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Abstract  1 

Background: Helicobacter pylori causes gastric cancer in 1-2% of cases, but is 2 

also beneficial for protection against allergies and gastroesophageal diseases. 3 

An estimated 85% of H. pylori-colonized individuals do not present any 4 

detrimental effects. To study the mechanisms promoting host tolerance to the 5 

bacterium in the gastrointestinal mucosa and systemic regulatory effects, we 6 

investigated the dynamics of immunoregulatory mechanisms triggered by H. 7 

pylori using a high-performance computing driven ENteric Immunity Simulator 8 

multiscale model. Immune responses were simulated by integrating an agent-9 

based model, ordinary and partial differential equations.   10 

Results: The outputs were analyzed using two sequential stages: the first used 11 

a partial rank correlation coefficient regression-based and the second employed 12 

a metamodel-based global sensitivity analysis. The influential parameters 13 

screened from the first stage were selected to be varied for the second stage. 14 

The outputs from both stages were combined as a training dataset to build a 15 

spatiotemporal metamodel. The Sobol’ indices measured time-varying impact of 16 

input parameters during initiation, peak and chronic phases of infection. The 17 

study identified epithelial cell proliferation and epithelial cell death as key 18 

parameters that control infection outcomes. In-silico validation showed that 19 

colonization with H. pylori decreased with a decrease in epithelial cell 20 

proliferation, which was linked to regulatory macrophages and tolerogenic 21 

dendritic cells.  22 

Conclusion: The hybrid model of H. pylori infection identified epithelial cell 23 

proliferation as a key factor for successful colonization of the gastric niche and 24 
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 2 

highlighted the role of tolerogenic dendritic cells and regulatory macrophages in 25 

modulating the host responses and shaping infection outcomes. 26 

1. Background 27 

Computational modeling of the immune response dynamics can provide 28 

novel insights and facilitate the systems level understanding of the interactions 29 

at the gastric mucosa during infection. Ordinary differential equation (ODE- 30 

based methods are deterministic and based on the average response of cells 31 

over time. Dynamical models are used in immunology for system-level analyses 32 

of CD4+ T cell differentiation [1], macrophage differentiation [2], immune 33 

responses elicited by Clostridium difficile infection [3], co-infections [4], and in 34 

cancer and immunotherapy [5]. However, ODE-based models lack the spatial 35 

aspects and the features to study the organ and immune cell topology over time. 36 

Agent-based models (ABM) employ a bottom-up approach that focuses on the 37 

spatial and temporal aspects of individual immune cells, unlike the ODE-based 38 

methods. This rule-based method includes agents that act as local entities which 39 

interact locally with other agents, move in space, and follow set of rules 40 

representing their role in a given system and contribute towards generating an 41 

emergent behavior. Since, the immune system is a complex dynamical system 42 

[6] wherein the components i.e., the immune cells move in space and time 43 

changing their location, ABMs are useful tools that can be employed to 44 

understand biological mechanisms and the hidden insights.  45 

Helicobacter pylori is a gram-negative bacterium that has persistently 46 

colonized the human stomach since early evolution [7] [8] and is currently found 47 

in over 50% [9] of the global population. H. pylori has co-evolved with humans 48 

for thousands of years, such that an estimated 85% of the H. pylori-colonized 49 
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 3 

individuals, do not present any detrimental effects. Thus, the vast majority of 50 

carriers (i.e., up to 75%) remain asymptomatic, while only 15% develop ulcers, 51 

and less than 3% develop cancer. Further, growing and sometimes contradictory 52 

evidence from recent experimental, clinical studies and epidemiological studies 53 

suggest that H. pylori might provide protection against obesity-related 54 

inflammation and type 2 diabetes [10], esophageal, cardiac pathologies, 55 

childhood asthma and allergies [11] and autoimmune diseases. In this context, 56 

it is crucial to understand the mechanisms that promote host tolerance to the 57 

bacterium in the gastrointestinal mucosa and its systemic regulatory effects 58 

since these have been linked to the beneficial commensal aspects of H. pylori-59 

human host interaction. Computational models provide a cost-effective and 60 

predictive way to study the complex and dynamic immune system interactions 61 

and form a non-intuitive novel hypothesis. Solving the complex puzzle of 62 

immunoregulatory mechanisms that include large spatiotemporal scales ranging 63 

from cellular, intracellular, tissue and organ level scales is a major unsolved 64 

challenge that requires applying computational modeling and data analytics.  65 

An advanced hybrid model used to study the mucosal immune response 66 

during gut inflammation highlighted the mechanisms by which effector CD4+ T 67 

cell responses, contributed to tissue damage in the gut mucosa following 68 

immune dysregulation [12]. Other hybrid models with the integration of ABM, 69 

ODE, and PDE technologies, were developed to understand the dynamics of 70 

tumor development [13] and tumor growth models [14]. These combined 71 

techniques have been used to develop multi-organ models in various situations, 72 

including the study of granuloma formation [15] and pressure-driven ulcer 73 

formation in post spinal cord injury patients [16]. The summary of different agent-74 

based simulators with immunology related applications are discussed and 75 
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 4 

summarized in [17, 18]. The comparison between different multiscale modeling 76 

tools and agent-based immune simulators, are discussed in [12, 19]. 77 

In this study, we utilize a high-resolution ENteric Immunity SImulator (ENISI)-78 

based model of the stomach for simulating the mucosal immune responses to H 79 

pylori infection. The advanced hybrid multiscale modeling platform ENISI 80 

multiscale model (MSM) is capable of scaling up to 1012 agents [20]. The host 81 

immune responses initiated during H. pylori infection and the underlying 82 

immunoregulatory mechanisms are captured using the ENISI multiscale hybrid 83 

model. The underlying intracellular mechanisms that control cytokine production, 84 

signaling and differentiation of macrophages and T cells are modeled by using 85 

ODEs, the diffusion of cytokine values is modeled using PDEs and the location 86 

and interactions among the immune cells, bacteria and epithelial cells are 87 

modeled by using ABMs. The hybrid model thereby represents a high-88 

performance computing (HPC)-driven large-scale simulation of the massively 89 

interacting cells and molecules in the immune system, integrating the multiple 90 

modeling technologies from molecules to systems across multiple 91 

spatiotemporal scales. 92 

To understand the dynamics and emergent immunological patterns 93 

described by this hybrid model, we employed sensitivity analysis (SA), an 94 

important part of the model analysis used to explore the influence of varying 95 

model parameters on the simulation outputs. The influence of the effects of 96 

changes in parameter values on the model output explains the model dynamics 97 

that underlay the outputs [21, 22]. Furthermore, SA examines the robustness of 98 

the model output at a different range of parameter values that correspond to a 99 

range of different assumptions.  We employed global SA and conducted a two-100 

stage spatiotemporal global SA approach. First, we used a regression-based 101 
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 5 

method such as the partial rank correlation coefficient (PRCC) and screened the 102 

important input parameters that were shown to have the most influence on the 103 

output cell populations obtained from the hybrid model. Second, the screened 104 

input parameters from the first stage were varied to build a second stage 105 

parameter design matrix, and the computer simulations were again run using the 106 

hybrid ENISI model. The outputs from both analytics stages were combined and 107 

used as a ‘training dataset’ to build a spatiotemporal Gaussian process based 108 

metamodel. Finally, variance-based decomposition global SA was used to 109 

compute the Sobol’ indices and the most influential parameters over the course 110 

of infection were identified. The data analytics methods conducted on the hybrid 111 

model identified the epithelial cell parameters such as epithelial cell proliferation 112 

as the most influential ones, required for the successful colonization of H. pylori 113 

in the gastric microenvironment.  114 

    2. Methods 115 

2.1 Hybrid multiscale Helicobacter pylori infection model  116 

 We developed a multi-compartment, high-resolution, hybrid ABM/ODE/PDE 117 

model to capture the dynamics of the immune response during H. pylori 118 

colonization of the gastric mucosa. The model has a spatial discretization such 119 

that the dimension of the entire (two-dimensional, (2D)) grid is 30 m x 10 m. 120 

An individual grid cell for our simulation is 1m x 1m, however, this is a 121 

configurable run parameter and can be changed without modifying the model. 122 

An individual grid cell is a unit wherein all the agents located within that location 123 

have the same cytokine environment, i.e., for all the agents in that location, 124 

ENISI-MSM would send the same concentration of the cytokines to COPASI. 125 
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 6 

The entire grid is divided within into four functionally and anatomically distinct 126 

sized compartments: lumen, epithelium, lamina propria and gastric lymph node. 127 

In the model, there are multiple cells and cell types (i.e., agents) within this 128 

dimensional grid. At the beginning of each simulation cycle, the cells (agents) 129 

are randomly placed within the within the 2D grid. The separation of different 130 

types of agents, corresponding to different cell types, into compartments within 131 

the grid is based on the conceptual framework that underlines the model, which 132 

is based on author’s expertise and available information. Currently the individual 133 

agents do not have any physical size meaning such that there is no limit of agents 134 

within each individual spatial grid. The model is initialized with the concentration 135 

of different cell types (i.e. agents for e.g. macrophages) at the beginning of the 136 

simulation by the user.  137 

 The use of a border implementation permits the migration of agents (cells) 138 

across compartments and facilitates the unidirectional and bidirectional 139 

movement of the agents. At the cellular scale, ENISI MSM, simulated epithelial 140 

cells, macrophages, dendritic cells (DC), CD4+ T cells and bacteria that are 141 

implemented as agents in the model. At the intracellular scale, calibrated ODE-142 

based models of T cells [23] and macrophages [2] were used to represent the 143 

intracellular pathways controlling cytokine production. The CD4+ T cell ODE 144 

model was calibrated using the experimental data provided in the Table S1 of 145 

[23]. The Particle Swarm algorithm implemented in COPASI was used to 146 

determine unknown model parameter values and fully calibrate the CD4+T cell 147 

ODE model, the details are described in [23]. The intracellular macrophage ODE 148 

model was calibrated using a combination of sourced and new data generated 149 

from in vitro macrophage differentiation studies, that were compiled into a 150 

dataset provided within S2 file of [2]. The parameter values are specified within 151 
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the previously published manuscripts - CD4+ T cell ODE model (Carbo, 152 

Hontecillas et al. 2013) and macrophages [2]. The parameters of the calibrated 153 

ODEs were kept unchanged, and the ABM parameters were calibrated by 154 

approximating the output simulations such that they qualitatively resembled the 155 

patterns observed in a mouse model of H. pylori infection [24], also described in 156 

detail in section 3.1. Cytokines secreted by immune cells and their change in 157 

concentration were modeled by PDE. The degradation value of the cytokines 158 

and the diffusion constant determines the spread of the cytokine value of one 159 

grid cell to its neighboring grid cell similar to as described in [12]. The features 160 

of ABM, ODE, and PDE were combined to create a multiscale modeling 161 

environment which spanned across different orders of spatiotemporal scales.  162 

The model output contains information about the x and y co-ordinate of the 163 

agents at every time point. The cytokines and internal signaling pathways that 164 

drive functional fates of cells are well mixed within a cell, i.e., we have only 165 

temporal resolution within the cell during a time step. However, the production, 166 

degradation, and diffusions are cell-specific thus the cytokine concentration 167 

results are also spatio-temporal. Since, the model is capable of providing 168 

information regarding spatial co-ordinates over time, we claim the model to be a 169 

spatio-temporal model.  170 

 171 

 The code for the hybrid model is freely accessible and can be downloaded 172 

at https://github.com/NIMML/ENISI-MSM. The detailed instructions for the 173 

usability, instructions on ‘how to run a simulation’ and codes for creating specific 174 

examples presented here are presented in Additional file S1.  The SciCrunch.org 175 

database assigned research identification initiative ID (RRID) for ENISI-MSM is 176 

RRID:SCR_016918. The design of the implementation of the code structure is 177 
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depicted in the Additional file Fig S1. The hybrid model is implemented in C++ 178 

and utilized the Repast HPC library (https://repast.github.io/repast_hpc.html) 179 

[25]. For the ODEs, we utilized COPASI  [26], an ODE-based modeling tool used 180 

in computational biology. The rules in the model that described the interaction of 181 

H. pylori with the gastric mucosa and the immune responses resulting from the 182 

infection are derived from the findings in our previously published studies [1, 2]. 183 

Specifically, this hybrid model reproduced the immune responses generated by 184 

the interaction H. pylori and the resident macrophages as shown in the mouse 185 

model of H. pylori infection [24]. The rules for each cell type in the H. pylori 186 

infection are summarized in Table 1. A pictorial representation of the rules is 187 

depicted in Fig 1. These cell types represented as agents, act according to the 188 

rules (as in Table 1) that are updated at discrete simulation cycle.  189 

 190 

 191 

Fig 1. Helicobacter pylori infection schematic diagram of the hybrid ABM 192 

ODE model  193 

The model comprises four compartments, i) the lumen that contains H. pylori and 194 

bacteria, ii) epithelium that contains epithelial cells and dendritic cells, iii) lamina 195 

propria that contains variety of immune cells including the infiltrating effector 196 

(eDCs) and tolerogenic (tDCs) dendritic cells, monocytes, regulatory 197 

macrophages (both resident and monocyte-derived macrophages), T helper 198 

cells and naïve CD4+ T cells (nT), Th1, iTreg, Th17, Tr cells. and iv) gastric 199 

lymph node compartment that contains eDCs, tDCs, Th1, Th17, iTreg and nT. 200 

The Tr cells in the lamina propria are the type 1 regulatory (Tr1) T cells with 201 

regulatory function whose expansion is largely dependent on environmental IL-202 

10. These are different than iTreg which are T cells differentiated from naïve T 203 
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cell in presence of tolerogenic dendritic cells and TGF-β cytokine The two 204 

calibrated ODEs for T cells and regulatory macrophages are integrated as the 205 

ODE components in the hybrid model. The cellular agents are simulated in a 206 

two-dimensional grid space with their behavior defined by a set of rules during a 207 

course of H. pylori infection.  208 

 209 

Model description  210 

ENISI MSM is a multiscale agent-based modeling platform for computational 211 

immunology which was built on our previous works, ENISI-MSM [12]  that 212 

integrated COPASI, the ODE solver, ENISI, an agent based simulator.  213 

Spatial discretization  214 

The model has a spatial discretization such that the dimension of the entire (two 215 

dimensional) grid is 30 m x 10 m. An individual grid cell is 1m x 1m, 216 

however, this is a configurable run parameter and can be changed without 217 

modifying the model. The four functionally and anatomically distinct sized 218 

compartments are separated by border implementation such that the dimensions 219 

of the four compartments are lumen (2 m), epithelium (1 m), lamina propria (5 220 

m) and gastric lymph node (2 m). The following compartments are adjacent to 221 

each other: lumen – epithelium, epithelium - lamina propria and lamina propria – 222 

gastric lymph node. A figure describing the spatial discretization is shown in the 223 

Additional file Fig S2. 224 

The parameters that define the initial concentration of the agents and the 225 

diffusivity of cytokines are obtained from a properties file (model.props in the 226 

Howtorunasimulation folder in the GitHub repository). All the value of the 227 

parameters as listed in Table S1. The detailed mechanism that each parameter 228 
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corresponds to is described in the second column, parameter description, of 229 

Table S1.  We demonstrate below how we obtain a count of thousands resident 230 

macrophages. For e.g., if the initial concentration of resident macrophages in the 231 

lamina propria is 30, the total number of these resident macrophages can be 232 

calculated by the equation described below -  233 

 234 

n(resident macrophages) = sizecompartment(lamina propria) x concentrationintial 235 

(resident macrophages)        236 

n(resident macrophages) = (30 x 5) x 30 = 4500. 237 

 238 

Time Step size  239 

The time step size is 1 tick ~ 1 day which was obtained during the process of 240 

qualitatively comparing the output to the results from the mouse model of H. 241 

pylori infection. For e.g., the peak of resident macrophages in lamina propria 242 

(refer Fig 2b, d) is observed at ~21 days which is similar to the results obtained 243 

in Fig 2A described in [24] (also described in detail in section 3.1).  244 

 245 

Updating   246 

Each agent has an ‘act’ function within the code that describes the rules 247 

implemented for each of the agent groups. At every simulation cycle, each agent 248 

inspects its location and updates its state. If the agents were T cells and 249 

macrophages, they obtained the cytokine concentration from the ValueLayers, 250 

sent that information to COPASI that calculated the differentiation subtype of the 251 

agent and cytokines to be secreted that into the environment [12].  The input to 252 

the ODEs were the cytokine values at the agent’s location. Thus, the intracellular 253 

ODE models were utilized to determine and update the state. Each agent 254 
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proliferated, died, changed its state and moved across the compartment, 255 

following the set of rules defined for them.  256 

The COPASI setup for the solver used the LSODA (Livermore Solver for 257 

Ordinary Differential Equations) differential equation solver. The default values 258 

for the setup such as the - relative tolerance (1e-6), absolute tolerance (1e-12) 259 

and maximum internal steps of 10000 were maintained. The ENISI MSM sends 260 

the current concentrations of the cytokines 261 

to COPASI. COPASI uses those values to integrate the deterministic 262 

model for one tick, i.e., 1 day. The resulting time series of cytokine 263 

concentrations are used to update the cytokine value in the ABM/PDE 264 

system. COPASI simulates different model for each relevant cell type.  265 

The ENISI MSM PDE solver uses a simple numerical scheme to solve the PDEs 266 

(https://github.com/NIMML/ENISI-MSM/tree/master/src/diffuser) and process 267 

distributed value layer (https://github.com/NIMML/ENISI-268 

MSM/blob/master/src/grid/ValueLayer.h). The ValueLayer stores the value for a 269 

grid space and provides methods to change the values of individual grid cells. 270 

The Diffuser is used to diffuse the values of the ValueLayer using diffusion (d) 271 

and degradation (delta) constants as described in [12]. The diffusion constant 272 

determines the migration of values of a grid cell to its neighboring grid cells. As 273 

implemented in ValueLayer library, the diffusion of cytokines follows the equation 274 

shown below also described in Mei el al, 2015. Here, vn is the value of the grid 275 

cell itself at step n. The values of cdelta and cd are degradation and diffusion 276 

constant respectively.  277 

vn = vn-1 + cdelta * [ ∑( cd
 neighbor *vn-1

neighbor) - 6.0 * vn-1] 278 
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1.2 -6.0 1.2 

0.3 1.2 0.3 

 279 

The PDE solver uses the above number scheme cd
 neighbor for the diffusion 280 

process. The step size cdelta is automatically adjusted at the beginning of the 281 

simulation based on the degradation and diffusion constants to avoid underflow 282 

errors, i.e., multiple PDE steps are in general executed per tick.  The grid size is 283 

the identical with the spatial discretization for the agents. 284 

Movement  285 

The cells and bacteria agents presented in the model have Brownian motion and 286 

move randomly within the compartment. Brownian movement is an inherent 287 

property of a cell. Depending on cell phenotypes the movement can vary, but all 288 

cells with the same phenotype exhibit similar movements. Additionally, 289 

chemokine-driven movement is dependent on chemokine concentration in a 290 

tissue site. The capability of chemokine-driven movement exists in ENISI-MSM 291 

if the right chemokines are represented in the model. However, the focus of this 292 

model was to investigate changes in cell phenotype and not chemokine-driven 293 

movement of cells. Thus, the chemokines driving the movement are not 294 

represented in the current model. Cell migration is implemented in the code as 295 

the move() function for each of the cells and agents, which call the 296 
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moveRandom() function from the (https://github.com/NIMML/ENISI-297 

MSM/src/compartment/Compartment.cpp) file.   298 

 299 

   The hybrid model simulations were run on an Ivy Bridge-EX E7-4890 v2 2.80 300 

GHz (3.40 GHz Turbo) quad processor nodes. The code was parallelized such 301 

that the simulation time on a single node with four parallel tasks, varied between 302 

9-10 minutes. This runtime was based on the model parameters at the initiation 303 

stage, which included the number of immune cell, bacteria, epithelial cells, 304 

number of time steps, and size of the two-dimensional grid.  To facilitate the 305 

investigation of the mechanisms underlying host responses during H. pylori 306 

infection, anatomical and functional compartments were spatially linked such that 307 

the agents had both unidirectional and bidirectional movement. All the agents 308 

worked in a synchronous format wherein the two agent populations 309 

(macrophages and T cells) made function calls to their respective ODE models 310 

[2] [23]. These agents used the varying cytokine concentration (i.e., environment 311 

variable) in their grid spaces as inputs to the ODE model, and these models were 312 

run using COPASI [26]. Table 2 shows information on the agents and the states 313 

that they can acquire. 314 

 315 
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 316 

 317 

Table 2. List of all the agents and the states they can acquire.  318 

All the agents can acquire at least 1 and at the most 5 states. The names chosen 319 

for the acquired states are closely related to their functional properties based on 320 

the underlying “rules”. 321 

 322 

2.2 Global sensitivity analysis  323 

 324 

To conduct the global SA, we determined a list of 38 parameters to be varied 325 

that were selected based on the calibration process (wherein the parameters 326 

that did not show a lot of variation were not included). A range of values 327 

(maximum and minimum) was specified for each of the parameters (refer to 328 

Additional file Table S1) by expert judgment, summarized by bounded intervals. 329 

The practice of using expert judgment is known in the SA field as supported in 330 

[27]. As discussed in [28], one of the challenges encountered using ABM is the 331 

Name of agents States it can acquire Name of the states in the 
hybrid model 

Helicobacter pylori 0 H. pylori 

Macrophages 0 
1 
2 
3 

Monocyte 
Resident 

Regulatory 
Inflammatory 

Dendritic cells 0 
1 
2 

Immature 
Effector 

Tolerogenic 

T cell 0 
1 
2 
3 
4 

Naïve 
Th1 

Th17 
iTreg 

Tr 

Epithelial  0 
1 

Healthy 
Damaged 

Bacteria 1 
2 

Infectious 
Tolerogenic 
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process of determining the parameter values, for e.g.  this may include the lack 332 

of the availability of experimental techniques to measure such parameters. The 333 

values of the parameters for the model presented here are obtained via the best 334 

guess based on the qualitative comparison of the computer model outputs with 335 

that of the experimental results obtained from the mouse model of H. pylori 336 

infection (Viladomiu, Bassaganya-Riera et al. 2017) (as described in detail in 337 

Section 3.1). Since, the source of the parameters is not known we estimated the 338 

values to fit the data obtained from the mouse model of infection.  339 

The values of these parameters were normalized within the range of 0 and 1 340 

for SA purposes. We employed a two-stage metamodeling methodology to 341 

determine the influence of each input parameter to the model output, in a high 342 

dimensional screening setting inspired by [29]. The step-wise procedure is 343 

described in the Additional file, Fig S3. All the files for global SA are freely 344 

accessible and can be downloaded at https://github.com/NIMML/Sensitivity-345 

Analysis.  346 

The two-stage global SA is described in detail in the below section. To 347 

summarize, for the first stage the input parameter matrix was designed using the 348 

method described in Moon, Dean et al. 2012 and simulations were run using the 349 

hybrid computer model. The simulation output from the first stage was analyzed 350 

using PRCC as it was computationally efficient, and the active inputs (significant 351 

effect) were screened to reduce the input parameter space. Second, the active 352 

parameters were varied whereas the inactive parameters from the first stage 353 

were maintained at a nominal value for the input parameter matrix design to be 354 

employed for the second stage. Third, the simulation outputs from both stages 355 

were combined and used as a training dataset to fit a spatio-temporal 356 

metamodel. Fourth, the unknown model parameters for the spatio-temporal 357 
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metamodel were estimated using the maximum log-likelihood function. The 358 

spatio-temporal metamodel was used as a substitute for the hybrid computer 359 

model, and the variance-decomposition method was used to compute the Sobol’ 360 

total and first-order indices. Overall, we employed both approaches, PRCC 361 

based (for screening) and Sobol’ indices calculation to perform a complete global 362 

SA of the hybrid computer model. The following sections, describe a detailed 363 

step by step explanation of the procedure.  364 

 365 

Design of two-stage experiments and analysis  366 

 367 

The input for the hybrid model are varying parameter values obtained from 368 

the design matrix and the output are the number of cells (agents) that vary over 369 

time. The first stage experiment was focused on the screening of the input 370 

variables to reduce the number of input parameters to vary for the SA and to limit 371 

the computational cost. Computational costs are often a limiting factor that play 372 

an important role in the inclusion of model parameters in the SA [21].  For the 373 

design, we assumed the total number of input parameters under consideration 374 

as d (in our case, 38). With an assumption of a maximum of 50% active inputs 375 

that is aimed to improve the screening performance, the number of runs for stage 376 

1, was fixed to n1= 4d, such that n1 > 5*d*0.5 = 2.5d as in [29]. To construct a n1 377 

* (n1-1) preliminary input parameter design matrix, X*, needed to be constructed 378 

([29]). The input parameter design matrix for first stage sampling was drawn from 379 

X*. 380 

The algorithm for the first stage design generated a design matrix X(1) that 381 

satisfied the below three listed properties as in [29] 382 
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i) The columns of X* were uncorrelated thereby facilitating the independent 383 

assessments of the effects due to the input parameters.  384 

ii) The maximum and minimum value in each input parameter column were 385 

ensured to be 0 and 1 respectively, thereby preventing any input values 386 

with larger values to have a larger influence on the response, induced by 387 

the design.   388 

iii) The designs defined by X* had “space-filling” properties such that all the 389 

regions of the input space were exhaustively explored.  390 

 391 

First stage sampling plan:  392 

The first stage input parameter design matrix 𝑋(1) was obtained by selecting 393 

the first d columns of 𝑋∗, i.e. 𝑋(1) = (𝜉1, … . , 𝜉𝑑). The hybrid computer model was 394 

run and the simulation outputs at these 𝑛1design points were obtained.  395 

In our case, the model comprised of d = 38 input variables. The total number of 396 

distinct input parameter design points obtained using the above procedure was 397 

n1 = 152 (4*d = 4* 38). To account for the variability in the output, we run 20 398 

replicates (r). Thus, the total number of simulations run using the hybrid model 399 

computer simulator with 𝑋(1) as input parameter design matrix, were r x n1 = 20 400 

x 152 = 3040.  401 

 402 

First stage analysis  403 

We analyzed the outputs from first stage analysis and screened the active 404 

inputs from using PRCC. To measure the effect of input parameter on output, we 405 

performed both PRCC and the spearman rank correlation coefficient (SRCC) 406 

analysis. PRCC and SRCC were chosen because they were computationally 407 
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efficient (accounting for the low computational budget). A correlation analysis 408 

provides a measure of the strength of linear association between input and 409 

output variable [30].  A correlation coefficient between xj and y is calculated as 410 

follows: 411 

𝑟𝑥𝑗𝑦 =
𝐶𝑜𝑣(𝑥𝑗, 𝑦)

√𝑉𝑎𝑟(𝑥𝑗)𝑉𝑎𝑟(𝑦)

=
∑ (𝑥𝑖𝑗 − 𝑥)(𝑦𝑖 − 𝑦𝑁

𝑖=1 )

√∑ (𝑥𝑖𝑗 − 𝑥)2 ∑ (𝑦𝑖 − 𝑦)2𝑁
𝑖=1

𝑁
𝑖=1

 412 

𝑗 = 1,2, … , 𝑘. 413 

where  𝐶𝑜𝑣(𝑥𝑗, 𝑦) stands for the covariance between xj and y, and Var (xj ) and 414 

Var (y) are the variance of xj and y respectively.  415 

PRCC is performed when i) a non-linear but monotonic relation exists 416 

between the input and outputs, and ii) when little or no correlation exists between 417 

the input variables (which is guaranteed by the property (i) of our input parameter 418 

matrix, X(1) described above). As described in Marino, Hogue et al. 2008, the 419 

PRCC between rank transformed xj and y is the CC between the two residuals 420 

(𝑥𝑗 − 𝑥𝑗)̂ and (𝑦𝑗 − 𝑦𝑗)̂ where 𝑥�̂� and 𝑦�̂� are rank transformed and follow the linear 421 

regression models as follows:   422 

𝑥�̂� =  𝑐𝑜 +  ∑ 𝑐𝑝𝑥𝑝
𝑘
𝑝=𝑗
𝑝≠𝑗

 and 𝑦�̂� =  𝑐𝑜 + ∑ 𝑐𝑝𝑥𝑝
𝑘
𝑝=𝑗
𝑝≠𝑗

 . 423 

We performed the PRCC analysis on the outputs obtained from the hybrid 424 

computer model with X(1) as an input, using ‘epi.prcc’ package in R (https://cran.r-425 

project.org/web/packages/epiR/epiR.pdf). The significance test evaluated the 426 

strength of influence each input parameters and assessed if the PRCC 427 
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coefficients were significantly different than zero [30]. We run the PRCC analysis 428 

for 13 output cell populations (Fig 3 shows data for two output populations and 429 

the rest of the data not shown) and identified the active input parameters using 430 

the significance test. PRCC and SRCC produced identical outputs, hence results 431 

from SRCC are not shown here. If an input parameter was shown to be 432 

significant (P < 0.05) in one of the 13 output cell populations, it was considered 433 

as an active input for the second stage input parameter design matrix. 434 

Additionally, domain expert knowledge was employed to include additional 435 

parameters, based on the biological significance, that were otherwise shown to 436 

be non-significant. In all, based on the PRCC analysis performed on the outputs 437 

obtained from the first stage simulations and domain expert knowledge, we 438 

chose 23 input parameters as active inputs for the second stage (see Additional 439 

file Fig S4). Thus, PRCC screened inputs at significance level p < 0.05 and inputs 440 

based on expert knowledge were selected as active inputs to be varied for the 441 

second stage sampling plan.  442 

Second stage sampling plan:  443 

The number of active inputs obtained from the first stage analysis amounted 444 

to 23 parameters out of the initial set of 38 parameters. We followed the design 445 

described in [29] for the second stage and the number of design points amounted 446 

to,  𝑛2= 100%* 5*a where ‘a’ stands for the number of active inputs from the first 447 

stage. This resulted into 𝑛2= 23*5 = 115 parameters combinations for the second 448 

stage input parameter design matrix. Since outputs from both stages are to be 449 

combined for second stage analysis, per [29], the design for the second stage 450 

was chosen to build on top of 𝑋(1). The sampling phase design algorithm ensured 451 
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that the columns satisfied the properties (i) (uncorrelated design points) and (ii) 452 

(between values 0 and 1) as listed in the previous section. We constructed the 453 

115 x 38 (115 parameter setting and 38 parameters) design matrix for the second 454 

stage that incorporated the 23 active inputs obtained from the PRCC screening 455 

in the first stage output analysis. After combining the design points from both the 456 

stages, the parameter design matrix X with space filling properties contained 267 457 

(152 from the first stage and 115 from the second stage) design points. 458 

Second stage analysis 459 

We run the computer code for the hybrid model with the second stage input 460 

parameter design matrix (with 115 (n2) design points), for 20 (r) replicates, which 461 

amounted to 115 x 20 (2300) runs. The outputs from the first stage (152 x 20 462 

runs) and second stage (115 x 20 runs) were combined to provide the training 463 

data to build a spatio-temporal metamodel. For the second stage analyses, we 464 

utilized a metamodeling-based approach. Metamodels are surrogate models that 465 

can be used as a substitute for the simulation model [31]. The use of metamodels 466 

reduces the computational budget, cost of analysis, and are useful options in 467 

cases when the simulation model is expensive to run (in our case 9-10 minutes 468 

for 1 design point) [31]. The various metamodeling techniques used to build 469 

surrogates for a computer model output include linear regression models, neural 470 

networks, high dimensional model representation methods, Gaussian process 471 

(GP) regression models, polynomial chaos expansion and more that are 472 

discussed in length in [32, 33]. Amongst these, GPs are one of the most popular 473 

emulators as it allows modeling of fairly complex functional forms. The GPs not 474 

only provide prediction at a new point but also an estimate of the uncertainty in 475 
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that prediction [32]. A GP is a stochastic process for which any finite set of y-476 

variables has a joint multivariate Gaussian distribution [34] [32]. Suppose, 𝑦𝑗(𝑤), 477 

the simulation response obtained on the jth simulation replicate, at a design point 478 

𝑤 = (𝑋𝑇 , 𝑡)𝑇 ∈  𝜒 x Τ, it can be described as follows: 479 

  𝑦𝑗(𝑤) = 𝑌(𝑤)+ 𝜀𝑗(𝑤) =  𝛽0 + 𝑀(𝑤) +  𝜀𝑗(𝑤),             (1) 480 

where Y(w) represents the mean function of  𝑦𝑗(𝑤), the quantity of interest that 481 

we intend to estimate at any design point w. The 𝛽0 is a constant trend term and 482 

is assumed to be unknown. The input parameter 𝑋 ∈  𝜒 ⊂  ℝ𝑑 and the time 𝑡 ∈483 

 Τ ⊂  ℝ+; and 𝑋 is independent of 𝑡. The 𝜀𝑗(𝑤) are represents the sampling 484 

variability inherent in a stochastic simulation, that are  that are assumed to be 485 

independent and identically distributed across the replications at any given 486 

design point [35]. 487 

The term 𝑀(𝑤) represents a stationary Gaussian process with mean = 0  and 488 

covariance between any points was modeled as the Gaussian covariance 489 

defined in [36]. Thus, the covariance between any design points 𝑤𝑎 =490 

(𝑋𝑎
𝑇 , 𝑡𝑎)𝑇and 𝑤𝑏 = (𝑋𝑏

𝑇 , 𝑡𝑏)𝑇in the random field can be modeled as- 491 

     𝐶𝑜𝑣(𝑀(𝑤𝑎), 𝑀(𝑤𝑏)) = Γ2exp (− ∑ 𝜃𝑟(𝑋𝑎𝑟 −  𝑋𝑏𝑟)2𝑑
𝑟=1 𝑅(𝑡𝑎 −  𝑡𝑏; γ), (2) 492 

wherein, exp (− ∑ 𝜃𝑟(𝑋𝑎𝑟 −  𝑋𝑏𝑟)2𝑑
𝑟=1  ) models the spatial correlation between two 493 

input design points 𝑋𝑎 and  𝑋𝑏 in the input parameter space, whereas 494 

𝑅(𝑡𝑎 −  𝑡𝑏; γ) also given by exp (− ∑ γ𝑟 (𝑡𝑎𝑟 − 𝑡𝑏𝑟)𝑑
𝑟=1

2
) models the temporal 495 

correlation between time points 𝑡𝑎  and 𝑡𝑏 . The parameters 𝜃 and 𝛾 represents 496 

the rate at which i) spatial correlation decreases as the points move farther in 497 
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space with the same time index, and ii) temporal correlation decreases as the 498 

time points are farther apart in time at the same input vector, respectively. Both 499 

the spatial correlation and temporal correlation are modeled using the Gaussian 500 

covariance. The parameter Γ2 can be interpreted as the variance of M (w) for all 501 

w. The input parameter design consists of ((𝑤𝑎 , 𝑛𝑖)𝑖=1
𝑘 ) design points to run 502 

independent simulations with replicates applied to each of the design points. Let, 503 

𝑘 ×  1 denote a vector of sample averages of simulation responses given by 𝑦 =504 

(𝑦(𝑤1), 𝑦(𝑤2), … . , 𝑦(𝑤𝑘))𝑇, where in 𝑦(𝑤𝑖) is the resulting estimate of 505 

performance measure obtained at design point 𝑤𝑖 and 𝜀(𝑤𝑖) is the sampling 506 

variability inherent in a stochastic simulation (Ankenman, Nelson, & Staum, 507 

2010). The equations associated with 𝑦(𝑤𝑖) and 𝜀(𝑤𝑖) are described below in 508 

equation (3): 509 

𝑦(𝑤𝑖) =
1

𝑛𝑖
∑ 𝑦𝑗(𝑤𝑖)𝑛𝑖

𝑗=1 = 𝑌(𝑤𝑖) +  𝜀(𝑤𝑖)  and  𝜀(𝑤𝑖) =
1

𝑛𝑖
∑ 𝜀𝑗(𝑤𝑖)𝑛𝑖

𝑗=1 , 𝑖 = 1,2, … , 𝑘. 510 

(3) 511 

Similar as in (Ankenman, Nelson, & Staum, 2010), shown below in equation (4), 512 

let ∑𝑀 be the k x k covariance matrix across all design points and let ∑ (𝑤𝑜, . )𝑀  be 513 

the k x 1 vector, (Cov[M(w0,w1)], Cov[M(w0,w2)],..,Cov[M(w0,wk)]T that contains 514 

spatial covariance between the k design points and a given prediction point 𝑤𝑜. 515 

Also, let ∑𝜀 be the k x k covariance matrix of the vector of simulation errors 516 

associated with the vector of point estimates 𝑦, across all design points. As 517 

described in [35], the best linear predictor 𝑌(𝑤𝑜) that has the minimum mean 518 

squared error (MSE) among all linear predictors at a given point 𝑤𝑜 =519 

 (𝑋𝑜
𝑇 , 𝑡𝑜)𝑇 can be given by equation (4): 520 
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  �̂�(𝑤𝑜) =  𝛽�̂� +  ∑ (𝑤0, . )𝑇
𝑀 [ ∑𝑀 +  ∑𝜀  ]−1(𝑦 − 1𝑘𝛽0),̂   (4) 521 

where, 1k is the k x 1 vector of ones and 𝛽�̂� is estimated to be 1. The 522 

corresponding optimal MSE as in [35] is given by equation (5):  523 

𝑀𝑆𝐸 (�̂�(𝑤𝑜)) =  ∑ 𝑋0, 𝑤𝑜𝑀 − ∑ (𝑤0,. )
𝑇

𝑀 [ ∑𝑀 +  ∑𝜀  ]−1 ∑ (𝑤𝑜, . )𝑀   (5).  524 

To implement the metamodeling approach as described above, the unknown 525 

model parameters are estimated through maximizing the log-likelihood function. 526 

The underlying standard assumption is that (𝑌(𝑤𝑜), �̅�𝑇)𝑇 follows a multivariate 527 

normal distribution, for e.g., see [35] and [37]. The function implemented in the 528 

mlegp package in R [38] is used for the estimation of the parameters. Once the 529 

parameters are estimated the prediction then follows equations (4) and (5).  530 

 531 

Sensitivity index calculation 532 

 533 

To determine the effect of input variables on the output, we employed the 534 

variance decomposition method. These methods involve the decomposition of 535 

the variance of the output as a sum of the variance produced by each input 536 

parameter [34].  537 

We independently generated 10,000 x 38 sampling matrices, such that the 538 

parameter combinations are generated via Latin Hypercube sampling and as 539 

described in [39]. Simulations were performed using the GP spatio-temporal 540 

model as described in the previous section, and the Sobol’ indices were 541 

computed as described in [40] [39]. The Sobol’ method quantitatively measured 542 

the contribution of each input parameter by computing the first order and total 543 
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order index [39]. For output Y, input parameter matrix 𝑋𝑖 where, i is the input 544 

parameters of the model, the Sobol’ indices are computed as follows: 545 

 546 

    𝑆𝐼1
𝑋𝑖 =

𝑉[𝐸(𝑌|𝑋𝑖]

𝑉(𝑌)
 , 547 

 548 

and 549 

    𝑆𝐼𝑡𝑜𝑡
𝑋𝑖 =

𝑉[𝐸(𝑌|𝑋~𝑖]

𝑉(𝑌)
. 550 

 551 

The Sobol’ first order sensitivity index 𝑆𝐼1
𝑋𝑖 measures the impact of one single 552 

parameter on the model output, whereas the Sobol’ total order index measures 553 

the influence of 𝑋𝑖 including all the interactions with other parameters. The First-554 

order indices were computed using the Sobol-Saltelli’s method as described in 555 

[39] [41] whereas, the total order indices were computed using Sobol-Jansen as 556 

in [39, 42].  557 

     558 

  559 

3. Results 560 

3. 1 Hybrid model simulations produce similar immune response dynamics 561 

observed in previously published experimental data 562 

 563 

We first aimed to simulate the findings observed in previous gut models [24] 564 

to ensure that we obtained similar response dynamics from the hybrid ENISI 565 

model of H. pylori infection. As in [24], to demonstrate that the gastric mucosa 566 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 25 

harbors a system of macrophages that contribute to the outcome of H. pylori 567 

infection, we created an in-silico Peroxisome proliferator-activated receptor 568 

gamma (PPAR) macrophage-specific knockout (KO) model. PPAR  is an 569 

important transcription factor that controls the expression of genes that 570 

contribute to the inflammatory response once this is initiated. To disrupt the 571 

downregulation of pro-inflammatory responses, we simulated a PPARg KO 572 

system in either macrophage or T cell populations and compared the response 573 

to a wild-type system. In the model, we created three different macrophage 574 

populations, comprised of, “resident” macrophage agents that mimic the 575 

properties of the F4/80hi CD11b+ CD64+ CXCR1+ macrophages reported in 576 

[24], monocyte-derived (infiltrating) and macrophage populations with regulatory 577 

(M2, or alternatively activated) and pro-inflammatory  function (M1 or classically 578 

activated)  (see Table 2). 579 

We simulated an in-silico H. pylori infection by creating four groups, i) a control - 580 

WT (representing a wild-type group), ii) CD4Cre (T cell specific PPAR KO-lacks 581 

PPAR gene in all CD4 T cells), iii) LysMCre (Myeloid cell specific PPAR KO-582 

lacks PPAR gene in all macrophages) and clodronate group (simulating the 583 

removal of macrophages by chemical depletion via clodronate treatment). To 584 

simulate the CD4Cre group, the probabilities of a naive T cell transitioning to an 585 

iTreg cell (p_nTtoiTreg) and Th17 cell differentiating to iTreg (p_Th17toiTreg) 586 

were reduced to 5% and 10% of the control value, respectively (refer to Table 587 

S1). As described in [23], to simulate the LysMCre experimental conditions, the 588 

probabilities of i) a monocyte transitioning to a regulatory macrophage 589 

(p_Mregdiff) and ii) immature dendritic cells switching to tolerogenic dendritic 590 

cells (p_iDCtotDC) were reduced approximately to 60% and 30% of the control 591 
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value, respectively (refer to Table S1). A complete set of parameter for each of 592 

the biological KOs are included as separate columns in Table S1. Lastly, the 593 

removal of macrophages by clodronate were simulated by decreasing the initial 594 

numbers of the macrophage population including the resident macrophages. The 595 

rationale to include the clodronate group (macrophage removal) was to evaluate 596 

if depletion of phagocytic cells (terminology with respect to model, i.e., 597 

monocytes, resident, monocyte-derived macrophages and inflammatory 598 

macrophages) would affect H. pylori colonization levels, as we have previously 599 

reported in an in vivo model [24]. Further, to simulate the myeloid cell PPAR KO 600 

system, the initial population of resident macrophages were also reduced.  601 

  All the groups were initialized with equal loads of H. pylori agents. Ten 602 

replicates of the simulations were performed for each of the input parameter 603 

settings specific to each group. The outputs were averaged, and standard error 604 

of the means were plotted as ribbons (shaded regions) across the graphs. After 605 

running the ten replicates of the time series in-silico simulation, the hybrid model 606 

showed significantly (p< 0.05) higher levels of H. pylori in the WT and CD4Cre 607 

groups as compared to LysMCre KO and macrophage-depleted groups (Fig. 2, 608 

panel a and d).  609 

 610 

 611 

Fig 2. Time course simulations representing the immune response during 612 

Helicobacter pylori infection. 613 

The upper half of the plot in both the panels shows the dynamics of the 614 

population cells 615 

over time representing the number of cells (y-axis) versus time (x-axis) in a WT 616 

(black), CD4Cre (green), clodronate (red) and LysMCre (blue) simulated in-silico 617 
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groups during H. pylori infection. The cell populations include - a) H. pylori; b) 618 

the resident macrophages and, c) monocyte-derived macrophages in the lamina 619 

propria compartment. The figures in the lower half (d-f) of both the panels, show 620 

the results for statistical comparison between the groups using ANOVA with the 621 

post-hoc analysis. The letters ‘a’, ‘ab’ and ‘b’ represent statistically significant 622 

differences (P<0.05) between the groups obtained after running the Tukey’s 623 

Honestly Significant Difference. A side by side comparison with the bacterial load 624 

and macrophage population as observed in the mouse model of H. pylori 625 

infection are also included.  626 

  627 

In addition to the increase in H. pylori, WT and CD4Cre in-silico experimental 628 

groups had a higher resident as well as monocyte-derived regulatory 629 

macrophages as compared to clodronate (macrophage depleted) and LysMCre 630 

groups (Fig. 2b-c, e-f). The results in the mouse model indicated that between 631 

weeks 2 and 3 post-infection a decrease in bacterial burden in the stomach of 632 

LysMcre mice was observed as shown in Fig 1A of Viladomiu, Bassaganya-Riera 633 

et al. 2017. The decrease in bacterial burden led to a significant and sustained 634 

lower colonization levels when compared to WT and CD4Cre. Similar to the 635 

results observed in the mouse model, we observed a significant decrease (Fig 636 

2a, d) in the bacterial burden in the simulated LysMcre group as compared to 637 

the simulated WT and CD4cre groups. Furthermore, the results from the mouse 638 

model indicated that a significant increase in numbers of F4/80hiCD11b+ CD64+ 639 

CX3CR1+ cells (here referred to as resident macrophages in this paper), was 640 

observed in WT mice in comparison with LysMcre mice as shown in Fig. 2A, 2E 641 

of Viladomiu, Bassaganya-Riera et al. 2017. These cells accumulated in the 642 

stomach mucosa starting on day 14 post-infection in the WT mice but not in the 643 
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LysMcre mice. We observed a similar increase (Fig 2b,e and Fig 2c,f) in the 644 

number of resident macrophages as well as monocyte derived macrophages in 645 

the simulated WT groups in comparison to the simulated LysMcre group. We 646 

estimated the parameter values to fit the data obtained from the mouse model of 647 

H. pylori infection. Thus, the observations were qualitatively similar to the 648 

findings in [24], where the stomach of WT mice was enriched in a population of 649 

F4/80+CD11b+CD64+ myeloid cells, compared to LysMCre mice.  650 

    Overall, with the results in Fig 2, we showed the ability of the hybrid model to 651 

replicate the experimental results in [24], and this preliminary data was used as 652 

a base calibration setting for SA and other in-silico findings.  653 

3.2 Partial correlation coefficient analysis screened the influential 654 

parameters  655 

 656 

To reduce the computational complexity of varying an input parameter space 657 

of 38 parameters, we divided the SA process in two stages. For first-stage 658 

analysis, we utilized the PRCC regression-based SA method to screen the 659 

influential inputs and used it for the second stage design of the experiments (refer 660 

Methods 2.2). Using PRCC, we determined the impact of the input parameters 661 

on the output cell populations in the model. The parameters with significant 662 

correlation with H. pylori in the gastric lamina propria compartment and resident 663 

macrophages are shown in Fig 3, along with their PRCC values. The bars in 664 

blue, highlight the parameters that are significantly different than 0, at P < 0.05 665 

compared to grey bars which are not significant. It is important to note that at this 666 

stage the analysis using PRCC was non-temporal.  667 
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   The SA from first stage results showed that the epithelial damage due to 668 

infectious bacteria (epiinfbctdam) with a coefficient value of (~0.2), was positively 669 

correlated with the colonization of H. pylori in the lamina propria compartment, 670 

indicating the important role of epithelial cell damage during the course of 671 

infection, similar to our findings obtained in [43]. Another parameter included the 672 

probability of the release of IL-6 (IL6) with a coefficient value within the range 673 

(0.3-0.4).  674 

    Next, the epithelial cell damage parameters (epiinftbctdam = (0.2-0.3), 675 

epiTh17dam = 0-0.2) were shown to have positive influence on the resident 676 

macrophage cells whereas, the T cell type transition parameters (p_iTregtoTh17 677 

= (0.3 - 0.4) and p_Th17toiTreg = (0.1 - 0.2)) showed a negative impact on the 678 

resident macrophages. Similarly, we performed the PRCC analysis for all the cell 679 

populations under consideration during the infection (not shown).   680 

 681 

 682 

Fig 3. Bar plots for the partial rank correlation coefficients.  683 

The magnitude of the bar-plot indicates the value of the partial rank correlation 684 

coefficient. The blue bar indicated the input parameters shown to be significantly 685 

different than 0, at P <0.05 as influential whereas the grey bars indicate the non-686 

influential parameters on a) H. pylori and b) resident macrophages, in the lamina 687 

propria compartment.  688 

 689 

  The significant parameters (marked in blue bars) obtained from the SA of the 690 

output from first stage design of experiments (152 parameter settings with 20 691 

replicates, refer Methods 2.2), were selected to be varied for the second stage 692 
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design. All the selected inputs are shown in Additional file Fig S4. In all, we 693 

obtained 23 active inputs from the first stage.  694 

3.3 Metamodel based spatio-temporal sensitivity analysis 695 

The outputs obtained after running the first (152 x 20 runs) and second (115 696 

x 20 runs) stage simulations, wherein x20 denotes the 20 replicates, were 697 

combined to be used as a training dataset. The combined output was utilized to 698 

build a Gaussian process based spatiotemporal metamodel (refer  Methods 2.2), 699 

using mlegp package in R [38]. 700 

 701 

The outputs from the training dataset were sub-divided into 6 datasets, 702 

corresponding to six time periods (Days 1-14, 15-21, 22-30, 31-42, 43-90, 91-703 

201) and averaged across these periods. The sub-division of output across the 704 

time periods, aided the temporal analysis over the initiation (Day 1-14), peak of 705 

infection (Days 15-30) and chronic phase (post Day 31) stages as in [24]. We 706 

then fit a Gaussian process model (with nugget) and evaluated the performance 707 

of the fitting of the metamodel for H. pylori, resident macrophages, and 708 

monocyte-derived macrophages in lamina propria compartment, and tolerogenic 709 

DC in the gastric lymph node, using the diagnostic plots (see figures in Additional 710 

file, Fig S5). After fitting the models, we performed variance based global SA by 711 

computing the Sobol’ total order and first order sensitivity index (refer Methods 712 

2.2). The estimates of the Sobol’ total order indices for the input parameters 713 

calculated over the six time periods are shown in Fig 4 (a-d).  714 

 715 

 716 
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Fig 4. Heat-maps of Sobol’ total order index for the input parameters across 717 

different output populations. 718 

The values in the heat-map indicate the Sobol’ total order sensitivity index 719 

obtained from the metamodel, for the 38 input parameters with respect to the cell 720 

populations. The values with darker color indicate a stronger influence on the cell 721 

population as compared to the ones with lighter shade that indicate non-722 

influential parameters for the cell populations - a) H. pylori, b) monocyte-derived 723 

macrophages, c) resident macrophages, in the lamina propria compartment and 724 

d) tolerogenic DCs, in the gastric lymph node compartment. The indexes are 725 

calculated over six time points ranging across the three stages of infection, 726 

including initiation (Day 1-14), peak (Days 15-42) and recovery stages (Days 43-727 

201).  728 

 729 

As shown in Fig 4a, the metamodel based global SA showed that the input 730 

parameters, epithelial cell proliferation (Epiprolifer) and epithelial cell death 731 

(Epicelldeath) had the strongest impact on the population of H. pylori in lamina 732 

propria compartment. As time progressed from initiation of the infection (Days 1-733 

14), through peak (Days 15-30), the epithelial cell proliferation had a continued 734 

impact on the colonization of H. pylori. Next, the influence of the probability of 735 

epithelial cell death decreased over the course of infection. Further, Fig 4b 736 

highlighted the impact of epithelial cell proliferation (Epiprolifer) and epithelial cell 737 

death (Epicelldeath) on the monocyte-derived macrophages.  738 

For the resident macrophage population in the lamina propria, that have 739 

emergent properties similar to the one characterized in [24], we observed that 740 

the resident macrophage replication parameter (ResmMacRep) has an impact 741 

during the initiation and peak stages of the infection which indicates that these 742 
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subsets of macrophages replicate during the course of H. pylori infection. This 743 

result highlights the reliability of the two-staged global SA method used here, as 744 

these findings are consistent with the ones in [24] wherein we observed that 745 

these subsets of macrophages expand in the gastric stomach lamina propria 746 

during the course of H. pylori infection.  747 

Finally, for the tolerogenic DCs in Fig 4d, we observed that the epithelial cell 748 

death (Epicelldeath) seemed to have an impact. Another parameter that stands 749 

for the probability of naive T cell transitioning to iTreg cell (nTtoiTreg) was shown 750 

to have an impact on the tolerogenic dendritic cells. Tolerogenic dendritic cells 751 

are involved in the rule that transitions the naive T cells to iTreg cells in the gastric 752 

lymph node, and the stronger impact of the nTtoiTreg during the initiation and 753 

peak stages of the infection highlights the role of the tolerogenic dendritic cells 754 

during the course of infection.  755 

The global SA data suggested that the main contributors of the chronic 756 

colonization of H. pylori in the lamina propria are the epithelial cells, specifically 757 

the epithelial cell proliferation parameter.  758 

3.4 Effect of different ranges of epithelial cell proliferation  759 

An interesting prediction derived from the metamodel based global SA is that 760 

epithelial cell proliferation is one of the parameters that has a strong impact on 761 

the size of H. pylori population. The biological hypothesis derived from this 762 

prediction is that the epithelial cell proliferation is responsible for the higher 763 

colonization of H. pylori. Prior to conducting any experimental studies, we wanted 764 

to explore the hypothesis using our hybrid computer model in silico and study 765 

the model outputs obtained after we changed the epithelial cell proliferation 766 

parameter. Thus, we varied the epithelial cell proliferation parameter across 767 
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different ranges (0.1-0.9, with 0.6 being the value for baseline conditions) and 768 

ran the simulations using the hybrid model and studied its effect on the different 769 

output cell population (obtained after running the simulations). These outputs 770 

were the ones obtained after running the simulation using the hybrid computer 771 

model, as we varied the epithelial cell proliferation parameter. We analyzed the 772 

outputs from the hybrid computer model and interestingly, observed that upon 773 

decreasing the Epiprolifer from a range of values 0.9-0.1, the output cell 774 

populations with regulatory function, namely regulatory macrophages and 775 

tolerogenic dendritic cells were found to vary. We observed a decreasing effect 776 

(Fig 5a-d) on H. pylori, monocyte-derived macrophages, resident macrophages 777 

in the lamina propria compartment and tolerogenic dendritic cells in gastric lymph 778 

node. Overall, these cell populations varied due to the variation in the epithelial 779 

cell proliferation parameter.  780 

For clarification, such connection was not embedded in the mechanisms 781 

included in Table 1 but it represents an emergent behavior from the simulations 782 

predicting the involvement of regulatory and tolerogenic dendritic cells in the 783 

mechanisms of immunoregulation during H. pylori infection. Finally, the 784 

simulations targeting the epithelial cell proliferation resulted in changes in 785 

regulatory and tolerogenic dendritic cell populations. This shows that the 786 

simulations indirectly targeted the regulatory and tolerogenic dendritic cell 787 

population. Thus, we hypothesize that epithelial cell proliferation might be 788 

responsible for the higher colonization of H. pylori through an immunoregulatory 789 

mechanism that involves regulatory macrophages and tolerogenic cells. This is 790 

in line with our own conclusions drawn from a previous paper [24] where we 791 

show that the presence of cells with regulatory phenotype favor higher levels of 792 

H. pylori colonization. The results from the sensitivity analysis presented in this 793 
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paper suggest that epithelial proliferation might be a crucial part of the 794 

mechanisms by which these regulatory responses are induced and that there is 795 

a link between these parameters. The exact biological process however cannot 796 

be inferred from the current model and it will be investigated in follow-up in vivo 797 

studies.  798 

 799 

 800 

 801 

Fig 5. In silico study of the effect of epithelial cell proliferation parameter 802 

on the cell populations. 803 

The plots show the effect of varying epithelial cell proliferation (p_Epiprolifer) 804 

parameter (with values 0.1, 0.5, 0.6(WT), and 0.9) on the output cell population 805 

of a) H. pylori, b) tolerogenic dendritic cells, c) resident macrophages and d) 806 

monocyte-derived macrophages. The parameter has a decreasing effect on the 807 

cellular populations under consideration, wherein a decrease in the parameter 808 

value, decreases the abundance of the cells over time. The lower half of the 809 

figures (a-d), show the results for statistical comparison between the groups 810 

using ANOVA with the post-hoc analysis. The letters ‘a’, ‘b’, ‘c’, and ‘bc’ represent 811 

statistically significant differences (P<0.05) between the groups obtained after 812 

running the Tukey’s Honestly Significant Difference.  813 

 814 

The in silico findings suggested the involvement of regulatory macrophages 815 

(both resident as well as monocyte-derived) and tolerogenic DC on the 816 

colonization of H. pylori in the gastric lamina propria. This highlighted and 817 

validated the role of epithelial cell proliferation as one of the main factor affecting 818 

H. pylori levels in the gastric niche.  819 
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 820 

4. Discussion 821 

H. pylori is the dominant indigenous bacterium of the gastric microbiota. In the 822 

majority of individuals, H. pylori colonizes the stomach without causing adverse 823 

effects, with little to no activation of inflammatory pathways. However, certain 824 

members of the population lose immune tolerance to the bacterium thereby 825 

contributing to the development of chronic gastric diseases. The immunological 826 

mechanisms underlying its ability to persist in a harsh acidic gastric environment and 827 

its dual role as a pathogen and beneficial organism remain unknown. A subset of 828 

macrophages helps create a regulatory microenvironment that promotes the chronic 829 

colonization of H. pylori [24]. However, the immune regulatory mechanisms are 830 

incompletely understood. Computational models of the immune system featuring 831 

immune responses are powerful tools for testing the different ‘what-if’ scenarios. 832 

Multiscale models of the immune response are attractive in terms of modeling the 833 

responses at different spatiotemporal scales [44].  834 

In this study, we developed a HPC-driven hybrid, high-resolution, multiscale 835 

model to simulate the complex immunoregulatory mechanisms during H. pylori 836 

infection. The hybrid model was integrated with two intracellular ODEs capturing the 837 

dynamics of CD4+ T cells and regulatory macrophages. The inputs to the hybrid 838 

model are the set of parameters whose variation governs the immune system 839 

dynamics during infection. The obtained outputs were emergent patterns of different 840 

cell types, cytokines, and bacterial levels for instance the levels of H. pylori, and that 841 

qualitatively matched the patterns observed in an in vivo infection model [1, 24]. We 842 

presented an in-silico framework that evaluated the global SA of the hybrid model 843 

and studied how the variation in the biological parameters affected the simulation 844 
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outputs. The two-stage global SA indicated that epithelial cell parameters, 845 

specifically, the proliferation of epithelial cells affected the colonization of H. pylori in 846 

the gastric mucosa. These results were validated in silico, and highlighted the 847 

involvement of regulatory macrophages and tolerogenic DC in facilitating H. pylori 848 

colonization of the gastric mucosa. Previous studies highlighted H. pylori inhabits the 849 

apical surfaces of the epithelial cells and maintains a persistent infection [45].  850 

Further, Mimuro et al. demonstrated that H. pylori promotes epithelial gastric cell 851 

survival by attenuating apoptosis. These events showed how H. pylori regulated the 852 

gastric niche and utilized epithelial cells to facilitate its persistence within the 853 

stomach [46] [47]. Thus, the findings in the current study are in line with the literature 854 

that suggests epithelial cell proliferation favor the colonization of H. pylori in the 855 

stomach.  856 

Our group also showed another mechanism used by H. pylori to create a gut 857 

microenvironment that involved the induction of IL-10-driven regulatory mechanism 858 

mediated by CD11b+F4/80hiCD64+CX3CR1+ mononuclear phagocytes, which 859 

facilitated bacterial colonization [24]. Additionally, in this paper, we reported that 860 

regulatory macrophages were involved in the process of colonization with H. pylori 861 

when we varied the epithelial cell proliferation parameter in-silico. Zhang et al., 862 

demonstrated that H. pylori directed active tolerogenic programming of DCs that 863 

favored chronic bacterial colonization, by altering the balance of Th17/Treg cells [48]. 864 

Rizzuti, Ang et al., demonstrated H. pylori-mediated IL-10 release caused the 865 

activation of signal transducer and activator of transcription 3 (STAT3) in DC. This 866 

activation of STAT3 via IL-10 release was shown to induce the production of 867 

tolerogenic DC phenotype [49]. The findings from this paper also indicated the 868 

involvement of tolerogenic DCs in affecting the mucosal levels of H. pylori. 869 

Therefore, the literature combined with the results from this study, collectively 870 
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suggest that during H. pylori infection, the epithelial cell favors the colonization of H. 871 

pylori by creating a regulatory microenvironment. This process is mediated by the 872 

regulatory macrophages and tolerogenic programming of DC. Based on the results 873 

from this paper and findings from the literature, this leads us to propose that the 874 

induction of IL-10 by the regulatory macrophages is potentially involved in directing 875 

the tolerogenic programming of DC. All experimental evidence combined with our 876 

model prediction suggest the action of an underlying biological mechanism that links 877 

the presence of H. pylori in the gastric mucosa with changes in the rates of epithelial 878 

cell proliferation which ultimately affects the levels of colonization. Our prediction 879 

points towards a link between epithelial cell proliferation and the action of tolerogenic 880 

dendritic cells and regulatory macrophages. The exact cellular mechanism induced 881 

during this process however cannot be inferred from the current model and it will be 882 

investigated in follow-up in vivo studies. 883 

 884 

At its current stage, the hybrid ENISI model reproduces the overall immune 885 

system dynamics observed during an H. pylori infection. The parameters of 886 

calibrated ODEs were kept unchanged, whereas the ABM parameters were 887 

calibrated by qualitatively matching the patterns of the output simulations as 888 

observed in an in vivo model of H. pylori infection [24].  For ABM, its calibration and 889 

validation remain the major key issues, discussed elsewhere [21] [50] [51]. Further, 890 

developing targeted methods of SA have been identified as an important challenge 891 

in the field [21, 52, 53]. In this paper, we highlighted the use of SA methods with a 892 

two-stage global SA framework comprised of first, screening the input parameters 893 

(using PRCC) and second, building of a surrogate model (using GP) of the hybrid 894 

model, to understand the emergent behavior of the represented system. It is 895 

important to note that each SA method known, has its own merits and produces 896 
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useful information however none provide a complete picture of the emergent model 897 

behavior [21]. First, we employed PRCC methods as the initial step in our two staged 898 

SA that aided the screening of active inputs and reduced the parameter space. The 899 

choice of PRCC was advantageous and justified by the low computational cost and 900 

low complexity in the computation of the coefficients. Another advantage of the 901 

regression-based PRCC method is that the complex output from our hybrid model 902 

was condensed into a descriptive relationship that can be described by statistical 903 

measures such as R2  [21]. As described in [21] the results from PRCC are good 904 

descriptors of the outputs produced if the regression function constitutes a good fit 905 

to the output [21]. However, if the function does not yield a good fit, the regression-906 

based SA are proven to be useful in screening the influential parameters for further 907 

analysis [21], as described in our analysis.  908 

Further, the interaction effects between the parameters are not considered in 909 

regression-based methods, and hence it was followed by the use of variance-based 910 

methods in later stage analysis. Second, we employed metamodeling-based 911 

approach and Sobol’ method as they provided information on the interaction 912 

between the input variable and the use of metamodels allowed to compute the 913 

sensitivity indices. One of the advantages of the Sobol’ method is that it is model-914 

free and no fitting functions are used to decompose the output variance [31]. It 915 

considers the averaged effect of parameters over the whole parameter space but 916 

fails to explore the different patterns within the space [21]. Further, the method is not 917 

suitable for quantification of output variability if the output distributions deviate from 918 

a normal distribution [21]. The detailed comparison of different SA methods used for 919 

the global SA of ABMs are described in detail in [21]. Thus, we performed both the 920 

PRCC and computation of Sobol’ indices approaches to evaluate the influence of 921 
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the input parameter variation and identified the parameters involved in the successful 922 

colonization of the gastric niche by H. pylori. 923 

Some limitations of the model include implementation through a two-dimensional 924 

grid system and including all cells of the same size. Although we parallelize the 925 

computation of the hybrid model output, the large number of simulations required for 926 

the global SA compensates for the benefits of parallelization. To improve the 927 

calibration process and overall usability of the model, the data required for model 928 

calibration would include tissue biopsies from people infected with H. pylori that can 929 

be used to quantify the cells and take into account their spatial arrangement. The 930 

current version is also limited in terms of the interactions that are based on epithelial 931 

cells and DC as they are strictly rule-based. The building of ODE models for these 932 

cells and integrating them with the ABM model will help capture the dynamics of 933 

epithelial cells and DC more in-depth. Overall the immunoregulatory mechanisms 934 

underlying the chronic colonization of H. pylori and the predictive capacity of the 935 

model can be further improved by incorporating cell-specific models for epithelial 936 

cells and DC. 937 

In summary, a high-resolution, hybrid, multiscale spatiotemporal stochastic 938 

model of H. pylori infection was built and global SA was performed. The results from 939 

the global SA highlight the key role played by epithelial cells in affecting the levels of 940 

H. pylori colonization. The in-silico validation of varying the epithelial cell proliferation 941 

parameter demonstrated the involvement of regulatory macrophages and the 942 

tolerogenic DC. The next steps aimed to enrich the model will involve the validation 943 

of the findings in vivo to study the underlying mechanisms involved in the successful 944 

immune evasion by H. pylori. The computational modeling predictions will be further 945 

validated experimentally and clinically. 946 

 947 
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5. Potential Implications 948 

The computational model of the gut contains high-resolution information 949 

processing representations of immune responses that are generalizable for other 950 

infectious and autoimmune diseases. Complex diseases such as autoimmune 951 

disorders, infectious diseases, and cancer all require integration of the multiscale 952 

level data, information and knowledge, ranging from genes, proteins, cells, tissue to 953 

organ level. The ENISI model of the gut presented here can be generalized to other 954 

diseases by implementing the agents and rules specific to that disease, plus 955 

recalibrating the model based on data that are specific to the new indication. Since 956 

ABMs have modular architectures, an addition of new agent-types and modification 957 

of rules can be done without restructuring the entire simulation setup [19]. The use 958 

of ABM in such hybrid models not only facilitates the implementation of already 959 

known mechanisms but also helps validate and predict any unforeseen new 960 

mechanisms using data analytics methods such as global SA to analyze emerging 961 

behaviors at the systems level. The finer details regarding intracellular and 962 

intercellular interactions that contribute towards the nonlinear and complex behavior 963 

of the gut can also be studied by integrating the intracellular ODE models as 964 

implemented here.  965 

 966 

Tables 967 

 
Name of Agent 

 
Agent Type 

 
Rules 

Helicobacter 
pylori 

H. pylori - Moves across the epithelial cell border if near damaged 
epithelial layer 
- Proliferates in the lumen and lamina propria 
- Dies (removed from the simulation) in lamina propria 
and in the lumen due to the damage of epithelial cells by 
Th1 or Th17 cells 

Macrophages Monocyte 
 

- Proliferates in presence the of effector dendritic cells or 
damaged epithelial cells 
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- Proliferates in the lamina propria 
- Differentiates to regulatory macrophage in based on 
the output from the Macrophage ODE 
- Differentiates to inflammatory macrophages in 

presence of IFN- 
- Dies naturally (removed from the model) 

 Resident 
 

- Proliferates in the presence of H. pylori 
- Secretes IL10 
- Dies naturally 
- Dies due to Th1 and Tr cells 

 Regulatory 
 

- Proliferates and removes bacteria 
- Dies 
- Secretes IL10 

 Inflammatory -Proliferates in the presence of damaged epithelial cell 
-Dies naturally 

Dendritics Immature -Moves from lamina propria to epithelium compartment 
and from the epithelium to the lamina propria 
- Differentiates to tolerogenic dendritic cell in the 
presence of tolerogenic bacteria, both in epithelium and 
lamina propria 
- Differentiates to effector dendritic cell in the presence 
of H. pylori 
- Proliferates in lamina propria and gastric lymph node 
- Dies naturally 

 Effector - Moves from lamina propria to gastric lymph node 
- Moves form epithelium to lamina propria 
- Secretes IL6 and IL12 
- Dies naturally 

 Tolerogenic - Moves from lamina propria to gastric lymph node 
- Moves from epithelium to lamina propria 

- Secretes TGF- 
- Dies naturally 

T cells Naïve 
 

In the presence of effector dendritic cells: 

- Differentiates to Th1 in the presence of IFN- or IL12 

- Differentiates to Th17 in the presences of IL6 or TGF- 
In the presence of tolerogenic dendritic cells: 

- Differentiates to iTreg in the presence of TGF- 
- Differentiates to Tr in the presences of IL10 
- Dies naturally 

 Th1 
 

- Secretes IFN- 
- Moves from gastric lymph node to lamina propria 
- Proliferates in lamina propria and gastric lymph node 
- Dies naturally 

 Th17 - Secretes IL17 
- In the presence of tolerogenic dendritic cell, transition 
to iTreg cells 
- Moves from gastric lymph node to lamina propria 
- Proliferates in lamina propria and gastric lymph node 
- Dies naturally 

 iTreg - Secretes IL10 
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- In the presence of tolerogenic dendritic cell, transition 
to iTreg cells 
- Moves from gastric lymph node to lamina propria  
- Proliferates in lamina propria and gastric lymph node 
- Dies naturally 

 Tr - Secretes IL10 
- Dies naturally 
- Proliferates in the lamina propria  

Epithelial Healthy -Damaged due to infectious bacteria 
-Damaged due to Th1 and Th17 cells 
-Proliferates 
-Secretes IL6 and IL12 
-Dies naturally 

 Damaged -Transitions to healthy state in the presence of IL10 
-Dies naturally 

Bacteria Infectious 
 

- Dies due to Th1 or Th17 or inflammatory macrophages 
or damaged epithelial cells 
- Dies naturally 
- Proliferates in the lamina propria 

 Tolerogenic - Moves from lumen to the epithelium in the presence of 
damaged epithelial cells 
- Becomes infectious if moves in the lamina propria 
compartment 
- Proliferates in lumen and lamina propria 
- Dies naturally 
 

 968 

Table 1. A list of rules for all the agent types implemented in the hybrid model 969 

 970 
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 980 

File S1 – The detailed instruction to Install ENISI MSM (Step I), Run a simulation 981 

(Step II) and Conduct Sensitivity Analysis (Step III) are described.  982 

 983 

Fig S1. Design implementation of the hybrid multiscale model used to 984 

simulate Helicobacter pylori infection 985 

The figure shows the class structure used in the ENISI MSM hybrid agent based-986 

ODE model. Each group consists of an act() function that includes the 987 

implemented rule for each agent. The previously published ODE models for T 988 

cells and Macrophage are used to integrate in the ABM code. 989 

 990 

Table S1 Table describing the input parameters used in the sensitivity analysis 991 

and their ranges used. 992 

 993 

Fig S2. A pictorial representation of the spatial discretization of the 2D grid.  994 

 995 

Fig S3. Flowchart for the two-staged global sensitivity analysis. 996 

 997 

Fig S4. The active and inactive inputs selected from the stage 1 analysis 998 

The rows represent the input parameters and columns represent the output cell 999 

populations. The green boxes highlight the ‘active’ input parameters (row) that 1000 

are shown to have a significant influence (calculated based on the results 1001 

obtained from partial correlation coefficient analysis), on an output cell (columns) 1002 

under consideration.  1003 
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 1004 

Fig S5. Diagnostic and residual plots obtained for the Gaussian processes 1005 

fitted metamodels 1006 

The upper panel represents the diagnostic Q-Q plots where the open circles 1007 

represent the cross-validated predictions; solid black lines represent observed 1008 

response. The “observed simulations” data in the first half of the lower panel, 1009 

refer to the observed output values of the simulations obtained after running the 1010 

hybrid computer model, whereas the y axis refers to the predicted simulation 1011 

values obtained from the Cross-validated model. Each point represents 1 output 1012 

point obtained as an output from the simulation. The second half of the lower 1013 

panel, refers to the standard residual plot wherein the x-axis represents the 1014 

observed simulation values obtained from the simulation and the y-axis refers to 1015 

the residual error ((error (predicted values – observed values) / standard 1016 

deviation (error))) obtained. The diagnostic plots denote the black circles which 1017 

are the cross-validated prediction. Cross-validation is in the sense that for 1018 

predictions made at design point x, all observations at design point x are 1019 

removed from the training set.  The lower panel represents the residual plots for 1020 

the cell populations –(a) Helicobacter pylori; (b) Resident macrophages; (c) 1021 

Monocyte-derived macrophages in the Lamina propria and (d) Tolerogenic 1022 

dendritic cells in the Gastric lymph node compartment.   1023 

 1024 

Data and materials 1025 

The data sets and files supporting the results of this article are available in the ENISI-MSM 1026 

GitHub repository, RRID: SCR_016918  https://github.com/NIMML/ENISI-MSM. 1027 
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 Project Name: ENISI MSM 1029 

 Project homepage: https://github.com/NIMML/ENISI-MSM 1030 

 Operating system(s): Linux, Mac OSX 1031 

 Programming language: C++, R, MATLAB 1032 

 Other requirements: CMake 3.7.2,  1033 

ENISI Dependencies https://github.com/NIMML/ENISI-Dependencies 1034 

 License: Apache License 2.0 1035 

 RRID: SCR_016918 1036 
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Name of Agent 
 

Agent Type 
 

Rules 

Helicobacter 
pylori 

H. pylori - Moves across the epithelial cell border if near damaged 
epithelial layer 
- Proliferates in the lumen and lamina propria 
- Dies (removed from the simulation) in lamina propria 
and in the lumen due to the damage of epithelial cells by 
Th1 or Th17 cells 

Macrophages Monocyte 
 

- Proliferates in presence the of effector dendritic cells or 
damaged epithelial cells 
- Proliferates in the lamina propria 
- Differentiates to regulatory macrophage in based on 
the output from the Macrophage ODE 
- Differentiates to inflammatory macrophages in 

presence of IFN- 
- Dies naturally (removed from the model) 

 Resident 
 

- Proliferates in the presence of H. pylori 
- Secretes IL10 
- Dies naturally 
- Dies due to Th1 and Tr cells 

 Regulatory 
 

- Proliferates and removes bacteria 
- Dies 
- Secretes IL10 

 Inflammatory -Proliferates in the presence of damaged epithelial cell 
-Dies naturally 

Dendritics Immature -Moves from lamina propria to epithelium compartment 
and from the epithelium to the lamina propria 
- Differentiates to tolerogenic dendritic cell in the 
presence of tolerogenic bacteria, both in epithelium and 
lamina propria 
- Differentiates to effector dendritic cell in the presence 
of H. pylori 
- Proliferates in lamina propria and gastric lymph node 
- Dies naturally 

 Effector - Moves from lamina propria to gastric lymph node 
- Moves form epithelium to lamina propria 
- Secretes IL6 and IL12 
- Dies naturally 

 Tolerogenic - Moves from lamina propria to gastric lymph node 
- Moves from epithelium to lamina propria 

- Secretes TGF- 
- Dies naturally 

T cells Naïve 
 

In the presence of effector dendritic cells: 

- Differentiates to Th1 in the presence of IFN- or IL12 

- Differentiates to Th17 in the presences of IL6 or TGF- 
In the presence of tolerogenic dendritic cells: 

- Differentiates to iTreg in the presence of TGF- 
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- Differentiates to Tr in the presences of IL10 
- Dies naturally 

 Th1 
 

- Secretes IFN- 
- Moves from gastric lymph node to lamina propria 
- Proliferates in lamina propria and gastric lymph node 
- Dies naturally 

 Th17 - Secretes IL17 
- in the presence of tolerogenic dendritic cell, transition 
to iTreg cells 
- Moves from gastric lymph node to lamina propria 
- Proliferates in lamina propria and gastric lymph node 
- Dies naturally 

 iTreg - Secretes IL10 
- In the presence of tolerogenic dendritic cell, transition 
to iTreg cells 
- Moves from gastric lymph node to lamina propria  
- Proliferates in lamina propria and gastric lymph node 
- Dies naturally 

 Tr - Secretes IL10 
- Dies naturally 
- Proliferates in the lamina propria  

Epithelial Healthy -Damaged due to infectious bacteria 
-Damaged due to Th1 and Th17 cells 
-Proliferates 
-Secretes IL6 and IL12 
-Dies naturally 

 Damaged -Transitions to healthy state in the presence of IL10 
-Dies naturally 

Bacteria Infectious 
 

- Dies due to Th1 or Th17 or inflammatory macrophages 
or damaged epithelial cells 
- Dies naturally 
- Proliferates in the lamina propria 

 Tolerogenic - Moves from lumen to the epithelium in the presence of 
damaged epithelial cells 
- Becomes infectious if moves in the lamina propria 
compartment 
- Proliferates in lumen and lamina propria 
- Dies naturally 
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Point by point response to the Reviewer reports 
 
We would like to thank the reviewers and editors for taking time to review our manuscript entitled 
“High-Resolution Computational Modeling of Immune Responses in the Gut” and for providing 
valuable and constructive criticism. The review process has been helpful in the improvement of 
our submission. We have considered the comments that were made and have prepared the 
following point-by-point response. We hope that the revised version of the manuscript can now 
be accepted for publication. Thanks in advance. 
 
Reviewer #1: The unit of sizes of the model grid can't be right (e.g. grid is 30nm x 10 nm). Animal 
cells should have measurements in the order of micrometres instead of nanometres. Please 
check if these are just typos, or do these errors affect any aspect of the simulation, such as 
diffusion. 
Response: We thank the reviewer for pointing this out. We fixed the typos and the unit size of 
the model grid are 30 µm x 10 µm. These typos do not affect any aspect of the simulations as 
these units are only annotations and the model takes the numbers as input. We updated the 
manuscript and fixed the typos throughout the manuscript. Please refer to L120 – L121, and L216, 
L220-L221.   
  
Reviewer #2: The authors have made significant improvements to the manuscript and thoroughly 
responded to reviewer comments. One major concern remains surrounding the authors' response 
to questions around the grid dimensions. The dimensions for the entire grid are given in nm which 
is smaller than a single cell. Furthermore they state that there are no limits to cell(agent) 
occupancy per grid compartment. This is rather confusing and calls into question how much 
spatial information is really contained in this model (e.g. if cytokines are diffusing over the 30nm 
grid what does that mean for the concentrations that individual cells (measured in 
micrometers)are seeing?). Based on the author responses it appears that the model is a multi-
compartment model with well-mixed discrete agents in each compartment rather than a spatio-
temporal model as they claim. 
Response: We thank the reviewer for their comment. 
We thank the reviewer for pointing out the concern regarding the dimensions of the grid. The 
correct dimensions of the grid are 30 µm x 10 µm. We updated the manuscript and fixed the typos. 
Please refer to L120 – L121, and L216, L220-L221.   
The mention regarding no limits to cell (agent) occupancy refers to the cells (agents) having no 
physical size. Further, once a cell (agent) dies it is removed from the simulation to minimize the 
computational costs of agents that do not contribute to the biology. 
The model output contains information about the x and y co-ordinate of the agents at every time 
point. The cytokines and internal signaling pathways that drive functional fates of cells are well 
mixed within a cell, i.e., we have only temporal resolution 
within the cell during a time step. However, the production, degradation, and diffusions are cell 
specific thus the cytokine concentration results are also spatio-temporal. 
Since, the model is capable of providing information regarding spatial co-ordinates over time, we 
claim the model to be a spatio-temporal model. We updated the manuscript, please refer to L163-
L170.  
 
Please also ensure that your revised manuscript conforms to the journal style, which can be found 
in the Instructions for Authors on the journal homepage. 
Response: The revised manuscript conforms to the journal style.  
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