero (Marino, Hogue et al. 2008). We 440 

run the PRCC analysis for 13 output cell populations (Fig 3 shows data for two 441 

output populations and the rest of the data not shown) and identified the active 442 

input parameters using the significance test. PRCC and SRCC produced 443 

identical outputs, hence results from SRCC are not shown here. If an input 444 

parameter was shown to be significant (P < 0.05) in one of the 13 output cell 445 

populations, it was considered as an active input for the second stage input 446 

parameter design matrix. Additionally, domain expert knowledge was employed 447 

to include additional parameters, based on the biological significance, that were 448 

otherwise shown to be non-significant. In all, based on the PRCC analysis 449 

performed on the outputs obtained from the first stage simulations and domain 450 

expert knowledge, we chose 23 input parameters as active inputs for the second 451 

stage (see Additional Fig S4). Thus, PRCC screened inputs at significance level 452 

p < 0.05 and inputs based on expert knowledge were selected as active inputs 453 

to be varied for the second stage sampling plan.  454 

Second stage sampling plan:  455 

The number of active inputs obtained from the first stage analysis amounted 456 

to 23 parameters out of the initial set of 38 parameters. We followed the design 457 
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described in (Moon, Dean et al. 2012) for the second stage and the number of 458 

design points amounted to,  𝑛2= 100%* 5*a where ‘a’ stands for the number of 459 

active inputs from the first stage. This resulted into 𝑛2= 23*5 = 115 parameters 460 

combinations for the second stage input parameter design matrix. Since outputs 461 

from both stages are to be combined for second stage analysis, per (Moon, Dean 462 

et al. 2012), the design for the second stage was chosen to build on top of 𝑋(1). 463 

The sampling phase design algorithm ensured that the columns satisfied the 464 

properties (i) (uncorrelated design points) and (ii) (between values 0 and 1) as 465 

listed in the previous section. We constructed the 115 x 38 (115 parameter 466 

setting and 38 parameters) design matrix for the second stage that incorporated 467 

the 23 active inputs obtained from the PRCC screening in the first stage output 468 

analysis. After combining the design points from both the stages, the parameter 469 

design matrix X with space filling properties contained 267 (152 from the first 470 

stage and 115 from the second stage) design points. 471 

Second stage analysis 472 

We run the computer code for the hybrid model with the second stage input 473 

parameter design matrix (with 115 (n2) design points), for 20 (r) replicates, which 474 

amounted to 115 x 20 (2300) runs. The outputs from the first stage (152 x 20 475 

runs) and second stage (115 x 20 runs) were combined to provide the training 476 

data to build a spatio-temporal metamodel. For the second stage analyses, we 477 

utilized a metamodeling-based approach. Metamodels are surrogate models that 478 

can be used as a substitute for the simulation model (Saltelli, Ratto et al. 2008). 479 

The use of metamodels reduces the computational budget, cost of analysis, and 480 

are useful options in cases when the simulation model is expensive to run (in our 481 
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case 9-10 minutes for 1 design point) (Saltelli, Ratto et al. 2008). The various 482 

metamodeling techniques used to build surrogates for a computer model output 483 

include linear regression models, neural networks, high dimensional model 484 

representation methods, Gaussian process (GP) regression models, polynomial 485 

chaos expansion and more that are discussed in length in (Rasmussen and 486 

Williams 2006, Santner, Williams et al. 2013). Amongst these, GPs are one of 487 

the most popular emulators as it allows modeling of fairly complex functional 488 

forms. The GPs not only provide prediction at a new point but also an estimate 489 

of the uncertainty in that prediction (Rasmussen and Williams 2006). A GP is a 490 

stochastic process for which any finite set of y-variables has a joint multivariate 491 

Gaussian distribution (Thiele, Kurth et al. 2014) (Rasmussen and Williams 2006). 492 

Suppose, 𝑦𝑗(𝑤), the simulation response obtained on the jth simulation replicate, 493 

at a design point 𝑤 = (𝑋𝑇 , 𝑡)𝑇 ∈  𝜒 x Τ, it can be described as follows: 494 

  𝑦𝑗(𝑤) = 𝑌(𝑤)+ 𝜀𝑗(𝑤) =  𝛽0 + 𝑀(𝑤) +  𝜀𝑗(𝑤),             (1) 495 

where Y(w) represents the mean function of  𝑦𝑗(𝑤), the quantity of interest that 496 

we intend to estimate at any design point w. The 𝛽0 is a constant trend term and 497 

is assumed to be unknown. The input parameter 𝑋 ∈  𝜒 ⊂  ℝ𝑑 and the time 𝑡 ∈498 

 Τ ⊂  ℝ+; and 𝑋 is independent of 𝑡. The 𝜀𝑗(𝑤) are represents the sampling 499 

variability inherent in a stochastic simulation, that are  that are assumed to be 500 

independent and identically distributed across the replications at any given 501 

design point (Ankenman, Nelson et al. 2010). 502 

The term 𝑀(𝑤) represents a stationary Gaussian process with mean = 0  and 503 

covariance between any points was modeled as the Gaussian covariance 504 

defined in (Lamoureux, Mechbal et al. 2014). Thus, the covariance between any 505 
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design points 𝑤𝑎 = (𝑋𝑎
𝑇 , 𝑡𝑎)𝑇and 𝑤𝑏 = (𝑋𝑏

𝑇 , 𝑡𝑏)𝑇in the random field can be 506 

modeled as- 507 

     𝐶𝑜𝑣(𝑀(𝑤𝑎), 𝑀(𝑤𝑏)) = Γ2exp (− ∑ 𝜃𝑟(𝑋𝑎𝑟 −  𝑋𝑏𝑟)2𝑑
𝑟=1 𝑅(𝑡𝑎 −  𝑡𝑏; γ), (2) 508 

wherein, exp (− ∑ 𝜃𝑟(𝑋𝑎𝑟 −  𝑋𝑏𝑟)2𝑑
𝑟=1  ) models the spatial correlation between two 509 

input design points 𝑋𝑎 and  𝑋𝑏 in the input parameter space, whereas 510 

𝑅(𝑡𝑎 −  𝑡𝑏; γ) also given by exp (− ∑ γ𝑟 (𝑡𝑎𝑟 − 𝑡𝑏𝑟)𝑑
𝑟=1

2
) models the temporal 511 

correlation between time points 𝑡𝑎  and 𝑡𝑏 . The parameters 𝜃 and 𝛾 represents 512 

the rate at which i) spatial correlation decreases as the points move farther in 513 

space with the same time index, and ii) temporal correlation decreases as the 514 

time points are farther apart in time at the same input vector, respectively. Both 515 

the spatial correlation and temporal correlation are modeled using the Gaussian 516 

covariance. The parameter Γ2 can be interpreted as the variance of M (w) for all 517 

w. The input parameter design consists of ((𝑤𝑎 , 𝑛𝑖)𝑖=1
𝑘 ) design points to run 518 

independent simulations with replicates applied to each of the design points. Let, 519 

𝑘 ×  1 denote a vector of sample averages of simulation responses given by 𝑦 =520 

(𝑦(𝑤1), 𝑦(𝑤2), … . , 𝑦(𝑤𝑘))𝑇, where in 𝑦(𝑤𝑖) is the resulting estimate of 521 

performance measure obtained at design point 𝑤𝑖 and 𝜀(𝑤𝑖) is the sampling 522 

variability inherent in a stochastic simulation (Ankenman, Nelson, & Staum, 523 

2010). The equations associated with 𝑦(𝑤𝑖) and 𝜀(𝑤𝑖) are described below in 524 

equation (3): 525 

𝑦(𝑤𝑖) =
1

𝑛𝑖
∑ 𝑦𝑗(𝑤𝑖)𝑛𝑖

𝑗=1 = 𝑌(𝑤𝑖) +  𝜀(𝑤𝑖)  and  𝜀(𝑤𝑖) =
1

𝑛𝑖
∑ 𝜀𝑗(𝑤𝑖)𝑛𝑖

𝑗=1 , 𝑖 = 1,2, … , 𝑘. 526 

(3) 527 
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Similar as in (Ankenman, Nelson, & Staum, 2010), shown below in equation (4), 528 

let ∑𝑀 be the k x k covariance matrix across all design points and let ∑ (𝑤𝑜, . )𝑀  be 529 

the k x 1 vector, (Cov[M(w0,w1)], Cov[M(w0,w2)],..,Cov[M(w0,wk)]T that contains 530 

spatial covariance between the k design points and a given prediction point 𝑤𝑜. 531 

Also, let ∑𝜀 be the k x k covariance matrix of the vector of simulation errors 532 

associated with the vector of point estimates 𝑦, across all design points. As 533 

described in (Ankenman, Nelson et al. 2010), the best linear predictor 𝑌(𝑤𝑜) that 534 

has the minimum mean squared error (MSE) among all linear predictors at a 535 

given point 𝑤𝑜 =  (𝑋𝑜
𝑇 , 𝑡𝑜)𝑇 can be given by equation (4): 536 

  𝑌̂(𝑤𝑜) =  𝛽𝑜̂ +  ∑ (𝑤0, . )𝑇
𝑀 [ ∑𝑀 +  ∑𝜀  ]−1(𝑦 − 1𝑘𝛽0),̂   (4) 537 

where, 1k is the k x 1 vector of ones and 𝛽𝑜̂ is estimated to be 1. The 538 

corresponding optimal MSE as in (Ankenman, Nelson et al. 2010) is given by 539 

equation (5):  540 

𝑀𝑆𝐸 (𝑌̂(𝑤𝑜)) =  ∑ 𝑋0, 𝑤𝑜𝑀 − ∑ (𝑤0,. )
𝑇

𝑀 [ ∑𝑀 +  ∑𝜀  ]−1 ∑ (𝑤𝑜, . )𝑀   (5).  541 

To implement the metamodeling approach as described above, the unknown 542 

model parameters are estimated through maximizing the log-likelihood function. 543 

The underlying standard assumption is that (𝑌(𝑤𝑜), 𝑦̅𝑇)𝑇 follows a multivariate 544 

normal distribution, for e.g., see (Ankenman, Nelson et al. 2010) and (Chen and 545 

Kim 2014). The function implemented in the mlegp package in R (Dancik and 546 

Dorman 2008) is used for the estimation of the parameters. Once the parameters 547 

are estimated the prediction then follows equations (4) and (5).  548 

 549 

Sensitivity index calculation 550 
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 551 

To determine the effect of input variables on the output, we employed the 552 

variance decomposition method. These methods involve the decomposition of 553 

the variance of the output as a sum of the variance produced by each input 554 

parameter (Thiele, Kurth et al. 2014).  555 

We independently generated 10,000 x 38 sampling matrices, such that the 556 

parameter combinations are generated via Latin Hypercube sampling and as 557 

described in (Saltelli, Annoni et al. 2010). Simulations were performed using the 558 

GP spatio-temporal model as described in the previous section, and the Sobol’ 559 

indices were computed as described in (Sobol 1993) (Saltelli, Annoni et al. 560 

2010). The Sobol’ method quantitatively measured the contribution of each input 561 

parameter by computing the first order and total order index (Saltelli, Annoni et 562 

al. 2010). For output Y, input parameter matrix 𝑋𝑖 where, i is the input parameters 563 

of the model, the Sobol’ indices are computed as follows: 564 

 565 

    𝑆𝐼1
𝑋𝑖 =

𝑉[𝐸(𝑌|𝑋𝑖]

𝑉(𝑌)
 , 566 

 567 

and 568 

    𝑆𝐼𝑡𝑜𝑡
𝑋𝑖 =

𝑉[𝐸(𝑌|𝑋~𝑖]

𝑉(𝑌)
. 569 

 570 

The Sobol’ first order sensitivity index 𝑆𝐼1
𝑋𝑖 measures the impact of one single 571 

parameter on the model output, whereas the Sobol’ total order index measures 572 

the influence of 𝑋𝑖 including all the interactions with other parameters. The First-573 

order indices were computed using the Sobol-Saltelli’s method as described in 574 

(Saltelli, Annoni et al. 2010) (Sobol’, Tarantola et al. 2007) whereas, the total 575 
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order indices were computed using Sobol-Jansen as in (Jansen 1999, Saltelli, 576 

Annoni et al. 2010).  577 

     578 

  579 

3. Results 580 

3. 1 Hybrid model simulations produce similar immune response dynamics 581 

observed in previously published experimental data 582 

 583 

We first aimed to simulate the findings observed in previous gut models 584 

(Viladomiu, Bassaganya-Riera et al. 2017) to ensure that we obtained similar 585 

response dynamics from the hybrid ENISI model of H. pylori infection. As in 586 

(Viladomiu, Bassaganya-Riera et al. 2017), to demonstrate that the gastric 587 

mucosa harbors a system of macrophages that contribute to the outcome of H. 588 

pylori infection, we created an in-silico Peroxisome proliferator-activated 589 

receptor gamma (PPAR) macrophage-specific knockout (KO) model. PPAR  is 590 

an important transcription factor that controls the expression of genes that 591 

contribute to the inflammatory response once this is initiated. To disrupt the 592 

downregulation of pro-inflammatory responses, we simulated a PPARg KO 593 

system in either macrophage or T cell populations and compared the response 594 

to a wild-type system. In the model, we created three different macrophage 595 

populations, comprised of, “resident” macrophage agents that mimic the 596 

properties of the F4/80hi CD11b+ CD64+ CXCR1+ macrophages reported in 597 

(Viladomiu, Bassaganya-Riera et al. 2017), monocyte-derived (infiltrating) and 598 
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macrophage populations with regulatory (M2, or alternatively activated) and pro-599 

inflammatory  function (M1 or classically activated)  (see Table 2). 600 

We simulated an in-silico H. pylori infection by creating four groups, i) a control - 601 

WT (representing a wild-type group), ii) CD4Cre (T cell specific PPAR KO-lacks 602 

PPAR gene in all CD4 T cells), iii) LysMCre (Myeloid cell specific PPAR KO-603 

lacks PPAR gene in all macrophages) and clodronate group (simulating the 604 

removal of macrophages by chemical depletion via clodronate treatment). To 605 

simulate the CD4Cre group, the probabilities of a naive T cell transitioning to an 606 

iTreg cell (p_nTtoiTreg) and Th17 cell differentiating to iTreg (p_Th17toiTreg) 607 

were reduced to 5% and 10% of the control value, respectively (refer to Table 608 

S1). As described in (Carbo, Hontecillas et al. 2013), to simulate the LysMCre 609 

experimental conditions, the probabilities of i) a monocyte transitioning to a 610 

regulatory macrophage (p_Mregdiff) and ii) immature dendritic cells switching to 611 

tolerogenic dendritic cells (p_iDCtotDC) were reduced approximately to 60% and 612 

30% of the control value, respectively (refer to Table S1). A complete set of 613 

parameter for each of the biological KOs are included as separate columns in 614 

Table S1. Lastly, the removal of macrophages by clodronate were simulated by 615 

decreasing the initial numbers of the macrophage population including the 616 

resident macrophages. The rationale to include the clodronate group 617 

(macrophage removal) was to evaluate if depletion of phagocytic cells 618 

(terminology with respect to model, i.e., monocytes, resident, monocyte-derived 619 

macrophages and inflammatory macrophages) would affect H. pylori 620 

colonization levels, as we have previously reported in an in vivo model 621 

(Viladomiu, Bassaganya-Riera et al. 2017). Further, to simulate the myeloid cell 622 
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PPAR KO system, the initial population of resident macrophages were also 623 

reduced.  624 

  All the groups were initialized with equal loads of H. pylori agents. Ten 625 

replicates of the simulations were performed for each of the input parameter 626 

settings specific to each group. The outputs were averaged, and standard error 627 

of the means were plotted as ribbons (shaded regions) across the graphs. After 628 

running the ten replicates of the time series in-silico simulation, the hybrid model 629 

showed significantly (p< 0.05) higher levels of H. pylori in the WT and CD4Cre 630 

groups as compared to LysMCre KO and macrophage-depleted groups (Fig. 2, 631 

panel a and d).  632 

 633 

 634 

Fig 2. Time course simulations representing the immune response during 635 

Helicobacter pylori infection. 636 

The upper half of the plot in both the panels shows the dynamics of the 637 

population cells 638 

over time representing the number of cells (y-axis) versus time (x-axis) in a WT 639 

(black), CD4Cre (green), clodronate (red) and LysMCre (blue) simulated in-silico 640 

groups during H. pylori infection. The cell populations include - a) H. pylori; b) 641 

the resident macrophages and, c) monocyte-derived macrophages in the lamina 642 

propria compartment. The figures in the lower half (d-f) of both the panels, show 643 

the results for statistical comparison between the groups using ANOVA with the 644 

post-hoc analysis. The letters ‘a’, ‘ab’ and ‘b’ represent statistically significant 645 

differences (P<0.05) between the groups obtained after running the Tukey’s 646 

Honestly Significant Difference. A side by side comparison with the bacterial load 647 
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and macrophage population as observed in the mouse model of H. pylori 648 

infection are also included.  649 

  650 

In addition to the increase in H. pylori, WT and CD4Cre in-silico experimental 651 

groups had a higher resident as well as monocyte-derived regulatory 652 

macrophages as compared to clodronate (macrophage depleted) and LysMCre 653 

groups (Fig. 2b-c, e-f). The results in the mouse model indicated that between 654 

weeks 2 and 3 post-infection a decrease in bacterial burden in the stomach of 655 

LysMcre mice was observed as shown in Fig 1A of Viladomiu, Bassaganya-Riera 656 

et al. 2017. The decrease in bacterial burden led to a significant and sustained 657 

lower colonization levels when compared to WT and CD4Cre. Similar to the 658 

results observed in the mouse model, we observed a significant decrease (Fig 659 

2a, d) in the bacterial burden in the simulated LysMcre group as compared to 660 

the simulated WT and CD4cre groups. Furthermore, the results from the mouse 661 

model indicated that a significant increase in numbers of F4/80hiCD11b+ CD64+ 662 

CX3CR1+ cells (here referred to as resident macrophages in this paper), was 663 

observed in WT mice in comparison with LysMcre mice as shown in Fig. 2A, 2E 664 

of Viladomiu, Bassaganya-Riera et al. 2017. These cells accumulated in the 665 

stomach mucosa starting on day 14 post-infection in the WT mice but not in the 666 

LysMcre mice. We observed a similar increase (Fig 2b,e and Fig 2c,f) in the 667 

number of resident macrophages as well as monocyte derived macrophages in 668 

the simulated WT groups in comparison to the simulated LysMcre group. We 669 

estimated the parameter values to fit the data obtained from the mouse model of 670 

H. pylori infection. Thus, the observations were qualitatively similar to the 671 

findings in (Viladomiu, Bassaganya-Riera et al. 2017), where the stomach of WT 672 
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mice was enriched in a population of F4/80+CD11b+CD64+ myeloid cells, 673 

compared to LysMCre mice.  674 

    Overall, with the results in Fig 2, we showed the ability of the hybrid model to 675 

replicate the experimental results in (Viladomiu, Bassaganya-Riera et al. 2017), 676 

and this preliminary data was used as a base calibration setting for SA and other 677 

in-silico findings.  678 

3.2 Partial correlation coefficient analysis screened the influential 679 

parameters  680 

 681 

To reduce the computational complexity of varying an input parameter space 682 

of 38 parameters, we divided the SA process in two stages. For first-stage 683 

analysis, we utilized the PRCC regression-based SA method to screen the 684 

influential inputs and used it for the second stage design of the experiments (refer 685 

Methods 2.2). Using PRCC, we determined the impact of the input parameters 686 

on the output cell populations in the model. The parameters with significant 687 

correlation with H. pylori in the gastric lamina propria compartment and resident 688 

macrophages are shown in Fig 3, along with their PRCC values. The bars in 689 

blue, highlight the parameters that are significantly different than 0, at P < 0.05 690 

compared to grey bars which are not significant. It is important to note that at this 691 

stage the analysis using PRCC was non-temporal.  692 

   The SA from first stage results showed that the epithelial damage due to 693 

infectious bacteria (epiinfbctdam) with a coefficient value of (~0.2), was positively 694 

correlated with the colonization of H. pylori in the lamina propria compartment, 695 

indicating the important role of epithelial cell damage during the course of 696 

infection, similar to our findings obtained in (Alam, Deng et al. 2015). Another 697 
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parameter included the probability of the release of IL-6 (IL6) with a coefficient 698 

value within the range (0.3-0.4).  699 

    Next, the epithelial cell damage parameters (epiinftbctdam = (0.2-0.3), 700 

epiTh17dam = 0-0.2) were shown to have positive influence on the resident 701 

macrophage cells whereas, the T cell type transition parameters (p_iTregtoTh17 702 

= (0.3 - 0.4) and p_Th17toiTreg = (0.1 - 0.2)) showed a negative impact on the 703 

resident macrophages. Similarly, we performed the PRCC analysis for all the cell 704 

populations under consideration during the infection (not shown).   705 

 706 

 707 

Fig 3. Bar plots for the partial rank correlation coefficients.  708 

The magnitude of the bar-plot indicates the value of the partial rank correlation 709 

coefficient. The blue bar indicated the input parameters shown to be significantly 710 

different than 0, at P <0.05 as influential whereas the grey bars indicate the non-711 

influential parameters on a) H. pylori and b) resident macrophages, in the lamina 712 

propria compartment.  713 

 714 

  The significant parameters (marked in blue bars) obtained from the SA of the 715 

output from first stage design of experiments (152 parameter settings with 20 716 

replicates, refer Methods 2.2), were selected to be varied for the second stage 717 

design. All the selected inputs are shown in Additional Fig S4. In all, we obtained 718 

23 active inputs from the first stage.  719 

3.3 Metamodel based spatio-temporal sensitivity analysis 720 

The outputs obtained after running the first (152 x 20 runs) and second (115 721 

x 20 runs) stage simulations, wherein x20 denotes the 20 replicates, were 722 
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combined to be used as a training dataset. The combined output was utilized to 723 

build a Gaussian process based spatiotemporal metamodel (refer  Methods 2.2), 724 

using mlegp package in R (Dancik and Dorman 2008). 725 

 726 

The outputs from the training dataset were sub-divided into 6 datasets, 727 

corresponding to six time periods (Days 1-14, 15-21, 22-30, 31-42, 43-90, 91-728 

201) and averaged across these periods. The sub-division of output across the 729 

time periods, aided the temporal analysis over the initiation (Day 1-14), peak of 730 

infection (Days 15-30) and chronic phase (post Day 31) stages as in (Viladomiu, 731 

Bassaganya-Riera et al. 2017). We then fit a Gaussian process model (with 732 

nugget) and evaluated the performance of the fitting of the metamodel for H. 733 

pylori, resident macrophages, and monocyte-derived macrophages in lamina 734 

propria compartment, and tolerogenic DC in the gastric lymph node, using the 735 

diagnostic plots (see figures in Additional file, Fig S5). After fitting the models, 736 

we performed variance based global SA by computing the Sobol’ total order and 737 

first order sensitivity index (refer Methods 2.2). The estimates of the Sobol’ total 738 

order indices for the input parameters calculated over the six time periods are 739 

shown in Fig 4 (a-d).  740 

 741 

 742 

Fig 4. Heat-maps of Sobol’ total order index for the input parameters across 743 

different output populations. 744 

The values in the heat-map indicate the Sobol’ total order sensitivity index 745 

obtained from the metamodel, for the 38 input parameters with respect to the cell 746 

populations. The values with darker color indicate a stronger influence on the cell 747 

population as compared to the ones with lighter shade that indicate non-748 
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influential parameters for the cell populations - a) H. pylori, b) monocyte-derived 749 

macrophages, c) resident macrophages, in the lamina propria compartment and 750 

d) tolerogenic DCs, in the gastric lymph node compartment. The indexes are 751 

calculated over six time points ranging across the three stages of infection, 752 

including initiation (Day 1-14), peak (Days 15-42) and recovery stages (Days 43-753 

201).  754 

 755 

As shown in Fig 4a, the metamodel based global SA showed that the input 756 

parameters, epithelial cell proliferation (Epiprolifer) and epithelial cell death 757 

(Epicelldeath) had the strongest impact on the population of H. pylori in lamina 758 

propria compartment. As time progressed from initiation of the infection (Days 1-759 

14), through peak (Days 15-30), the epithelial cell proliferation had a continued 760 

impact on the colonization of H. pylori. Next, the influence of the probability of 761 

epithelial cell death decreased over the course of infection. Further, Fig 4b 762 

highlighted the impact of epithelial cell proliferation (Epiprolifer) and epithelial cell 763 

death (Epicelldeath) on the monocyte-derived macrophages.  764 

For the resident macrophage population in the lamina propria, that have 765 

emergent properties similar to the one characterized in (Viladomiu, Bassaganya-766 

Riera et al. 2017), we observed that the resident macrophage replication 767 

parameter (ResmMacRep) has an impact during the initiation and peak stages 768 

of the infection which indicates that these subsets of macrophages replicate 769 

during the course of H. pylori infection. This result highlights the reliability of the 770 

two-staged global SA method used here, as these findings are consistent with 771 

the ones in (Viladomiu, Bassaganya-Riera et al. 2017) wherein we observed that 772 

these subsets of macrophages expand in the gastric stomach lamina propria 773 

during the course of H. pylori infection.  774 
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Finally, for the tolerogenic DCs in Fig 4d, we observed that the epithelial cell 775 

death (Epicelldeath) seemed to have an impact. Another parameter that stands 776 

for the probability of naive T cell transitioning to iTreg cell (nTtoiTreg) was shown 777 

to have an impact on the tolerogenic dendritic cells. Tolerogenic dendritic cells 778 

are involved in the rule that transitions the naive T cells to iTreg cells in the gastric 779 

lymph node, and the stronger impact of the nTtoiTreg during the initiation and 780 

peak stages of the infection highlights the role of the tolerogenic dendritic cells 781 

during the course of infection.  782 

The global SA data suggested that the main contributors of the chronic 783 

colonization of H. pylori in the lamina propria are the epithelial cells, specifically 784 

the epithelial cell proliferation parameter.  785 

3.4 Effect of different ranges of epithelial cell proliferation  786 

An interesting prediction derived from the metamodel based global SA is that 787 

epithelial cell proliferation is one of the parameters that has a strong impact on 788 

the size of H. pylori population. The biological hypothesis derived from this 789 

prediction is that the epithelial cell proliferation is responsible for the higher 790 

colonization of H. pylori. Prior to conducting any experimental studies, we wanted 791 

to explore the hypothesis using our hybrid computer model in silico and study 792 

the model outputs obtained after we changed the epithelial cell proliferation 793 

parameter. Thus, we varied the epithelial cell proliferation parameter across 794 

different ranges (0.1-0.9, with 0.6 being the value for baseline conditions) and 795 

ran the simulations using the hybrid model and studied its effect on the different 796 

output cell population (obtained after running the simulations). These outputs 797 

were the ones obtained after running the simulation using the hybrid computer 798 

model, as we varied the epithelial cell proliferation parameter. We analyzed the 799 
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outputs from the hybrid computer model and interestingly, observed that upon 800 

decreasing the Epiprolifer from a range of values 0.9-0.1, the output cell 801 

populations with regulatory function, namely regulatory macrophages and 802 

tolerogenic dendritic cells were found to vary. We observed a decreasing effect 803 

(Fig 5a-d) on H. pylori, monocyte-derived macrophages, resident macrophages 804 

in the lamina propria compartment and tolerogenic dendritic cells in gastric lymph 805 

node. Overall, these cell populations varied due to the variation in the epithelial 806 

cell proliferation parameter.  807 

For clarification, such connection was not embedded in the mechanisms 808 

included in Table 1 but it represents an emergent behavior from the simulations 809 

predicting the involvement of regulatory and tolerogenic dendritic cells in the 810 

mechanisms of immunoregulation during H. pylori infection. Finally, the 811 

simulations targeting the epithelial cell proliferation resulted in changes in 812 

regulatory and tolerogenic dendritic cell populations. This shows that the 813 

simulations indirectly targeted the regulatory and tolerogenic dendritic cell 814 

population. Thus, we hypothesize that epithelial cell proliferation might be 815 

responsible for the higher colonization of H. pylori through an immunoregulatory 816 

mechanism that involves regulatory macrophages and tolerogenic cells. This is 817 

in line with our own conclusions drawn from a previous paper (Viladomiu, 818 

Bassaganya-Riera et al. 2017) where we show that the presence of cells with 819 

regulatory phenotype favor higher levels of H. pylori colonization. The results 820 

from the sensitivity analysis presented in this paper suggest that epithelial 821 

proliferation might be a crucial part of the mechanisms by which these regulatory 822 

responses are induced and that there is a link between these parameters. The 823 

exact biological process however cannot be inferred from the current model and 824 

it will be investigated in follow-up in vivo studies.  825 
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 826 

 827 

 828 

Fig 5. In silico study of the effect of epithelial cell proliferation parameter 829 

on the cell populations. 830 

The plots show the effect of varying epithelial cell proliferation (p_Epiprolifer) 831 

parameter (with values 0.1, 0.5, 0.6(WT), and 0.9) on the output cell population 832 

of a) H. pylori, b) tolerogenic dendritic cells, c) resident macrophages and d) 833 

monocyte-derived macrophages. The parameter has a decreasing effect on the 834 

cellular populations under consideration, wherein a decrease in the parameter 835 

value, decreases the abundance of the cells over time. The lower half of the 836 

figures (a-d), show the results for statistical comparison between the groups 837 

using ANOVA with the post-hoc analysis. The letters ‘a’, ‘b’, ‘c’, and ‘bc’ represent 838 

statistically significant differences (P<0.05) between the groups obtained after 839 

running the Tukey’s Honestly Significant Difference.  840 

 841 

The in silico findings suggested the involvement of regulatory macrophages 842 

(both resident as well as monocyte-derived) and tolerogenic DC on the 843 

colonization of H. pylori in the gastric lamina propria. This highlighted and 844 

validated the role of epithelial cell proliferation as one of the main factor affecting 845 

H. pylori levels in the gastric niche.  846 
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 847 

4. Discussion 848 

H. pylori is the dominant indigenous bacterium of the gastric microbiota. In the 849 

majority of individuals, H. pylori colonizes the stomach without causing adverse 850 

effects, with little to no activation of inflammatory pathways. However, certain 851 

members of the population lose immune tolerance to the bacterium thereby 852 

contributing to the development of chronic gastric diseases. The immunological 853 

mechanisms underlying its ability to persist in a harsh acidic gastric environment and 854 

its dual role as a pathogen and beneficial organism remain unknown. A subset of 855 

macrophages helps create a regulatory microenvironment that promotes the chronic 856 

colonization of H. pylori (Viladomiu, Bassaganya-Riera et al. 2017). However, the 857 

immune regulatory mechanisms are incompletely understood. Computational 858 

models of the immune system featuring immune responses are powerful tools for 859 

testing the different ‘what-if’ scenarios. Multiscale models of the immune response 860 

are attractive in terms of modeling the responses at different spatiotemporal scales 861 

(Heiner and Gilbert 2013).  862 

In this study, we developed a HPC-driven hybrid, high-resolution, multiscale 863 

model to simulate the complex immunoregulatory mechanisms during H. pylori 864 

infection. The hybrid model was integrated with two intracellular ODEs capturing the 865 

dynamics of CD4+ T cells and regulatory macrophages. The inputs to the hybrid 866 

model are the set of parameters whose variation governs the immune system 867 

dynamics during infection. The obtained outputs were emergent patterns of different 868 

cell types, cytokines, and bacterial levels for instance the levels of H. pylori, and that 869 

qualitatively matched the patterns observed in an in vivo infection model (Carbo, 870 

Bassaganya-Riera et al. 2013, Viladomiu, Bassaganya-Riera et al. 2017). We 871 
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presented an in-silico framework that evaluated the global SA of the hybrid model 872 

and studied how the variation in the biological parameters affected the simulation 873 

outputs. The two-stage global SA indicated that epithelial cell parameters, 874 

specifically, the proliferation of epithelial cells affected the colonization of H. pylori in 875 

the gastric mucosa. These results were validated in silico, and highlighted the 876 

involvement of regulatory macrophages and tolerogenic DC in facilitating H. pylori 877 

colonization of the gastric mucosa. Previous studies highlighted H. pylori inhabits the 878 

apical surfaces of the epithelial cells and maintains a persistent infection (Alzahrani, 879 

Lina et al. 2014).  880 

Further, Mimuro et al. demonstrated that H. pylori promotes epithelial gastric cell 881 

survival by attenuating apoptosis. These events showed how H. pylori regulated the 882 

gastric niche and utilized epithelial cells to facilitate its persistence within the 883 

stomach (Mimuro, Suzuki et al. 2007) (Wroblewski and Peek 2007). Thus, the 884 

findings in the current study are in line with the literature that suggests epithelial cell 885 

proliferation favor the colonization of H. pylori in the stomach.  886 

Our group also showed another mechanism used by H. pylori to create a gut 887 

microenvironment that involved the induction of IL-10-driven regulatory mechanism 888 

mediated by CD11b+F4/80hiCD64+CX3CR1+ mononuclear phagocytes, which 889 

facilitated bacterial colonization (Viladomiu, Bassaganya-Riera et al. 2017). 890 

Additionally, in this paper, we reported that regulatory macrophages were involved 891 

in the process of colonization with H. pylori when we varied the epithelial cell 892 

proliferation parameter in-silico. Zhang et al., demonstrated that H. pylori directed 893 

active tolerogenic programming of DCs that favored chronic bacterial colonization, 894 

by altering the balance of Th17/Treg cells (Zhang, Liu et al. 2010). Rizzuti, Ang et 895 

al., demonstrated H. pylori-mediated IL-10 release caused the activation of signal 896 

transducer and activator of transcription 3 (STAT3) in DC. This activation of STAT3 897 
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via IL-10 release was shown to induce the production of tolerogenic DC phenotype 898 

(Rizzuti, Ang et al. 2015). The findings from this paper also indicated the involvement 899 

of tolerogenic DCs in affecting the mucosal levels of H. pylori. Therefore, the 900 

literature combined with the results from this study, collectively suggest that during 901 

H. pylori infection, the epithelial cell favors the colonization of H. pylori by creating a 902 

regulatory microenvironment. This process is mediated by the regulatory 903 

macrophages and tolerogenic programming of DC. Based on the results from this 904 

paper and findings from the literature, this leads us to propose that the induction of 905 

IL-10 by the regulatory macrophages is potentially involved in directing the 906 

tolerogenic programming of DC. All experimental evidence combined with our model 907 

prediction suggest the action of an underlying biological mechanism that links the 908 

presence of H. pylori in the gastric mucosa with changes in the rates of epithelial cell 909 

proliferation which ultimately affects the levels of colonization. Our prediction points 910 

towards a link between epithelial cell proliferation and the action of tolerogenic 911 

dendritic cells and regulatory macrophages. The exact cellular mechanism induced 912 

during this process however cannot be inferred from the current model and it will be 913 

investigated in follow-up in vivo studies. 914 

 915 

At its current stage, the hybrid ENISI model reproduces the overall immune 916 

system dynamics observed during an H. pylori infection. The parameters of 917 

calibrated ODEs were kept unchanged, whereas the ABM parameters were 918 

calibrated by qualitatively matching the patterns of the output simulations as 919 

observed in an in vivo model of H. pylori infection (Viladomiu, Bassaganya-Riera et 920 

al. 2017).  For ABM, its calibration and validation remain the major key issues, 921 

discussed elsewhere (Ten Broeke, Van Voorn et al. 2016) (Windrum, Fagiolo et al. 922 

2007) (Fagiolo, Moneta et al. 2007). Further, developing targeted methods of SA 923 
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have been identified as an important challenge in the field (Crooks, Castle et al. 924 

2008, Filatova, Verburg et al. 2013, Ten Broeke, Van Voorn et al. 2016). In this 925 

paper, we highlighted the use of SA methods with a two-stage global SA framework 926 

comprised of first, screening the input parameters (using PRCC) and second, 927 

building of a surrogate model (using GP) of the hybrid model, to understand the 928 

emergent behavior of the represented system. It is important to note that each SA 929 

method known, has its own merits and produces useful information however none 930 

provide a complete picture of the emergent model behavior (Ten Broeke, Van Voorn 931 

et al. 2016). First, we employed PRCC methods as the initial step in our two staged 932 

SA that aided the screening of active inputs and reduced the parameter space. The 933 

choice of PRCC was advantageous and justified by the low computational cost and 934 

low complexity in the computation of the coefficients. Another advantage of the 935 

regression-based PRCC method is that the complex output from our hybrid model 936 

was condensed into a descriptive relationship that can be described by statistical 937 

measures such as R2  (Ten Broeke, Van Voorn et al. 2016). As described in (Ten 938 

Broeke, Van Voorn et al. 2016) the results from PRCC are good descriptors of the 939 

outputs produced if the regression function constitutes a good fit to the output (Ten 940 

Broeke, Van Voorn et al. 2016). However, if the function does not yield a good fit, 941 

the regression-based SA are proven to be useful in screening the influential 942 

parameters for further analysis (Ten Broeke, Van Voorn et al. 2016), as described in 943 

our analysis.  944 

Further, the interaction effects between the parameters are not considered in 945 

regression-based methods, and hence it was followed by the use of variance-based 946 

methods in later stage analysis. Second, we employed metamodeling-based 947 

approach and Sobol’ method as they provided information on the interaction 948 

between the input variable and the use of metamodels allowed to compute the 949 
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sensitivity indices. One of the advantages of the Sobol’ method is that it is model-950 

free and no fitting functions are used to decompose the output variance (Saltelli, 951 

Ratto et al. 2008). It considers the averaged effect of parameters over the whole 952 

parameter space but fails to explore the different patterns within the space (Ten 953 

Broeke, Van Voorn et al. 2016). Further, the method is not suitable for quantification 954 

of output variability if the output distributions deviate from a normal distribution (Ten 955 

Broeke, Van Voorn et al. 2016). The detailed comparison of different SA methods 956 

used for the global SA of ABMs are described in detail in (Ten Broeke, Van Voorn et 957 

al. 2016). Thus, we performed both the PRCC and computation of Sobol’ indices 958 

approaches to evaluate the influence of the input parameter variation and identified 959 

the parameters involved in the successful colonization of the gastric niche by H. 960 

pylori. 961 

Some limitations of the model include implementation through a two-dimensional 962 

grid system and including all cells of the same size. Although we parallelize the 963 

computation of the hybrid model output, the large number of simulations required for 964 

the global SA compensates for the benefits of parallelization. To improve the 965 

calibration process and overall usability of the model, the data required for model 966 

calibration would include tissue biopsies from people infected with H. pylori that can 967 

be used to quantify the cells and take into account their spatial arrangement. The 968 

current version is also limited in terms of the interactions that are based on epithelial 969 

cells and DC as they are strictly rule-based. The building of ODE models for these 970 

cells and integrating them with the ABM model will help capture the dynamics of 971 

epithelial cells and DC more in-depth. Overall the immunoregulatory mechanisms 972 

underlying the chronic colonization of H. pylori and the predictive capacity of the 973 

model can be further improved by incorporating cell-specific models for epithelial 974 

cells and DC. 975 
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In summary, a high-resolution, hybrid, multiscale spatiotemporal stochastic 976 

model of H. pylori infection was built and global SA was performed. The results from 977 

the global SA highlight the key role played by epithelial cells in affecting the levels of 978 

H. pylori colonization. The in-silico validation of varying the epithelial cell proliferation 979 

parameter demonstrated the involvement of regulatory macrophages and the 980 

tolerogenic DC. The next steps aimed to enrich the model will involve the validation 981 

of the findings in vivo to study the underlying mechanisms involved in the successful 982 

immune evasion by H. pylori. The computational modeling predictions will be further 983 

validated experimentally and clinically. 984 

 985 

5. Potential Implications 986 

The computational model of the gut contains high-resolution information 987 

processing representations of immune responses that are generalizable for other 988 

infectious and autoimmune diseases. Complex diseases such as autoimmune 989 

disorders, infectious diseases, and cancer all require integration of the multiscale 990 

level data, information and knowledge, ranging from genes, proteins, cells, tissue to 991 

organ level. The ENISI model of the gut presented here can be generalized to other 992 

diseases by implementing the agents and rules specific to that disease, plus 993 

recalibrating the model based on data that are specific to the new indication. Since 994 

ABMs have modular architectures, an addition of new agent-types and modification 995 

of rules can be done without restructuring the entire simulation setup (An, Mi et al. 996 

2009). The use of ABM in such hybrid models not only facilitates the implementation 997 

of already known mechanisms but also helps validate and predict any unforeseen 998 

new mechanisms using data analytics methods such as global SA to analyze 999 

emerging behaviors at the systems level. The finer details regarding intracellular and 1000 

intercellular interactions that contribute towards the nonlinear and complex behavior 1001 
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of the gut can also be studied by integrating the intracellular ODE models as 1002 

implemented here.  1003 

 1004 

Tables 1005 

 
Name of Agent 

 
Agent Type 

 
Rules 

Helicobacter 
pylori 

H. pylori - Moves across the epithelial cell border if near damaged 
epithelial layer 
- Proliferates in the lumen and lamina propria 
- Dies (removed from the simulation) in lamina propria 
and in the lumen due to the damage of epithelial cells by 
Th1 or Th17 cells 

Macrophages Monocyte 
 

- Proliferates in presence the of effector dendritic cells or 
damaged epithelial cells 
- Proliferates in the lamina propria 
- Differentiates to regulatory macrophage in based on 
the output from the Macrophage ODE 
- Differentiates to inflammatory macrophages in 

presence of IFN- 
- Dies naturally (removed from the model) 

 Resident 
 

- Proliferates in the presence of H. pylori 
- Secretes IL10 
- Dies naturally 
- Dies due to Th1 and Tr cells 

 Regulatory 
 

- Proliferates and removes bacteria 
- Dies 
- Secretes IL10 

 Inflammatory -Proliferates in the presence of damaged epithelial cell 
-Dies naturally 

Dendritics Immature -Moves from lamina propria to epithelium compartment 
and from the epithelium to the lamina propria 
- Differentiates to tolerogenic dendritic cell in the 
presence of tolerogenic bacteria, both in epithelium and 
lamina propria 
- Differentiates to effector dendritic cell in the presence 
of H. pylori 
- Proliferates in lamina propria and gastric lymph node 
- Dies naturally 

 Effector - Moves from lamina propria to gastric lymph node 
- Moves form epithelium to lamina propria 
- Secretes IL6 and IL12 
- Dies naturally 

 Tolerogenic - Moves from lamina propria to gastric lymph node 
- Moves from epithelium to lamina propria 

- Secretes TGF- 
- Dies naturally 
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T cells Naïve 
 

In the presence of effector dendritic cells: 

- Differentiates to Th1 in the presence of IFN- or IL12 

- Differentiates to Th17 in the presences of IL6 or TGF- 
In the presence of tolerogenic dendritic cells: 

- Differentiates to iTreg in the presence of TGF- 
- Differentiates to Tr in the presences of IL10 
- Dies naturally 

 Th1 
 

- Secretes IFN- 
- Moves from gastric lymph node to lamina propria 
- Proliferates in lamina propria and gastric lymph node 
- Dies naturally 

 Th17 - Secretes IL17 
- In the presence of tolerogenic dendritic cell, transition 
to iTreg cells 
- Moves from gastric lymph node to lamina propria 
- Proliferates in lamina propria and gastric lymph node 
- Dies naturally 

 iTreg - Secretes IL10 
- In the presence of tolerogenic dendritic cell, transition 
to iTreg cells 
- Moves from gastric lymph node to lamina propria  
- Proliferates in lamina propria and gastric lymph node 
- Dies naturally 

 Tr - Secretes IL10 
- Dies naturally 
- Proliferates in the lamina propria  

Epithelial Healthy -Damaged due to infectious bacteria 
-Damaged due to Th1 and Th17 cells 
-Proliferates 
-Secretes IL6 and IL12 
-Dies naturally 

 Damaged -Transitions to healthy state in the presence of IL10 
-Dies naturally 

Bacteria Infectious 
 

- Dies due to Th1 or Th17 or inflammatory macrophages 
or damaged epithelial cells 
- Dies naturally 
- Proliferates in the lamina propria 

 Tolerogenic - Moves from lumen to the epithelium in the presence of 
damaged epithelial cells 
- Becomes infectious if moves in the lamina propria 
compartment 
- Proliferates in lumen and lamina propria 
- Dies naturally 
 

 1006 

Table 1. A list of rules for all the agent types implemented in the hybrid model 1007 
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 1009 

Additional Files 1010 

File S1 1011 

Fig S1 1012 

Table  S1 1013 

Fig S2 1014 

Fig S3 1015 

Fig S4 1016 

Fig S5 1017 

 1018 

File S1 – The detailed instruction to Install ENISI MSM (Step I), Run a simulation 1019 

(Step II) and Conduct Sensitivity Analysis (Step III) are described.  1020 

 1021 

Fig S1. Design implementation of the hybrid multiscale model used to simulate 1022 

Helicobacter pylori infection 1023 

The figure shows the class structure used in the ENISI MSM hybrid agent based-1024 

ODE model. Each group consists of an act() function that includes the implemented 1025 

rule for each agent. The previously published ODE models for T cells and 1026 

Macrophage are used to integrate in the ABM code. 1027 

 1028 

Table S1 Table describing the input parameters used in the sensitivity analysis and 1029 

their ranges used. 1030 

 1031 

Fig S2. A pictorial representation of the spatial discretization of the 2D grid.  1032 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 45 

 1033 

Fig S3. Flowchart for the two-staged global sensitivity analysis. 1034 

 1035 

Fig S4. The active and inactive inputs selected from the stage 1 analysis 1036 

The rows represent the input parameters and columns represent the output cell 1037 

populations. The green boxes highlight the ‘active’ input parameters (row) that are 1038 

shown to have a significant influence (calculated based on the results obtained from 1039 

partial correlation coefficient analysis), on an output cell (columns) under 1040 

consideration.  1041 

 1042 

Fig S5. Diagnostic and residual plots obtained for the Gaussian processes 1043 

fitted metamodels 1044 

The upper panel represents the diagnostic Q-Q plots where the open circles 1045 

represent the cross-validated predictions; solid black lines represent observed 1046 

response. The “observed simulations” data in the first half of the lower panel, refer 1047 

to the observed output values of the simulations obtained after running the hybrid 1048 

computer model, whereas the y axis refers to the predicted simulation values 1049 

obtained from the Cross-validated model. Each point represents 1 output point 1050 

obtained as an output from the simulation. The second half of the lower panel, refers 1051 

to the standard residual plot wherein the x-axis represents the observed simulation 1052 

values obtained from the simulation and the y-axis refers to the residual error ((error 1053 

(predicted values – observed values) / standard deviation (error))) obtained. The 1054 

diagnostic plots denote the black circles which are the cross-validated prediction. 1055 

Cross-validation is in the sense that for predictions made at design point x, all 1056 

observations at design point x are removed from the training set.  The lower panel 1057 

represents the residual plots for the cell populations –(a) Helicobacter pylori; (b) 1058 
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Resident macrophages; (c) Monocyte-derived macrophages in the Lamina propria 1059 

and (d) Tolerogenic dendritic cells in the Gastric lymph node compartment.   1060 

 1061 

 1062 

Availability of source code and requirements  1063 

 Project Name: ENISI MSM 1064 

 Project homepage: https://github.com/NIMML/ENISI-MSM 1065 

 Programming language: C++, R 1066 

Availability of supporting data and materials 1067 

The data sets and files supporting the results of this article are available in the ENISI-MSM 1068 

GitHub repository, https://github.com/NIMML/ENISI-MSM.  1069 
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ABM – Agent based model 1072 

DC – Dendritic cells 1073 

ENISI MSM – Enteric Immunity Simulator Multi-scale Modeling 1074 

GLN – gastric lymph node 1075 

GP - Gaussian process  1076 

H. pylori – Helicobacter pylori 1077 

HPC – High performance computing 1078 

LP – Lamina propria  1079 

ODE – Ordinary Differential Equation 1080 

PDE – Partial Differential Equation 1081 

SA – Sensitivity analysis  1082 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

https://github.com/NIMML/ENISI-MSM
https://github.com/NIMML/ENISI-MSM


 47 

PRCC - Partial rank correlation coefficient  1083 

Consent for publication 1084 

Not applicable.  1085 

Competing interests 1086 

The author(s) declare that they have no competing interests.  1087 

Authors’ contributions 1088 

MV, RH and JBR formulated the model, implemented, performed the simulations, 1089 

analyzed model-generate outputs, made the figures and wrote the manuscript. MV, 1090 

AL, JBR, RH, and SH formulated the model. SH, AL and VA implemented the code 1091 

architecture and benchmarked the parallel version of the hybrid model. XC and MV 1092 

wrote the codes for global sensitivity analysis and generated the design matrices. 1093 

NTJ generated macrophage and H. pylori experimental data. JBR, VA, and RH 1094 

supervised the project. JBR and RH edited the manuscript. JBR, AL, NTJ, SH, VA, 1095 

XC and RH participated in discussions on the model and results. All authors provided 1096 

critical feedback on the project.  1097 

Acknowledgements 1098 

This work was supported by the Defense Threat Reduction Agency (DTRA) grant HDTRA1-18-1099 

1-0008 to JBR and RH and funds from the Nutritional Immunology and Molecular Medicine 1100 

Laboratory (www.nimml.org). 1101 

. 1102 

 1103 

References 1104 

Abedi, V., R. Hontecillas, S. Hoops, N. Liles, A. Carbo, P. Lu, C. Philipson and J. ABassaganya-1105 
Riera (2015). ENISI multiscale modeling of mucosal immune responses driven by high 1106 
performance computing. 2015 IEEE International Conference on Bioinformatics and Biomedicine 1107 
(BIBM). 1108 
Alam, M., X. Deng, C. Philipson, J. Bassaganya-Riera, K. Bisset, A. Carbo, S. Eubank, R. 1109 
Hontecillas, S. Hoops, Y. Mei, V. Abedi and M. Marathe (2015). "Sensitivity Analysis of an ENteric 1110 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

http://www.nimml.org/


 48 

Immunity SImulator (ENISI)-Based Model of Immune Responses to Helicobacter pylori Infection." 1111 
PLoS One 10(9): e0136139. 1112 
Alzahrani, S., T. T. Lina, J. Gonzalez, I. V. Pinchuk, E. J. Beswick and V. E. Reyes (2014). "Effect 1113 
of Helicobacter pylori on gastric epithelial cells." World Journal of Gastroenterology : WJG 20(36): 1114 
12767-12780. 1115 
An, G., Q. Mi, J. Dutta-Moscato and Y. Vodovotz (2009). "Agent-based models in translational 1116 
systems biology." Wiley Interdiscip Rev Syst Biol Med 1(2): 159-171. 1117 
Ankenman, B., B. L. Nelson and J. Staum (2010). "Stochastic kriging for simulation 1118 
metamodeling." Operations research 58(2): 371-382. 1119 
Bassaganya-Riera, J. (2015). Computational Immunology: Models and Tools, Academic Press. 1120 
Bassaganya-Riera, J., M. G. Dominguez-Bello, B. Kronsteiner, A. Carbo, P. Lu, M. Viladomiu, M. 1121 
Pedragosa, X. Zhang, B. W. Sobral, S. P. Mane, S. K. Mohapatra, W. T. Horne, A. J. Guri, M. 1122 
Groeschl, G. Lopez-Velasco and R. Hontecillas (2012). "Helicobacter pylori colonization 1123 
ameliorates glucose homeostasis in mice through a PPAR γ-dependent mechanism." PLoS One 1124 
7(11): e50069. 1125 
Cappuccio, A., P. Tieri and F. Castiglione (2016). "Multiscale modelling in immunology: a review." 1126 
Brief Bioinform 17(3): 408-418. 1127 
Carbo, A., J. Bassaganya-Riera, M. Pedragosa, M. Viladomiu, M. Marathe, S. Eubank, K. 1128 
Wendelsdorf, K. Bisset, S. Hoops, X. Deng, M. Alam, B. Kronsteiner, Y. Mei and R. Hontecillas 1129 
(2013). "Predictive computational modeling of the mucosal immune responses during 1130 
Helicobacter pylori infection." PLoS One 8(9): e73365. 1131 
Carbo, A., R. Hontecillas, B. Kronsteiner, M. Viladomiu, M. Pedragosa, P. Lu, C. W. Philipson, S. 1132 
Hoops, M. Marathe, S. Eubank, K. Bisset, K. Wendelsdorf, A. Jarrah, Y. Mei and J. Bassaganya-1133 
Riera (2013). "Systems modeling of molecular mechanisms controlling cytokine-driven CD4+ T 1134 
cell differentiation and phenotype plasticity." PLoS Comput Biol 9(4): e1003027. 1135 
Chen, X. and K.-K. Kim (2014). "Stochastic kriging with biased sample estimates." ACM Trans. 1136 
Model. Comput. Simul. 24(2): 1-23. 1137 
Collier, N. and M. North (2011). "Repast HPC: A platform for large-scale agentbased modeling." 1138 
Large-Scale Computing Techniques for Complex System Simulations: 81-110. 1139 
Cover, T. L. and M. J. Blaser (2009). "Helicobacter pylori in health and disease." Gastroenterology 1140 
136(6): 1863-1873. 1141 
Crooks, A., C. Castle and M. Batty (2008). "Key challenges in agent-based modelling for geo-1142 
spatial simulation." Computers, Environment and Urban Systems 32(6): 417-430. 1143 
Dancik, G. M. and K. S. Dorman (2008). "mlegp: statistical analysis for computer models of 1144 
biological systems using R." Bioinformatics 24(17): 1966-1967. 1145 
Fagiolo, G., A. Moneta and P. Windrum (2007). "A critical guide to empirical validation of agent-1146 
based models in economics: Methodologies, procedures, and open problems." Computational 1147 
Economics 30(3): 195-226. 1148 
Filatova, T., P. H. Verburg, D. C. Parker and C. A. Stannard (2013). "Spatial agent-based models 1149 
for socio-ecological systems: Challenges and prospects." Environmental modelling & software 1150 
45: 1-7. 1151 
Gong, C., O. Milberg, B. Wang, P. Vicini, R. Narwal, L. Roskos and A. S. Popel (2017). "A 1152 
computational multiscale agent-based model for simulating spatio-temporal tumour immune 1153 
response to PD1 and PDL1 inhibition." J R Soc Interface 14(134). 1154 
Heiner, M. and D. Gilbert (2013). "BioModel engineering for multiscale Systems Biology." 1155 
Progress in Biophysics and Molecular Biology 111(2): 119-128. 1156 
Hoops, S., S. Sahle, R. Gauges, C. Lee, J. Pahle, N. Simus, M. Singhal, L. Xu, P. Mendes and 1157 
U. Kummer (2006). "COPASI—a complex pathway simulator." Bioinformatics 22(24): 3067-3074. 1158 
Jansen, M. J. (1999). "Analysis of variance designs for model output." Computer Physics 1159 
Communications 117(1-2): 35-43. 1160 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 49 

Kusters, J. G., A. H. van Vliet and E. J. Kuipers (2006). "Pathogenesis of Helicobacter pylori 1161 
infection." Clin Microbiol Rev 19(3): 449-490. 1162 
Lamoureux, B., N. Mechbal and J.-R. Massé (2014). "A combined sensitivity analysis and kriging 1163 
surrogate modeling for early validation of health indicators." Reliability Engineering & System 1164 
Safety 130: 12-26. 1165 
Leber, A., J. Bassaganya-Riera, N. Tubau-Juni, V. Zoccoli-Rodriguez, M. Viladomiu, V. Abedi, P. 1166 
Lu and R. Hontecillas (2016). "Modeling the Role of Lanthionine Synthetase C-Like 2 (LANCL2) 1167 
in the Modulation of Immune Responses to Helicobacter pylori Infection." PLoS One 11(12): 1168 
e0167440. 1169 
Leber, A., M. Viladomiu, R. Hontecillas, V. Abedi, C. Philipson, S. Hoops, B. Howard and J. 1170 
Bassaganya-Riera (2015). "Systems Modeling of Interactions between Mucosal Immunity and the 1171 
Gut Microbiome during Clostridium difficile Infection." PLoS One 10(7): e0134849. 1172 
Ligmann-Zielinska, A., D. B. Kramer, K. Spence Cheruvelil and P. A. Soranno (2014). "Using 1173 
uncertainty and sensitivity analyses in socioecological agent-based models to improve their 1174 
analytical performance and policy relevance." PLoS One 9(10): e109779. 1175 
Mane, S., M. Dominguez-Bello, M. Blaser, B. Sobral, R. Hontecillas, J. Skoneczka, S. Mohapatra, 1176 
O. Crasta, C. Evans and T. Modise (2010). "Host-interactive genes in Amerindian Helicobacter 1177 
pylori diverge from their Old World homologs and mediate inflammatory responses." Journal of 1178 
bacteriology 192(12): 3078-3092. 1179 
Marino, S., M. El-Kebir and D. Kirschner (2011). "A hybrid multi-compartment model of granuloma 1180 
formation and T cell priming in tuberculosis." J Theor Biol 280(1): 50-62. 1181 
Marino, S., I. B. Hogue, C. J. Ray and D. E. Kirschner (2008). "A methodology for performing 1182 
global uncertainty and sensitivity analysis in systems biology." J Theor Biol 254(1): 178-196. 1183 
Mei, Y., V. Abedi, A. Carbo, X. Zhang, P. Lu, C. Philipson, R. Hontecillas, S. Hoops, N. Liles and 1184 
J. Bassaganya-Riera (2015). "Multiscale modeling of mucosal immune responses." BMC 1185 
Bioinformatics 16 Suppl 12: S2. 1186 
Mimuro, H., T. Suzuki, S. Nagai, G. Rieder, M. Suzuki, T. Nagai, Y. Fujita, K. Nagamatsu, N. 1187 
Ishijima, S. Koyasu, R. Haas and C. Sasakawa (2007). "Helicobacter pylori dampens gut epithelial 1188 
self-renewal by inhibiting apoptosis, a bacterial strategy to enhance colonization of the stomach." 1189 
Cell Host Microbe 2(4): 250-263. 1190 
Moon, H., A. M. Dean and T. J. Santner (2012). "Two-stage sensitivity-based group screening in 1191 
computer experiments." Technometrics 54(4): 376-387. 1192 
Oertli, M., M. Sundquist, I. Hitzler, D. B. Engler, I. C. Arnold, S. Reuter, J. Maxeiner, M. Hansson, 1193 
C. Taube, M. Quiding-Jarbrink and A. Muller (2012). "DC-derived IL-18 drives Treg differentiation, 1194 
murine Helicobacter pylori-specific immune tolerance, and asthma protection." J Clin Invest 1195 
122(3): 1082-1096. 1196 
Qomlaqi, M., F. Bahrami, M. Ajami and J. Hajati (2017). "An extended mathematical model of 1197 
tumor growth and its interaction with the immune system, to be used for developing an optimized 1198 
immunotherapy treatment protocol." Math Biosci 292: 1-9. 1199 
Rasmussen, C. E. and C. K. Williams (2006). "Gaussian processes for machine learning. 2006." 1200 
The MIT Press, Cambridge, MA, USA 38: 715-719. 1201 
Rizzuti, D., M. Ang, C. Sokollik, T. Wu, M. Abdullah, L. Greenfield, R. Fattouh, C. Reardon, M. 1202 
Tang, J. Diao, C. Schindler, M. Cattral and N. L. Jones (2015). "Helicobacter pylori inhibits 1203 
dendritic cell maturation via interleukin-10-mediated activation of the signal transducer and 1204 
activator of transcription 3 pathway." J Innate Immun 7(2): 199-211. 1205 
Saltelli, A., P. Annoni, I. Azzini, F. Campolongo, M. Ratto and S. Tarantola (2010). "Variance 1206 
based sensitivity analysis of model output. Design and estimator for the total sensitivity index." 1207 
Computer Physics Communications 181(2): 259-270. 1208 
Saltelli, A., M. Ratto, T. Andres, F. Campolongo, J. Cariboni, D. Gatelli, M. Saisana and S. 1209 
Tarantola (2008). Global sensitivity analysis: the primer, John Wiley & Sons. 1210 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 50 

Saltelli, A., S. Tarantola and F. Campolongo (2000). "Sensitivity anaysis as an ingredient of 1211 
modeling." Statistical Science 15(4): 377-395. 1212 
Santner, T. J., B. J. Williams and W. I. Notz (2013). The design and analysis of computer 1213 
experiments, Springer Science & Business Media. 1214 
Sobol, I. M. (1993). "Sensitivity estimates for nonlinear mathematical models." Mathematical 1215 
modelling and computational experiments 1(4): 407-414. 1216 
Sobol’, I. M., S. Tarantola, D. Gatelli, S. S. Kucherenko and W. Mauntz (2007). "Estimating the 1217 
approximation error when fixing unessential factors in global sensitivity analysis." Reliability 1218 
Engineering & System Safety 92(7): 957-960. 1219 
Solovyev, A., Q. Mi, Y. T. Tzen, D. Brienza and Y. Vodovotz (2013). "Hybrid equation/agent-based 1220 
model of ischemia-induced hyperemia and pressure ulcer formation predicts greater propensity 1221 
to ulcerate in subjects with spinal cord injury." PLoS Comput Biol 9(5): e1003070. 1222 
Ten Broeke, G., G. Van Voorn and A. Ligtenberg (2016). "Which sensitivity analysis method 1223 
should I use for my agent-based model?" Journal of Artificial Societies and Social Simulation 1224 
19(1): 5. 1225 
Thiele, J. C., W. Kurth and V. Grimm (2014). "Facilitating parameter estimation and sensitivity 1226 
analysis of agent-based models: A cookbook using NetLogo and R." Journal of Artificial Societies 1227 
and Social Simulation 17(3): 11. 1228 
Thorne, B. C., A. M. Bailey and S. M. Peirce (2007). "Combining experiments with multi-cell agent-1229 
based modeling to study biological tissue patterning." Briefings in Bioinformatics 8(4): 245-257. 1230 
Verma, M., S. Erwin, V. Abedi, R. Hontecillas, S. Hoops, A. Leber, J. Bassaganya-Riera and S. 1231 
M. Ciupe (2017). "Modeling the Mechanisms by Which HIV-Associated Immunosuppression 1232 
Influences HPV Persistence at the Oral Mucosa." PLoS One 12(1): e0168133. 1233 
Viladomiu, M., J. Bassaganya-Riera, N. Tubau-Juni, B. Kronsteiner, A. Leber, C. W. Philipson, V. 1234 
Zoccoli-Rodriguez and R. Hontecillas (2017). "Cooperation of Gastric Mononuclear Phagocytes 1235 
with Helicobacter pylori during Colonization." J Immunol 198(8): 3195-3204. 1236 
Vodovotz, Y., A. Xia, E. L. Read, J. Bassaganya-Riera, D. A. Hafler, E. Sontag, J. Wang, J. S. 1237 
Tsang, J. D. Day, S. Kleinstein, A. J. Butte, M. C. Altman, R. Hammond and S. C. Sealfon (2017). 1238 
"Solving Immunology?" Trends in immunology 38(2): 116-127. 1239 
Wang, Z., C. M. Birch, J. Sagotsky and T. S. Deisboeck (2009). "Cross-scale, cross-pathway 1240 
evaluation using an agent-based non-small cell lung cancer model." Bioinformatics 25(18): 2389-1241 
2396. 1242 
Windrum, P., G. Fagiolo and A. Moneta (2007). "Empirical validation of agent-based models: 1243 
Alternatives and prospects." Journal of Artificial Societies and Social Simulation 10(2): 8. 1244 
Wroblewski, L. E. and R. M. Peek (2007). "Orchestration of Dysregulated Epithelial Turnover by 1245 
a Manipulative Pathogen." Cell Host & Microbe 2(4): 209-211. 1246 
Zhang, M., M. Liu, J. Luther and J. Y. Kao (2010). "Helicobacter pylori directs tolerogenic 1247 
programming of dendritic cells." Gut Microbes 1(5): 325-329. 1248 

 1249 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 

 
 

Name of Agent 
 

Agent Type 
 

Rules 

Helicobacter 
pylori 

H. pylori - Moves across the epithelial cell border if near damaged 
epithelial layer 
- Proliferates in the lumen and lamina propria 
- Dies (removed from the simulation) in lamina propria 
and in the lumen due to the damage of epithelial cells by 
Th1 or Th17 cells 

Macrophages Monocyte 
 

- Proliferates in presence the of effector dendritic cells or 
damaged epithelial cells 
- Proliferates in the lamina propria 
- Differentiates to regulatory macrophage in based on 
the output from the Macrophage ODE 
- Differentiates to inflammatory macrophages in 

presence of IFN- 
- Dies naturally (removed from the model) 

 Resident 
 

- Proliferates in the presence of H. pylori 
- Secretes IL10 
- Dies naturally 
- Dies due to Th1 and Tr cells 

 Regulatory 
 

- Proliferates and removes bacteria 
- Dies 
- Secretes IL10 

 Inflammatory -Proliferates in the presence of damaged epithelial cell 
-Dies naturally 

Dendritics Immature -Moves from lamina propria to epithelium compartment 
and from the epithelium to the lamina propria 
- Differentiates to tolerogenic dendritic cell in the 
presence of tolerogenic bacteria, both in epithelium and 
lamina propria 
- Differentiates to effector dendritic cell in the presence 
of H. pylori 
- Proliferates in lamina propria and gastric lymph node 
- Dies naturally 

 Effector - Moves from lamina propria to gastric lymph node 
- Moves form epithelium to lamina propria 
- Secretes IL6 and IL12 
- Dies naturally 

 Tolerogenic - Moves from lamina propria to gastric lymph node 
- Moves from epithelium to lamina propria 

- Secretes TGF- 
- Dies naturally 

T cells Naïve 
 

In the presence of effector dendritic cells: 

- Differentiates to Th1 in the presence of IFN- or IL12 

- Differentiates to Th17 in the presences of IL6 or TGF- 
In the presence of tolerogenic dendritic cells: 

- Differentiates to iTreg in the presence of TGF- 
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- Differentiates to Tr in the presences of IL10 
- Dies naturally 

 Th1 
 

- Secretes IFN- 
- Moves from gastric lymph node to lamina propria 
- Proliferates in lamina propria and gastric lymph node 
- Dies naturally 

 Th17 - Secretes IL17 
- in the presence of tolerogenic dendritic cell, transition 
to iTreg cells 
- Moves from gastric lymph node to lamina propria 
- Proliferates in lamina propria and gastric lymph node 
- Dies naturally 

 iTreg - Secretes IL10 
- In the presence of tolerogenic dendritic cell, transition 
to iTreg cells 
- Moves from gastric lymph node to lamina propria  
- Proliferates in lamina propria and gastric lymph node 
- Dies naturally 

 Tr - Secretes IL10 
- Dies naturally 
- Proliferates in the lamina propria  

Epithelial Healthy -Damaged due to infectious bacteria 
-Damaged due to Th1 and Th17 cells 
-Proliferates 
-Secretes IL6 and IL12 
-Dies naturally 

 Damaged -Transitions to healthy state in the presence of IL10 
-Dies naturally 

Bacteria Infectious 
 

- Dies due to Th1 or Th17 or inflammatory macrophages 
or damaged epithelial cells 
- Dies naturally 
- Proliferates in the lamina propria 

 Tolerogenic - Moves from lumen to the epithelium in the presence of 
damaged epithelial cells 
- Becomes infectious if moves in the lamina propria 
compartment 
- Proliferates in lumen and lamina propria 
- Dies naturally 
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Point by point response to the Reviewer reports 
 
We would like to thank the reviewers and editors involved for dedicating valuable time to review 
our manuscript entitled “High-Resolution Computational Modeling of Immune Responses in the 
Gut”. We are extremely grateful to both reviewers and the editors for their time and attention to 
our submission. The review was very helpful to us, and the recommended changes have allowed 
us to provide better documentation and clarity to the present work. The review process has been 
helpful in the improvement of our submission. We have considered the comments that were made 
and have prepared the following point-by-point response.  
 
Reviewer #1: In this manuscript, the authors constructed a multi-scale systems biology model of 
Helicobacter pylori infection to study the interaction between bacterial infection and the immune 
system. Some modifications could be considered to improve the quality of this manuscript: 
 
1.      The model needs to be more clearly described in the text. Some details might be available 
from the code; nevertheless, it would be helpful for readers to understand if the authors can 
include more information regarding the model. For example: 
 
We thank the reviewer for their valuable suggestion. We agree with the reviewer’s comment and 
accordingly we updated the manuscript with the response described below in detail. 
 
 a.  Agent-based model:  
        i.      What is the spatial discretization? The authors mentioned it's a 30*10 2D grid cell, but 
resident macrophages are in thousands. So multiple cells are allowed in the same grid location? 
How many? 
 
Response: i) The model has a spatial discretization such that the dimension of the entire (two-
dimensional) grid is 30nm x 10 nm). An individual grid cell is 1nm x 1nm, however, this is a 
configurable run parameter and can be changed without modifying the model. An individual grid 
cell is a unit wherein all the agents located within that location have the same cytokine 
environment, i.e., for all the agents in that location, ENISI-MSM would send the same 
concentration of the cytokines to COPASI. The resulting time series of cytokine concentrations 
will be used to update the cytokine value in the ABM/PDE system and COPASI would simulate a 
different model for each of the relevant cell type within that individual grid cell. Below is a figure 
describing the grid, also added in the Additional file Fig S2. 
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The entire grid is divided within into 4 functionally and anatomically distinct sized compartments 
such that the dimensions of the 4 compartments are lumen (2nm), epithelium (1nm), lamina 
propria (5nm) and gastric lymph node (2nm).  
The following compartments are adjacent to each other: 

• Lumen - epithelium 
• Epithelium - lamina propria 
• Lamina propria – gastric lymph node 

 
In the model, there are multiple cells and cell types (i.e., agents) within this dimensional grid. At 
the beginning of each simulation cycle, the agents were randomly placed separated by the four 
compartments within the 2D grid. The separation of different types of agents, corresponding to 
different cell types, into compartments within the grid is based on the conceptual framework that 
underlines the model, which is based on author’s expertise and available information. Currently 
the individual agents do not have any physical size meaning that there is no limit of agents within 
each individual spatial grid cell. The model is initialized with the concentration of different cell 
types (i.e. agents for e.g. macrophages) at the beginning of the simulation by the user. We 
demonstrate below how we obtain a count of thousands of resident macrophages. For e.g., if the 
initial concentration of resident macrophages in the lamina propria is 30, the total number of these 
resident macrophages can be calculated by the equation (1) described below -  
 
n(resident macrophages) = sizecompartment(lamina propria) x concentrationintial (resident 
macrophages)       (1). 
 

n(resident macrophages) = (30 x 5) x 30 = 4500. 
 
 



The manuscript has been updated with the above addressed points, please refer to Line129 - 
Line147, and L217-245.  
 
 
ii.  What is the time step size? 
Response: The time step size is 1 tick ~ 1 day which was obtained during the process of fitting 
the output to the results from the mouse model of H. pylori infection. For e.g. the peak of resident 
macrophages in lamina propria (refer Fig 2b,d) is observed at ~21 days which is similar to the 
results obtained in Fig 2A described in ((Viladomiu, Bassaganya-Riera et al. 2017) (also described 
in detail in point by point response 2.b). 
The manuscript has been updated with the above addressed points, please refer to Line247  - 
Line253. 

iii.  How is migration implemented for cells and bacteria agents? 

Response: The cells and bacteria agents presented in the model have Brownian motion and 
move randomly within the compartment. Brownian movement is an inherent property of a cell. 
Depending on cell phenotypes the movement can vary, but all cells with the same phenotype 
exhibit similar movements. Additionally, chemokine-driven movement is dependent on chemokine 
concentration in a tissue site. The capability of chemokine-driven movement exists in ENISI-MSM 
if the right chemokines are represented in the model. However, the focus of this model was to 
investigate changes in cell phenotype and not chemokine-driven movement of cells. Thus, the 
chemokines driving the movement are not represented in the current model. Cell migration is 
implemented in the code as the move() function for each of the cells and agents, which call the 
moveRandom() function from the (https://github.com/NIMML/ENISI-
MSM/src/compartment/Compartment.cpp) file.   
 
The manuscript has been updated with the above addressed points, please refer to Line294  - 
Line307.  
 
 b.  ODE: What's the COPASI setup for the solver? How is the solver in sync with the ABM? 
Response: The COPASI setup for the solver uses the LSODA (Livermore Solver for Ordinary 
Differential Equations) differential equation solver. The default values for the setup such as the - 
relative tolerance (1e-6), absolute tolerance (1e-12) and maximum internal steps of 10000 were 
maintained. The ENISI MSM sends the current concentrations of the cytokines 
to COPASI. COPASI uses those values to integrate the deterministic 
model for one tick, i.e., 1 day. The resulting time series of cytokine 
concentrations are used to update the cytokine value in the ABM/PDE 
system. COPASI simulates different model for each relevant cell type. 
 
The manuscript has been updated with the above addressed points, please refer to Line266 - 
Line274. 
 
 c.  PDE: What package and numerical scheme is used to solve the PDEs? What's the setting? 
Response: ENISI MSM is a multiscale agent-based modeling platform for computational 
immunology which was building on our previous works, ENISI MSM that integrated COPASI, the 
ODE solver, ENISI, an agent based simulator (Mei, Abedi et al. 2015).  

The ENISI MSM PDE solver uses a simple numerical scheme to solve the PDEs 
(https://github.com/NIMML/ENISI-MSM/tree/master/src/diffuser) and process distributed value 



layer (https://github.com/NIMML/ENISI-MSM/blob/master/src/grid/ValueLayer.h). The 
ValueLayer stores the value for a grid space and provides methods to change the values of 
individual grid cells. The Diffuser is used to diffuse the values of the ValueLayer using diffusion 
(d) and degradation (delta) constants as described in (Mei, Abedi et al. 2015). The diffusion 
constant determines the migration of values of a grid cell to its neighboring grid cells. As 
implemented in ValueLayer library, the diffusion of cytokines follows the equation shown below 
also described in Mei el al, 2015. Here, vn is the value of the grid cell itself at step n. The values 
of cdelta and cd are degradation and diffusion constant respectively.  

vn = vn-1 + cdelta * [ ∑( cd
 neighbor *vn-1

neighbor) - 6.0 * vn-1] 

0.3 1.2 0.3 

1.2 -6.0 1.2 

0.3 1.2 0.3 

 

The PDE solver uses the above number scheme cd
 neighbor for the diffusion process. The step size 

cdelta is automatically adjusted at the beginning of the simulation based on the degradation and 
diffusion constants to avoid underflow errors, i.e., multiple PDE steps are in general executed per 
tick. The grid size is the identical with the spatial discretization for the agents. 

We updated the manuscript details to solve PDEs and the setting, please refer to L275-L293.  

2.      The authors listed the values of parameters in Table S1.  
    a.  However, it's not clear what their units are (the baseline column seems to include characters 
such as "I^2", "#" or "d". are these units? Please clarify).  
Response: We thank the reviewer for pointing this out. Those were the units for the parameters 
in the COPASI ODE models. The parameters described in Table S1 are probability values 
(ranging from 0 to 1) and hence do not have any units. The characters have been removed and 
the column 3 of Table_S1 has been updated.  
 
    b.  Also, the sources of the parameter values are not very clear, except for the vague statement 
"expert judgement" (Saltelli, Tarantola et al. 2000 is cited, but this is an article on SA and does 
not contain parameters).  
Response: The values of the parameters for the model presented here are obtained via best 
guess based on the qualitative comparison of the computer model outputs with that of the 
experimental results obtained from the mouse model of H. pylori infection (Viladomiu, 
Bassaganya-Riera et al. 2017) published by NIMML (described here below in the last paragraph 
detail).  
 
We want to clarify the practice of using expert opinion is known in the SA field and hence we cited 
Saltelli, Tarantola et al. 2000 as it supports the statement. As discussed in (Thorne, Bailey et al. 
2007), one of the challenges encountered using ABM is the process of determining the parameter 
values, for e.g. this may include the lack of the availability of experimental techniques to measure 



such parameters. Since, the source of the parameters is not known we estimated the values to fit 
the data obtained from the mouse model of infection.  
 
The experimental results in the mouse model indicated that between weeks 2 and 3 post-infection 
a decrease in bacterial burden in the stomach of LysMcre mice was observed as shown in Fig 1A 
of Viladomiu, Bassaganya-Riera et al. 2017. The decrease in bacterial burden led to a significant 
and sustained lower colonization levels when compared to WT and CD4Cre. Similar to the results 
observed in the mouse model, we observed a significant decrease (Fig 2a,d) in the bacterial 
burden in the simulated LysMcre group as compared to the simulated WT and CD4cre groups.  
Furthermore, the results from the mouse model indicated that a significant increase in numbers 
of F4/80hiCD11b+ CD64+ CX3CR1+ cells (here referred to as resident macrophages in this 
paper), was observed in WT mice in comparison with LysMcre mice as shown in Fig. 2A, 2E of 
Viladomiu, Bassaganya-Riera et al. 2017. These cells accumulated in the stomach mucosa 
starting on day 14 post-infection in the WT mice but not in the LysMcre mice. We observed a 
similar increase (Fig 2b,e and Fig 2c,f) in the number of resident macrophages as well as 
monocyte derived macrophages in the simulated WT groups in comparison to the simulated 
LysMcre group.  
 
We updated the manuscript accordingly, please refer to L340-L350 and L654-671. 
 
c. Please in the table explain what mechanism each parameter corresponds to. Some can be 
inferred from the name, but it's not very clear. 
Response: We thank the reviewer for this valuable suggestion. We added column 2 in Table S1 
that describes the detailed mechanism that each parameter corresponds to. We updated the 
manuscript accordingly, please refer to L236-L238.  
For e.g. 3 rows of the Table S1 are shown below – 
  
Table S1 
 

Name of parameters 

 
 
Description 

p_epiinfbactdamage Epithelial cell damage due to infectious bacteria 

p_epith1damage Epithelial cell damage due to Th1 cells 
p_epith17damage Epithelial cell damage due to Th17 cells 

     
d.  Some parameters are not included in the table. For example, the diffusivity of the cytokines 
are not listed.  
We thank the reviewer for this valuable observation. We listed the diffusivity of the cytokines and 
updated the Table_S1.  
 
 
 
 
3.      In Table 1 and Table 2, there is a T cell class named "Tr", which is not explained in the text. 
Please clarify. 
Response: We thank the reviewer for pointing this out. The Tr cells are the type 1 regulatory (Tr1) 
T cells that are regulatory subset of T cells, whose expansion is dependent on environmental IL-
10 (produced by Mreg). These are different than iTreg which are T cells differentiated from naïve 



T cell in presence of tolerogenic dendritic cells and TGF-β cytokine. We clarified this point and 
updated the manuscript, please refer L208-211.  
 
4.      The authors used a Gaussian emulator as surrogate model for the hybrid model. In line 582, 
the authors mentioned that performance is evaluated using diagnostic plots in Figure S4. Please 
clarify what the "Observed" data refers to. Are these the same simulations from the training set 
which the emulator fitted to, or are these new simulations done? If these are the training set 
results, the authors need to run simulations and emulation on a new testing set and evaluate the 
performance; if it's already done, please clarify how its done (range of parameters, number of 
simulations, etc.)  
Response: We thank the reviewer for your careful reading and bringing up the issues in the 
description of the original plot. Below please find our response to your comments. 
First, the “observed” data, i.e. the ‘x’ axis in the first half of lower panel in Figure S4 (shown here 
below as Fig 1a) (please note in the revised manuscript the Figure S4 is now updated and referred 
to as by Fig S5.), refers to the observed output values of the simulations obtained after running 
the hybrid computer model, whereas the ‘y’ axis refers to the predicted values obtained from the 
cross validated model. These diagnostic plots denote the black circles which are the cross 
validated prediction. Cross validation is in the sense that for predictions made at design point x, 
all observations at design point x are removed from the training set. The second half of lower 
panel refers to the standard residual plot wherein the ‘x’ axis represents the observed values 
obtained from the simulation and the ‘y’ axis refers to the residual error ({error (predicted values 
– observed values) / standard deviation (error)}) obtained.   
 
In fact, the models used for plotting are the cross-validated ones and are not fit using the entire 
dataset. Cross-Validation (section 7.10 of The Elements of Statistical Learning (Trevor, Robert et 
al. 2009), is a legitimate approach for model assessment and it is especially suitable in our case 
because the simulation data is expensive to obtain (each simulation takes ~9-10 minutes to run, 
thus 267 parameter sets with 20 replicates = 5,340 simulations. The entire simulation dataset took 
us about 2 months to obtain.  
 
Nevertheless, we would like to show that using separate testing and training dataset for model 
assessment we obtained similar conclusions as those using the cross validated model.  
We randomly split the observed output simulation dataset for one of the datasets (Fig S4 “a”), 
Helicobacter pylori in Lamina propria into training (80%) and testing (20%) sets and built the 
Gaussian emulator using the mlegp package. As observed in the Fig 1b and Fig 1c below, we 
plotted the predicted (values predicted using mlegp) vs. the observed simulation data values for 
both the training set (top panel of Fig 1b) and testing sets (top panel of Fig 1c). In the top panels 
of Fig 1b, the black circles denote the cross validated prediction points for the training dataset. 
Similarly, the top panel of Fig 1c, the black open circles are obtained after plotting the predictions 
for testing dataset, made using the model trained on the 80% of the randomly split dataset, vs. 
the observed values (known) for the 20% of the randomly split used as testing dataset here. 
Additionally, we calculated the standardized residuals for each of the 80% and 20% randomly 
split datasets and plotted the standardized residual plots in the lower panels of Fig. 1b and Fig 1c 
respectively. 
As observed in the bottom panels of the Fig 1a, 1b and 1c the amount of standard residuals 
obtained for the cross validated model (Fig S4 a) from the paper and also the one mentioned in 
previous paragraph), the training dataset (80% randomly split dataset), and testing dataset (20% 
randomly split dataset) respectively, were similar. Thus, here we demonstrated that the results 
obtained from the cross-validated model built using mlegp (from Figure S4 a) and as shown here 
in Fig 1a) were similar to the results obtained using the cross-validation technique by randomly 
splitting the data into 80% and 20% (shown here in Fig 1b and Fig 1c).  



 
 

 
Fig 1a. Original plot from Fig S4 a). The plot shows the predicted vs. observed simulation values 
for the Cross Validated (CV) model (top panel) and residual error plot for the CV model (bottom 
panel). 

   
Fig 1b. The plot shows the predicted vs. observed simulation values for the randomly split 80% 
of the dataset (top panel) and residual error plot for the randomly split 80% of the dataset(bottom 
panel). 
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 Fig 1b. The plot shows the predicted vs. observed simulation values for the randomly split 20% 
of the dataset (top panel) and residual error plot for the randomly split 20% of the dataset(bottom 
panel). 
 
We clarified that the observed data refers to observed simulation values and recreated the Figure 
S4 (now updated to Fig S5 with updated legends. Please refer to L1045-L1058 in the manuscript.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Reviewer #2: The authors present results from a multi-scale hybrid model of host immune 
responses to H pylori exposure in the gut. The paper addresses outstanding questions in this 
complex system and overall the results are interesting. Some comments/questions to be 
addressed are outlined below. 
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1. A key component of the introduction ("double edge sword, p 1 line 4") as well as in the discussion 

(p28 line 672 "dual role as pathogen and beneficial organism") mentions the conflicting roles of H 
pylori infection - however the results do not clearly connect to help answer this dichotomy. More 
detailed analysis/discussion of the results should be provided to clarify the conclusion or the focus 
of the intro/discussion should be adjusted to relate more closely to the results currently presented. 
Response: We thank the reviewer for this valuable suggestion. This study addresses the 
dichotomy in the introduction but mostly focuses on investigating the dynamics that promote the 
tolerance to the bacterium in the gastrointestinal mucosa and its systemic immunoregulatory 
effects. We view the dichotomy represented by the beneficial effects of regulatory responses 
(immune tolerance to the bacterium) in lesion development versus the detrimental actions of 
effector responses. Since, the majority of H. pylori-colonized individuals, approximately 85%, do 
not present any detrimental effect, we wanted to contribute towards the further investigation of 
the dynamics of immunoregulatory mechanisms underlying H. pylori infection using computational 
modeling. We emphasized the need for investigation of the immunoregulatory role and the 
adjusted the focus of the introduction and discussion to relate more closely to the results 
highlighting regulatory immune cells here. We updated the manuscript accordingly, please refer 
to L4-L7, L52-L54, L62-L65 in introduction and L850-L854 in discussion.  
 

 
2. Section 3.4 and p 29 line 694 discuss the involvement of regulatory macrophages and tolerogenic 

DCs on the colonization of H pylori. These conclusions appear to be drawn based on correlation 
between responses in H pylori and macrophage/DC populations upon epithelial cell proliferation 
adjustment (Fig 5). A causal connection between the macrophages/DCs and H pylori is not made 
(or is not clear to me from the text). If such a connection is embedded in the mechanisms included 
in Table 1 it should be outlined in the results section where the conclusion is made otherwise 
simulations targeting the macrophage/DC populations would be needed to confirm this 
hypothesis. 
Response: We thank the reviewer for pointing this out. We want to clarify that computational 
modeling based studies are capable of providing predictive modeling derived insights, however, 
any definitive causal connection should be validated in an experimental or clinical setting. In this 
study, based on the results obtained from the metamodel based global SA, the epithelial cell 
proliferation parameter was shown to an impact on the H. pylori population.  
 
Following these findings which highlighted the importance of epithelial cell proliferation, the 
biological hypothesis derived from this prediction is that the epithelial cell proliferation parameter 
is responsible for the higher colonization of H. pylori. Prior to conducting any experimental studies, 
we wanted to explore the hypothesis using our hybrid computer model in silico and study the 
model outputs obtained after we changed the epithelial cell proliferation parameter. Thus, we 
varied the epithelial cell proliferation parameter across a varying range of values (0.9-0.1) and 
studied its effect on the different output cell population (obtained after running the simulations). 
These outputs were the ones obtained after running the simulation using the hybrid computational 
model, as we varied the epithelial cell proliferation parameter. We analyzed the outputs from the 
hybrid computer model and observed upon decreasing the Epiprolifer from a range of values 0.9-
0.1, the output cell populations with regulatory function, namely regulatory macrophages and 
tolerogenic dendritic cells were found to vary. Overall, these cell populations varied due to the 
variation in the epithelial cell proliferation parameter.  
 
We want to clarify that such connection was not embedded in the mechanisms included in Table 
1 but it represents an emergent behavior from the simulations predicting the involvement of 
regulatory and tolerogenic dendritic cells in the mechanisms of immunoregulation during H. pylori 



infection. Finally, the simulations targeting the epithelial cell proliferation caused a change in 
regulatory and tolerogenic dendritic cell population. This shows that the simulations indirectly 
targeted the regulatory and tolerogenic dendritic cell population. Thus, we hypothesize that 
epithelial cell proliferation might be responsible for the higher colonization of H. pylori through a 
mechanism that involves the regulatory macrophages and tolerogenic cells. This is in line with 
our own conclusions drawn from a previous paper (Viladomiu, Bassaganya-Riera et al. 2017) 
where we show that the presence of cells with regulatory phenotype favor higher levels of H. pylori 
colonization. The results from the sensitivity analysis presented in this paper suggest that 
epithelial proliferation might be a crucial part of the mechanisms by which these regulatory 
responses are induced and that there is a link between these parameters. The exact biological 
process however cannot be inferred from the current model and it will be investigated in follow-
up in vivo studies.  
 
 
We updated the manuscript with the detailed clarification, please refer to L788-826 and L908-
L915. 

 
3.   Clarity is needed on some parts of the methods description: 
3.1   P6, line 131: what are the units of the grid dimensions given. Are these the dimensions of a single 

grid cell or the entire grid? How are the 4 compartments separated on the grid? 
Response : We thank the reviewer for pointing this out. These are the dimensions of the entire 
grid. An individual grid cell is 1nm x 1nm. The 4 compartments are separated by border 
implementation such that the dimensions of the 4 compartments are lumen (2nm), epithelium 
(1nm), lamina propria (5nm) and gastric lymph node (2nm). The following compartments are 
adjacent to each other: 

• Lumen - epithelium 
• Epithelium - lamina propria 
• Lamina propria – gastric lymph node 

We updated the manuscript with detailed model description, please refer to L222-L232. We also 
added a figure describing the grid in the Additional file Fig S2.  

 
 
3.2   P6 line 149: what data were the ODEs calibrated to? Is there a reference? 

Response: The CD4+ ODE model was calibrated using the experimental data provided in the 
Table S1 of the reference - Carbo, Hontecillas et al. 2013. The Particle Swarm algorithm 
implemented in COPASI was used to determine unknown model parameter values and fully 
calibrate the model. The intracellular macrophage ODE model was calibrated using a combination 
of sourced and new data generated from in vitro macrophage differentiation studies, compiled 
into a dataset provided within S2 file of Leber, Bassaganya-Riera et al. 2016.  
We accordingly updated the manuscript, please refer to L155-L166.  

 
3.3   P6 line 150, and p22 line 524: ABM parameters were calibrated to "qualitatively resemble" the 

patterns observed in in vivo model. What patterns? What is considered to be qualitatively similar 
enough? Do the simulations reproduce the dynamics as well and the endpoint experimental 
observations? Inclusion of experimental data alongside the simulations in figure 2 or a description 
of the key dynamics (e.g. fold-changes, peak values etc.) would go a long way in communicating 
confidence in the model parameters. 

 
Response: We thank the reviewer for their valuable suggestion. The values of the parameters 
are obtained based on the qualitative comparison of the model outputs with the experimental 



results obtained from the mouse model of H. pylori infection. The simulations reproduced similar 
dynamics as described below - 

 The results in the mouse model indicated that between weeks 2 and 3 post-infection a decrease 
in bacterial burden in the stomach of LysMcre mice (lacking PPARg in myeloid cells) was 
observed as shown in Fig 1A of (Viladomiu, Bassaganya-Riera et al. 2017). The decrease in 
bacterial burden led to a significant and sustained lower colonization levels when compared to 
WT and CD4Cre (lacking PPARg in T cells). Similar to the results observed in the mouse model, 
we observed a significant decrease (Fig 2a,d) in the bacterial burden in the simulated LysMcre 
group as compared to the simulated WT and CD4cre groups.  

 
 
 Furthermore, the results from the mouse model indicated that a significant increase in numbers 

of F4/80hiCD11b+ CD64+ CX3CR1+ cells (here referred to as resident macrophages in this 
paper), was observed in WT mice in comparison with LysMcre mice as shown in Fig. 2A, 2E of 
(Viladomiu, Bassaganya-Riera et al. 2017). These cells accumulated in the stomach mucosa 
starting on day 14 post-infection in the WT mice but not in the LysMcre mice. We observed a 
similar increase (Fig 2b,e and Fig 2c,f) in the number of resident macrophages as well as 
monocyte derived macrophages in the simulated WT groups in comparison to the simulated 
LysMcre group. As shown below, the peak of resident macrophages in lamina propria (refer Fig 
2b of this paper) was observed at ~16-21 days which was similar to the peak observed in the 
CD64+F480hi macrophages at day 21, in Fig 2a described in (Viladomiu, Bassaganya-Riera et 
al. 2017). We included the experimental data alongside the simulation and revised the Fig 2 as 
shown below. 

 
 We accordingly updated the manuscript, please refer to L344-L350, L654-L671 and updated 

legend for Fig 2, L647-L649.  



 
 
 

3.4   P11 line 246: the authors state that they perform global SA of the hybrid computer model. I 
believe they mean the metamodel here? 

Response: We thank the reviewer for pointing this out. Although, a metamodel was built using 
the hybrid computer model, overall the global SA that included two stages –i) screening the 
influential inputs using PRCC (which was performed on the outputs from hybrid computer model 
simulations) and building a metamodel (using the outputs from the hybrid computer model) 
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followed by calculating the Sobol’ indices. Hence, we stated that we performed the global SA of 
the hybrid computer model.  
 
 
3.5   P 21 line 480 and 484: parameter values were 'reduced' to emulate biological KOs. By how 

much were the parameters reduced? 
Response: We thank the reviewer for pointing this out. We added new columns in Table S1 with 
the values of the parameters used to emulate the biological KOs. A complete set of parameter for 
each of the biological KOs are included as separate columns in Table S1.  
To simulate the CD4Cre group, the probabilities of a naive T cell transitioning to an iTreg cell 
(p_nTtoiTreg) and Th17 cell differentiating to iTreg (p_Th17toiTreg) were reduced to 5% and 10% 
of the baseline (WT) value respectively (refer Table S1). As described in (Carbo, Hontecillas et 
al. 2013), to simulate the LysMCre experimental conditions, the probabilities of i) a monocyte 
transitioning to a regulatory macrophage (p_MonotoMreg) and ii) immature dendritic cells 
switching to tolerogenic dendritic cells (p_iDCtotDC) were reduced approximately to 60% and 
30% of the baseline (WT) value, respectively (refer Table S1).  
 We updated the manuscript with the above listed values, please refer to L602-615. 

 
 
3.6   The in vivo model is mentioned several times before it is clarified to be a mouse model. 
Response: We thank the reviewer for their valuable suggestion. We updated the manuscript and 
clarified that the in vivo model is a mouse model.  
  
 
 
Comment from the Editor: Further, our series Guest Editor, Paul Macklin has had a quick look 
at the manuscript from a reproducibility point-of-view and suggests that you include somewhere 
(e.g., in supporting info) the specific examples for this paper, including detailed instructions on 
how to create the specific examples presented. Note that our curators also asked for detailed 
instructions on how to require detailed instructions for usability - not just code. 
 
In addition, please register any new software application in the SciCrunch.org database to receive 
a RRID (Research Resource Identification Initiative ID) number, and include this in your 
manuscript. This will facilitate tracking, reproducibility and re-use of your tool. 
 
Response: The RRID (Research Resource Identification Initiative ID) number as assigned by the 
SciCrunch.org database is SCR_016918. We included this in the manuscript, please refer to 
L180-L182.  
 
Detailed instructions for the usability are described below and also included in Additional file S1. 
Detailed instructions on how to create the specific examples presented here are also included. 
We accordingly updated the manuscript, please refer to L178-180.  
 
Additional file S1 
 
This file contains the detailed instruction to Install ENISI MSM (Step I), Run a simulation (Step 
II) and Conduct Sensitivity Analysis (Step III). The jupyter (.ipynb) notebooks (Fig2-
Code.ipynb, Fig3-Code.ipynb, Fig4-Code.ipynb and Fig5-Code.ipynb) include detailed 
instructions on how to create the specific figures presented in the paper.  
 
 



A. How to install ENISI MSM 
1. Create a folder for the hybrid computer model: mkdir ENISI 
2. Change directory to the newly created folder: cd ENISI 
3. Clone the dependencies required from the ENISI-Dependencies from the NIMML GitHub 

repository - 
i. git clone --recursive https://github.com/NIMML/ENISI-Dependencies 

4. Change the path to the ENISI-Dependencies folder: cd ENISI-Dependencies 
5. Create a directory build within the folder: mkdir build 
6. Change directory to the directory created in step 5: cd build 
7. Start the installation: cmake ../ 

make 
8. Change the directory cd  
9. Change the directory to the one created in step 1: cd ENISI 
10. Clone the ENISI-MSM model from the NIMML GitHub repository – 

i. git clone —recursive https://github.com/NIMML/ENISI-MSM 
11. Change the directory to ENISI-MSM: cd ENISI-MSM 
12. Create a directory build within the folder: mkdir build 
13. Change the directory to the directory created in step 12: cd build 
14. Start the installation:  

cmake -DENISI_MSM_DEPENDENCY_DIR=PATH TO ENISI-Dependencies 
FOLDER/install .. 

make 
 

B. How to run a simulation 
 

1. Create a folder FolderName to save the simulation results. It is important to place all the 
results of every experiment and its respective files in different folders. 

2. Place the files i) config.props ii) run.props iii) job.sh (required only if running on cluster) 
iv) CD4.cps v) MregDiff.cps vi) model.props all in the folder where you want the output 
files to be saved (i.e FolderName). 

3. model.props is the parameter file wherein you can change the parameters. 
4. run.props and config.props are the configurable files where you can change the number 

of TICKS (that is a measure of computational time, i.e stop.at = number of TICKS) and the 
size of the grid (in the current model that is set to 1nm). 

5. For running locally, use run.sh 
6. To run on a cluster, use job.sh.  
7. For the -output folder path, change the CONFIG variable and provide path to your folder 

i.e /home/username/FolderName.  
8. ENISI executable to be used in the job.sh file is located in /PATH: ENISI/ENISI-MSM/bin 

folder that is created in the (installation step, Section A).  
9. Run your job by typing -> sh run.sh (OR) ./ run.sh "path of the folder where you want the 

results or sh job.sh (specify the CONFIG variable within). 
10. After the job iscompleted, you will have .log files, .tsv files for all the compartments. 



11. The .log file will contain debugging statements if there are any issued in the code. 
Additional statments can be added to the source code for confirmation and monitoring the 
output.  

C. Sensitivity Analysis 

Stage 1 Initialization 

1. Parameters.xlsx -> Contains the maximum and minimum values of the input parameters 
and information about which parameters are fixed. 

2. Generate the Input parameter design matrix (P1) using - design_matrix_generation.m; 
(NOTE: Comment out the Stage 2 part of the code). 

3. Each row in P1 corresponds to the different values of the parameters to be used in the 
model.props files. 

4. Run the simulation using the hybrid computer code as described in Section B.  

Stage 1 Analysis 

1. Run the simulations (152 x 20 replicates) for each input parameter setting obtained from 
P1 (see above, step 2 in the initialization stage). 

2. Convert the data into .csv file format: 
a. 1st column: time points information (i.e. Ticks),  
b. 2nd column mean values and  
c. 3rd column standard deviations 

All the information will be obtained from the ENISI-MSM output runs. 

3. Run Stage1-PRCC.ipynb - Formats the data to be used for the PRCC analysis and 
calculates the PRCC coefficients. (The code generates a data frame with rows from the 
Parameters.xlsx file and average of the output obtained for that parameter setting in the 
last column).  

4. Plot the PRCC graphs using Stage1-PRCC_barplots.R 
5. Alternatively, use Fig3-Code.ipynb jupyter notebook to recreate the figures in the paper.  
6. Create an excel sheet with information about the active and inactive inputs from PRCC - 

PRCC_activeinactiveinputs-added.xlsx.  

Stage 2 Initialization 

• Generate the Input parameter design matrix (P2) using – i) design_matrix_generation.m 
(NOTE: Comment out the Stage 1 part of the code) and ii) information regarding the active 
and inactive inputs present in PRCC_activeinactiveinputs-added.xlsx file. 

• Run the simulation using the hybrid computer code as described in Section B. 



Stage 2 Analysis 

1. Run the simulations (115 x 20 replicates) for each input parameter setting obtained from 
P2 (see above, step 1 in the initialization stage). 

2. Convert the data into .csv file format: 
a. 1st column: time points information (i.e. Ticks),  
b. 2nd column mean values and  
c. 3rd column standard deviations.  

All the information will be obtained from the ENISI-MSM output runs. 

3. Combine all the outputs obtained from P2 and P1. (outputs obtained after running 
simulation for P1 from Stage 1, Section C and for P2 from Stage 2, Section C).  
Create folders for each of the cell (cells are represented as agents in each compartment) 
populations and save the files from step 2, Sage 2, Section C.  

4. Run Stage2-inputfilegeneration.m and save the output as .mat file to be used to build a 
temporal metamodel.  

5. Build a temporal metamodel using Stage2-BuildTempMM.R and save the output as 
.Rdata dataset.  

6. Calculate the Sobol Indices using Stage2-SA-temporal6tps.R. The input to the code 
includes the .Rdata obtained from the previous step 6 (stage 2 Analysis, Section C) and 
the datasets obtained after running SobolIndex_data_generation.m.  
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