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Order of Authors Secondary Information:

Response to Reviewers: Point by point response to reviewers
Reviewer #3: I appreciate the authors' efforts to revise their manuscript to address the
editorial and review concerns. However, I'm a little concerned.
This is the second time the authors have "redefined" what their lattice sites represent.
This is a not just a matter of crossing out micrometers and writing millimeters. Either
the original simulations were actually 30 mm x 10 mm and they just mislabeled twice,
or the original simulation was performed on the wrong domain size and the simulations
now need to be rerun on the correct 30 mm x 10 mm grid.
I'd like the authors to clearly answer which correction matches reality for this
submission:
A)      The simulations were originally performed on a 30 nm x 10 nm domain as in the
original simulation, but they have now re-run all simulations on a correct 30 mm x 10
mm grid and updated all the results, figures, and as needed, conclusions.
B)      The simulations were original performed on a 30 micron x 10 micron domain as
in the resubmission, but they have now re-run all simulations on a correct 30 mm x 10
mm grid and updated all the results figures, and as needed, conclusions.
C)      The simulations were originally performed on a 30 mm x 10 mm domain, and
they were mislabeled twice but at last are correctly labeled now. They have verified
and rechecked all code and configuration settings that the simulation runs truly
correspond mathematically to a 30 mm x 10 mm domain.
D)      Something else that they 100% clearly state, rather than thanking us and
redefining axes again.
The reason we need to be careful on this is that in numerics packages, changing a
simulation previously run on a small domain to one now corresponding to a big domain
is almost never a simple matter of relabeling the prior plots.  Rescaling axes without
changing the data is equivalent to changing the diffusion coefficient (and other
parameters).
Either the original and resubmitted labels were wrong, and they have now corrected.
Or their original units were correctly stated, the domain size was wrong, and they must
correct by rerunning the simulations on the correct domain.  Or space was
nondimensionalized, and all the parameters were internally represented in units of
lattice sites instead of physical units. (e.g., diffusion coefficients in length units^2 / time
units). (But this strikes me as less likely.)
If I simulate a city block with unrealistic parameters, it doesn't automatically become a
correct simulation of the entire city by just relabeling axes. The statements about just
relabeling units, as well as relying upon "configurable run parameters",  gives me
pause to be a little cautious before accepting.
An explicit clarification on (A)-(D) (or other) will be helpful. I think the results are
probably fine. But I want to be sure, and not just probably fine.
Response: We want to clarify that all the simulations and results were obtained with no
units. In the first version of the submitted manuscript, we described the model as a
region with a 30 x 10 grid, similar to the area defined in (Mei et al. 2015) as a square
region with 100 x 100 2D grid cells. Over the course of the reviews, in order to better
describe the model, we included the units. Nevertheless, the simulation runs
corresponded mathematically to a 30 mm x 10 mm domain. The numbers (describing
the dimension of the compartments) that represent a region being modeled and used
to obtain all the simulation results and conclusions; corresponded to ‘mm’ units. Thus,
there were no changes equivalent to changing the diffusion coefficient since the
original units modeled were mm.
The units in the model were annotations and purely aesthetic to provide a closer
biological meaning. The change in the units did not affect the simulation results.
To support our claim that the change in the units (annotations) did not affect the
simulations results, we ran the simulations for a Wild type (WT) scenario with - i) no
units (black dot-dashed line), ii) nanometer (‘nm’ - green solid line), iii) micrometer (‘μm’
- red dashed line) and iv) millimeter (‘mm’ - blue solid line) as units. The figure below
shows: (a) the number of Helicobacter pylori agents over time, and b) number of
resident macrophages agents over time. There was no statistically significant
difference (P > 0.05), observed between the groups for both the cell populations (see -
c) and d)).

Also, now that I'm looking through the GitHub repo for the project, I'd like to see a
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clearer statement on which parameter files to use when running to reproduce the
specific results in this paper. If any additional scripts or configuration files are needed
to create the figures in this paper (e.g., parameter sweeps), they should include them
somewhere in the github repo with clear instructions. (The instructions are presently a
bit vague.)
Response: We included and clarified which parameter files were used to reproduce the
results in the README.mkd of the repo for the project (see below pages 3-5). The
parameter values were also listed in Table S1.
The scripts needed to create all the figures presented in the paper were provided in the
form of Jupyter notebooks (in the FTP directory of Gigascience). The scripts and other
processing files and jupyter files are now included in the ‘Processing’ folder on the
GitHub repository as well. The detailed instructions (scripts and files) to reproduce the
figures in the paper are included in the GitHub repository (‘Processing/Figures’). The
instructions were also in listed in the File S1 of the paper (see README.mkd (on
pages 3-6) below).
Thank you. I think with a little more clarification, this paper will be acceptable for
publication and a great contribution. But relabeling plot axes twice without rerunning
anything makes me nervous, and I need more clarity to give a green light.
Response: To summarize, we did not use the units to run the simulations and results,
however, the simulation runs corresponded mathematically to a ‘mm’ domain. To better
describe the model, we included units in the consecutive revisions.
We re-ran the simulations for four (WT) scenarios - i) no units, ii) nanometer (‘nm’), iii)
micrometer (‘μm’) and iv) millimeter (‘mm’) as units and demonstrated that the
simulations results did not change because the units in the model are annotations.
We believe that with these clarifications the paper should be acceptable for publication.
References:
Mei Y, Abedi V, Carbo A, Zhang X, Lu P, Philipson C, Hontecillas R, Hoops S, Liles N,
Bassaganya-Riera J. Multiscale modeling of mucosal immune responses. BMC
bioinformatics. 2015 Dec;16(12):S2.

README.mkd on the GitHub repository -
The text includes detailed instructions regarding - i) installing ENISI-MSM and it's
dependencies, ii) running the program on a local system and on a server and iii) scripts
used for the processing of the outputs generated from the code. Additionally,
README.mkd in the /ENISI-MSM/Howtorunasimulation and /ENISI-MSM/Sensitivity-
Analysis folders also provides detailed instructions on running simulation and
sensitivity analysis respectively.
Installation
  mkdir ENISI
  cd ENISI
  git clone https://github.com/NIMML/ENISI-Dependencies
  git clone https://github.com/NIMML/ENISI-MSM
Building ENISI-Dependencies
  cd "path-to-ENISI"/ENISI-Dependencies
  mkdir build
  cd build
  cmake ../
  make
Building ENISI-MSM
  cd "path-to-ENISI"/ENISI-MSM
  mkdir build
  cd build
  cmake -DENISI_MSM_DEPENDENCY="path-to-ENISI"/ENISI-
DEPENDENCIES/install" ..
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  make
Run the program
Running on the local system
1.Change the paths below in the run.sh file (can be located in the "path-to-
ENISI"/ENISI-MSM/Howtorunasimulationfolder).
oPath for mpirun in run.sh to be changed to your "path-to-ENISI"/ENISI-
Dependencies/install/bin/ directory.
oPath for ENISI-MSM executable to be changed to the location of your ~/ENISI/ENISI-
MSM/bin/ directory
2.Create a folder where the output files are to be saved (for e.g. OutputFolder) with the
following file contents :
oconfig.props, run.props, model.props, CD4.cps and MregDiff.cps (All included in the
"path-to-ENISI"/ENISI-MSM/Howtorunasimulation folder).
oConfigurable parameter file - model.props.
orun.props and config.props are the configurable files where you can change -
▪Number of TICKS (that is a measure of computational time, i.e stop.at = number of
TICKS)
▪Size of the grid cell.
3.Run the executable -
   ../run.sh "path-to-OutputFolder"
Running on server
1.Install and build ENISI-Dependencies and ENISI-MSM on the server.
2.Create a folder to run the simulation and store the output files (for e.g. OutputFolder).
The contents include:
oconfig.props, run.props, model.props, CD4.cps and MregDiff.cps and job.sh files (All
included in the "path-to-ENISI"/ENISI-MSM/Howtorunasimulation folder).
oConfigurable parameter file - model.props.
oThe run.props and config.props are the files where you can change -
▪Number of TICKS (that is a measure of computational time, i.e stop.at = number of
TICKS)
▪Size of the grid cell.
oThe path-to-OutputFolder is provided in the CONFIG variable specified in the job.sh
file.
3.Run the executable.
    sh job.sh
Scripts
All the scripts and parameter sets are listed in "path-to-ENISI"/ENISI-MSM/Processing
folder.
Parameter sets
●"path-to-ENISI"/ENISI-MSM/Processing/ParameterSets folder contains the parameter
files (model.props) to be used when running the program (refer to 'Run the program'
section above) to reproduce the files used to plot the results in the paper (currently
under review).
●The files are named as model_*.props where "*" represents the different condition.
●When running each simulation for the different condition, rename the file to
model.props.
Code for figures in the paper
●All the jupyter notebooks that create the figure in the paper are provided in the "path-
to-ENISI"/ENISI-MSM/Processing/Figures.
●The files are named as Fig*_Code.ipynb where "*" represents the figure number.
Other scripts
The bash and python scripts are provided in the "path-to-ENISI"/ENISI-
MSM/Processing/Others folder. Each script has a comment section that decribes the
usage, purpose and required location of the script.
The folder structure for the below scrips are as follows:
   ~/alloutputs/allRuns/setting0/run0
●The alloutputs folder contains the collections of all outputs.
●The allRuns folder (inside the alloutputs folder) contains the settings folder.
●The setting folder corresponds to a different set of parameters.
●The run folder corresponds to the replicates (for e.g. 10) for individual parameter set.
(The run folder is similar to the folder created in Step 2 of running the jobs locally and
on the server. The run folders include all the files provided in the "path-to-
ENISI"/ENISI-MSM/Howtorunasimulation folder)
i.lp_code.py (can be located in any folder; the "path-to-lp_code.py" is required by the
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tsvcsv.sh).
ii.tsvcsv.sh (to be located in ~/alloutputs/).
iii.average_and_SD.py (to be located in ~/alloutputs/allRuns/setting0/).
The scripts for Sensitivity-Analysis and the steps are detailed in "path-to-ENISI"/ENISI-
MSM/Sensitivity-Analysis/.

Additional Information:

Question Response
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Experimental design and statistics
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statistical methods used should be given
in the Methods section, as detailed in our
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Yes

Resources
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Abstract  1 

Background: Helicobacter pylori causes gastric cancer in 1-2% of cases, but is 2 

also beneficial for protection against allergies and gastroesophageal diseases. 3 

An estimated 85% of H. pylori-colonized individuals do not present any 4 

detrimental effects. To study the mechanisms promoting host tolerance to the 5 

bacterium in the gastrointestinal mucosa and systemic regulatory effects, we 6 

investigated the dynamics of immunoregulatory mechanisms triggered by H. 7 

pylori using a high-performance computing driven ENteric Immunity Simulator 8 

multiscale model. Immune responses were simulated by integrating an agent-9 

based model, ordinary and partial differential equations.   10 

Results: The outputs were analyzed using two sequential stages: the first used 11 

a partial rank correlation coefficient regression-based and the second employed 12 

a metamodel-based global sensitivity analysis. The influential parameters 13 

screened from the first stage were selected to be varied for the second stage. 14 

The outputs from both stages were combined as a training dataset to build a 15 

spatiotemporal metamodel. The Sobol’ indices measured time-varying impact of 16 

input parameters during initiation, peak and chronic phases of infection. The 17 

study identified epithelial cell proliferation and epithelial cell death as key 18 

parameters that control infection outcomes. In-silico validation showed that 19 

colonization with H. pylori decreased with a decrease in epithelial cell 20 

proliferation, which was linked to regulatory macrophages and tolerogenic 21 

dendritic cells.  22 

Conclusion: The hybrid model of H. pylori infection identified epithelial cell 23 

proliferation as a key factor for successful colonization of the gastric niche and 24 
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highlighted the role of tolerogenic dendritic cells and regulatory macrophages in 25 

modulating the host responses and shaping infection outcomes. 26 

1. Background 27 

Computational modeling of the immune response dynamics can provide 28 

novel insights and facilitate the systems level understanding of the interactions 29 

at the gastric mucosa during infection. Ordinary differential equation (ODE- 30 

based methods are deterministic and based on the average response of cells 31 

over time. Dynamical models are used in immunology for system-level analyses 32 

of CD4+ T cell differentiation [1], macrophage differentiation [2], immune 33 

responses elicited by Clostridium difficile infection [3], co-infections [4], and in 34 

cancer and immunotherapy [5]. However, ODE-based models lack the spatial 35 

aspects and the features to study the organ and immune cell topology over time. 36 

Agent-based models (ABM) employ a bottom-up approach that focuses on the 37 

spatial and temporal aspects of individual immune cells, unlike the ODE-based 38 

methods. This rule-based method includes agents that act as local entities which 39 

interact locally with other agents, move in space, and follow set of rules 40 

representing their role in a given system and contribute towards generating an 41 

emergent behavior. Since, the immune system is a complex dynamical system 42 

[6] wherein the components i.e., the immune cells move in space and time 43 

changing their location, ABMs are useful tools that can be employed to 44 

understand biological mechanisms and the hidden insights.  45 

Helicobacter pylori is a gram-negative bacterium that has persistently 46 

colonized the human stomach since early evolution [7] [8] and is currently found 47 

in over 50% [9] of the global population. H. pylori has co-evolved with humans 48 

for thousands of years, such that an estimated 85% of the H. pylori-colonized 49 
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individuals, do not present any detrimental effects. Thus, the vast majority of 50 

carriers (i.e., up to 75%) remain asymptomatic, while only 15% develop ulcers, 51 

and less than 3% develop cancer. Further, growing and sometimes contradictory 52 

evidence from recent experimental, clinical studies and epidemiological studies 53 

suggest that H. pylori might provide protection against obesity-related 54 

inflammation and type 2 diabetes [10], esophageal, cardiac pathologies, 55 

childhood asthma and allergies [11] and autoimmune diseases. In this context, 56 

it is crucial to understand the mechanisms that promote host tolerance to the 57 

bacterium in the gastrointestinal mucosa and its systemic regulatory effects 58 

since these have been linked to the beneficial commensal aspects of H. pylori-59 

human host interaction. Computational models provide a cost-effective and 60 

predictive way to study the complex and dynamic immune system interactions 61 

and form a non-intuitive novel hypothesis. Solving the complex puzzle of 62 

immunoregulatory mechanisms that include large spatiotemporal scales ranging 63 

from cellular, intracellular, tissue and organ level scales is a major unsolved 64 

challenge that requires applying computational modeling and data analytics.  65 

An advanced hybrid model used to study the mucosal immune response 66 

during gut inflammation highlighted the mechanisms by which effector CD4+ T 67 

cell responses, contributed to tissue damage in the gut mucosa following 68 

immune dysregulation [12]. Other hybrid models with the integration of ABM, 69 

ODE, and PDE technologies, were developed to understand the dynamics of 70 

tumor development [13] and tumor growth models [14]. These combined 71 

techniques have been used to develop multi-organ models in various situations, 72 

including the study of granuloma formation [15] and pressure-driven ulcer 73 

formation in post spinal cord injury patients [16]. The summary of different agent-74 

based simulators with immunology related applications are discussed and 75 
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summarized in [17, 18]. The comparison between different multiscale modeling 76 

tools and agent-based immune simulators, are discussed in [12, 19]. 77 

In this study, we utilize a high-resolution ENteric Immunity SImulator (ENISI)-78 

based model of the stomach for simulating the mucosal immune responses to H 79 

pylori infection. The advanced hybrid multiscale modeling platform ENISI 80 

multiscale model (MSM) is capable of scaling up to 1012 agents [20]. The host 81 

immune responses initiated during H. pylori infection and the underlying 82 

immunoregulatory mechanisms are captured using the ENISI multiscale hybrid 83 

model. The underlying intracellular mechanisms that control cytokine production, 84 

signaling and differentiation of macrophages and T cells are modeled by using 85 

ODEs, the diffusion of cytokine values is modeled using PDEs and the location 86 

and interactions among the immune cells, bacteria and epithelial cells are 87 

modeled by using ABMs. The hybrid model thereby represents a high-88 

performance computing (HPC)-driven large-scale simulation of the massively 89 

interacting cells and molecules in the immune system, integrating the multiple 90 

modeling technologies from molecules to systems across multiple 91 

spatiotemporal scales. 92 

To understand the dynamics and emergent immunological patterns 93 

described by this hybrid model, we employed sensitivity analysis (SA), an 94 

important part of the model analysis used to explore the influence of varying 95 

model parameters on the simulation outputs. The influence of the effects of 96 

changes in parameter values on the model output explains the model dynamics 97 

that underlay the outputs [21, 22]. Furthermore, SA examines the robustness of 98 

the model output at a different range of parameter values that correspond to a 99 

range of different assumptions.  We employed global SA and conducted a two-100 

stage spatiotemporal global SA approach. First, we used a regression-based 101 
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method such as the partial rank correlation coefficient (PRCC) and screened the 102 

important input parameters that were shown to have the most influence on the 103 

output cell populations obtained from the hybrid model. Second, the screened 104 

input parameters from the first stage were varied to build a second stage 105 

parameter design matrix, and the computer simulations were again run using the 106 

hybrid ENISI model. The outputs from both analytics stages were combined and 107 

used as a ‘training dataset’ to build a spatiotemporal Gaussian process based 108 

metamodel. Finally, variance-based decomposition global SA was used to 109 

compute the Sobol’ indices and the most influential parameters over the course 110 

of infection were identified. The data analytics methods conducted on the hybrid 111 

model identified the epithelial cell parameters such as epithelial cell proliferation 112 

as the most influential ones, required for the successful colonization of H. pylori 113 

in the gastric microenvironment.  114 

    2. Methods 115 

2.1 Hybrid multiscale Helicobacter pylori infection model  116 

 We developed a multi-compartment, high-resolution, hybrid ABM/ODE/PDE 117 

model to capture the dynamics of the immune response during H. pylori 118 

colonization of the gastric mucosa. The model has a spatial discretization such 119 

that the dimension of the entire (two-dimensional, (2D)) grid is 30 mm x 10 mm. 120 

An individual lattice site for our simulation is 1 mm x 1 mm, however, this is a 121 

configurable run parameter and can be changed without modifying the model. 122 

An individual lattice site is a unit wherein all the agents located within that 123 

location have the same cytokine environment, i.e., for all the agents in that 124 

location, ENISI-MSM would send the same concentration of the cytokines to 125 
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COPASI. The entire grid is divided within into four functionally and anatomically 126 

distinct sized compartments: lumen, epithelium, lamina propria and gastric lymph 127 

node. In the model, there are multiple cells and cell types (i.e., agents) within this 128 

dimensional grid. At the beginning of each simulation cycle, the cells (agents) 129 

are randomly placed within the within the 2D grid. The separation of different 130 

types of agents, corresponding to different cell types, into compartments within 131 

the grid is based on the conceptual framework that underlines the model, which 132 

is based on author’s expertise and available information. Currently the individual 133 

agents do not have any physical size meaning such that there is no limit of agents 134 

within each individual spatial grid. The model is initialized with the concentration 135 

of different cell types (i.e. agents for e.g. macrophages) at the beginning of the 136 

simulation by the user.  137 

 The use of a border implementation permits the migration of agents (cells) 138 

across compartments and facilitates the unidirectional and bidirectional 139 

movement of the agents. At the cellular scale, ENISI MSM, simulated epithelial 140 

cells, macrophages, dendritic cells (DC), CD4+ T cells and bacteria that are 141 

implemented as agents in the model. At the intracellular scale, calibrated ODE-142 

based models of T cells [23] and macrophages [2] were used to represent the 143 

intracellular pathways controlling cytokine production. The CD4+ T cell ODE 144 

model was calibrated using the experimental data provided in the Table S1 of 145 

[23]. The Particle Swarm algorithm implemented in COPASI was used to 146 

determine unknown model parameter values and fully calibrate the CD4+T cell 147 

ODE model, the details are described in [23]. The intracellular macrophage ODE 148 

model was calibrated using a combination of sourced and new data generated 149 

from in vitro macrophage differentiation studies, that were compiled into a 150 

dataset provided within S2 file of [2]. The parameter values are specified within 151 
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the previously published manuscripts - CD4+ T cell ODE model (Carbo, 152 

Hontecillas et al. 2013) and macrophages [2]. The parameters of the calibrated 153 

ODEs were kept unchanged, and the ABM parameters were calibrated by 154 

approximating the output simulations such that they qualitatively resembled the 155 

patterns observed in a mouse model of H. pylori infection [24], also described in 156 

detail in section 3.1. Cytokines secreted by immune cells and their change in 157 

concentration were modeled by PDE. The degradation value of the cytokines 158 

and the diffusion constant determines the spread of the cytokine value of one 159 

lattice site to its neighboring lattice site similar to as described in our previous 160 

work [12]. The features of ABM, ODE, and PDE were combined to create a 161 

multiscale modeling environment which spanned across different orders of 162 

spatiotemporal scales.  The model output contains information about the x and 163 

y co-ordinate of the agents at every time point. The cytokines and internal 164 

signaling pathways that drive functional fates of cells are well mixed within a cell, 165 

i.e., we have only temporal resolution within the cell during a time step. Since, 166 

the model is capable of providing information regarding spatial co-ordinates over 167 

time, we claim the model to be a spatio-temporal model.  168 

 169 

 The code for the hybrid model is freely accessible and can be downloaded 170 

at https://github.com/NIMML/ENISI-MSM. The detailed instructions for the 171 

usability, instructions on ‘how to run a simulation’ and codes for creating specific 172 

examples presented here are presented in Additional file S1.  The SciCrunch.org 173 

database assigned research identification initiative ID (RRID) for ENISI-MSM is 174 

RRID:SCR_016918. The design of the implementation of the code structure is 175 

depicted in the Additional file Fig S1. The hybrid model is implemented in C++ 176 

and utilized the Repast HPC library (https://repast.github.io/repast_hpc.html) 177 

https://github.com/NIMML/ENISI-MSM
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[25]. For the ODEs, we utilized COPASI  [26], an ODE-based modeling tool used 178 

in computational biology. The rules in the model that described the interaction of 179 

H. pylori with the gastric mucosa and the immune responses resulting from the 180 

infection are derived from the findings in our previously published studies [1, 2]. 181 

Specifically, this hybrid model reproduced the immune responses generated by 182 

the interaction H. pylori and the resident macrophages as shown in the mouse 183 

model of H. pylori infection [24]. The rules for each cell type in the H. pylori 184 

infection are summarized in Table 1. A pictorial representation of the rules is 185 

depicted in Fig 1. These cell types represented as agents, act according to the 186 

rules (as in Table 1) that are updated at discrete simulation cycle.  187 

 188 

 189 

Fig 1. Helicobacter pylori infection schematic diagram of the hybrid ABM 190 

ODE model  191 

The model comprises four compartments, i) the lumen that contains H. pylori and 192 

bacteria, ii) epithelium that contains epithelial cells and dendritic cells, iii) lamina 193 

propria that contains variety of immune cells including the infiltrating effector 194 

(eDCs) and tolerogenic (tDCs) dendritic cells, monocytes, regulatory 195 

macrophages (both resident and monocyte-derived macrophages), T helper 196 

cells and naïve CD4+ T cells (nT), Th1, iTreg, Th17, Tr cells. and iv) gastric 197 

lymph node compartment that contains eDCs, tDCs, Th1, Th17, iTreg and nT. 198 

The Tr cells in the lamina propria are the type 1 regulatory (Tr1) T cells with 199 

regulatory function whose expansion is largely dependent on environmental IL-200 

10. These are different than iTreg which are T cells differentiated from naïve T 201 

cell in presence of tolerogenic dendritic cells and TGF-β cytokine The two 202 

calibrated ODEs for T cells and regulatory macrophages are integrated as the 203 
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ODE components in the hybrid model. The cellular agents are simulated in a 204 

two-dimensional grid space with their behavior defined by a set of rules during a 205 

course of H. pylori infection.  206 

 207 

Model description  208 

ENISI MSM is a multiscale agent-based modeling platform for computational 209 

immunology which was built on our previous works, ENISI-MSM [12]  that 210 

integrated COPASI, the ODE solver, ENISI, an agent based simulator.  211 

Spatial discretization  212 

The model has a spatial discretization such that we define the area being 213 

simulated as a simulation environment with a two-dimensional grid whose size 214 

is 30 mm x 10 mm. An individual lattice site is 1mm x 1mm, however, this is a 215 

configurable run parameter and can be changed without modifying the model. 216 

We further want to clarify that the above units in the model are annotations and 217 

purely aesthetic. The scales described in the previous version of ENISI-MSM 218 

[12] were kept unchanged. The table describing the scales used in [12] are also 219 

shown here in Table 2.  220 

Scale Example scenario Spatial (m) Time(s) Technology Tool 

Intra-cellular Signaling pathways Nano (nm) Nano ODE COPASI 

Cellular Cell movement and subtype Milli (mm) Tens ABM ENISI 

Intra-cellular Cytokine-diffusion Milli (mm) Tens PDE ValueLayer 

Tissue Inflammation and lesions Centi (cm) Thousands Projection ENISI 

 221 

Table 2. The four scales of ENISI models, their spatial and temporal properties and modeling 222 

technologies and tools used for each scale (Table 1 as adapted from [12]).  223 

 224 



 10 

 225 

The four functionally and anatomically distinct sized compartments are 226 

separated by border implementation such that the dimensions of the four 227 

compartments are lumen (2 mm), epithelium (1 mm), lamina propria (5 mm) and 228 

gastric lymph node (2 mm). The following compartments are adjacent to each 229 

other: lumen – epithelium, epithelium - lamina propria and lamina propria – 230 

gastric lymph node. A figure describing the spatial discretization is shown in the 231 

Fig 2. 232 

 233 

 234 

 235 

Fig 2. A pictorial representation of the spatial discretization of the 2D grid.  236 

 237 

The parameters that define the initial concentration of the agents and the 238 

diffusivity of cytokines are obtained from a properties file (model.props in the 239 

Howtorunasimulation folder in the GitHub repository). All the values of the 240 

parameters as listed in Table S1. The detailed mechanism that each parameter 241 

corresponds to is described in the second column, parameter description, of 242 

Table S1.  We demonstrate below how we obtain a count of thousands resident 243 

macrophages. For e.g., if the initial concentration of resident macrophages in the 244 

lamina propria is 30, the total number of these resident macrophages can be 245 

calculated by the equation described below -  246 

 247 

n(resident macrophages) = sizecompartment(lamina propria) x concentrationintial 248 

(resident macrophages)        249 

n(resident macrophages) = (30 x 5) x 30 = 4500. 250 
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 251 

Time Step size  252 

The time step size is 1 tick ~ 1 day which was obtained during the process of 253 

qualitatively comparing the output to the results from the mouse model of H. 254 

pylori infection. For e.g., the peak of resident macrophages in lamina propria 255 

(refer Fig 3b, d) is observed at ~21 days which is similar to the results obtained 256 

in Fig 2A described in [24] (also described in detail in section 3.1).  257 

 258 

Updating   259 

Each agent has an ‘act’ function within the code that describes the rules 260 

implemented for each of the agent groups. At every simulation cycle, each agent 261 

inspects its location and updates its state. If the agents were T cells and 262 

macrophages, they obtained the cytokine concentration from the ValueLayers, 263 

sent that information to COPASI that calculated the differentiation subtype of the 264 

agent and cytokines to be secreted that into the environment [12].  The input to 265 

the ODEs were the cytokine values at the agent’s location. Thus, the intracellular 266 

ODE models were utilized to determine and update the state. Each agent 267 

proliferated, died, changed its state and moved across the compartment, 268 

following the set of rules defined for them.  269 

The COPASI setup for the solver used the LSODA (Livermore Solver for 270 

Ordinary Differential Equations) differential equation solver. The default values 271 

for the setup such as the - relative tolerance (1e-6), absolute tolerance (1e-12) 272 

and maximum internal steps of 10000 were maintained. The ENISI MSM sends 273 

the current concentrations of the cytokines 274 

to COPASI. COPASI uses those values to integrate the deterministic 275 

model for one tick, i.e., 1 day. The resulting time series of cytokine 276 
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concentrations are used to update the cytokine value in the ABM/PDE 277 

system. COPASI simulates different model for each relevant cell type.  278 

The ENISI MSM PDE solver uses a simple numerical scheme to solve the PDEs 279 

(https://github.com/NIMML/ENISI-MSM/tree/master/src/diffuser) and process 280 

distributed value layer (https://github.com/NIMML/ENISI-281 

MSM/blob/master/src/grid/ValueLayer.h). The ValueLayer stores the value for a 282 

grid space and provides methods to change the values of individual lattice site. 283 

The Diffuser is used to diffuse the values of the ValueLayer using diffusion (d) 284 

and degradation (delta) constants as described in [12]. The diffusion constant 285 

determines the migration of values of a lattice site to its neighboring lattice site. 286 

As implemented in ValueLayer library, the diffusion of cytokines follows the 287 

equation shown below also described in Mei el al, 2015. Here, vn is the value of 288 

the lattice site itself at step n. The values of cdelta and cd are degradation and 289 

diffusion constant respectively.  290 

vn = vn-1 + cdelta * [ ∑( cd
 neighbor *vn-1

neighbor) - 6.0 * vn-1] 291 

0.3 1.2 0.3 

1.2 -6.0 1.2 

0.3 1.2 0.3 

 292 

The PDE solver uses the above number scheme cd
 neighbor for the diffusion 293 

process. The step size cdelta is automatically adjusted at the beginning of the 294 

simulation based on the degradation and diffusion constants to avoid underflow 295 

https://github.com/NIMML/ENISI-MSM/tree/master/src/diffuser
https://github.com/NIMML/ENISI-MSM/blob/master/src/grid/ValueLayer.h
https://github.com/NIMML/ENISI-MSM/blob/master/src/grid/ValueLayer.h
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errors, i.e., multiple PDE steps are in general executed per tick.  The grid size is 296 

the identical with the spatial discretization for the agents. 297 

Movement  298 

The cells and bacteria agents presented in the model have Brownian motion and 299 

move randomly within the compartment. Brownian movement is an inherent 300 

property of a cell. Depending on cell phenotypes the movement can vary, but all 301 

cells with the same phenotype exhibit similar movements. Additionally, 302 

chemokine-driven movement is dependent on chemokine concentration in a 303 

tissue site. The capability of chemokine-driven movement exists in ENISI-MSM 304 

if the right chemokines are represented in the model. However, the focus of this 305 

model was to investigate changes in cell phenotype and not chemokine-driven 306 

movement of cells. Thus, the chemokines driving the movement are not 307 

represented in the current model. Cell migration is implemented in the code as 308 

the move() function for each of the cells and agents, which call the 309 

moveRandom() function from the (https://github.com/NIMML/ENISI-310 

MSM/src/compartment/Compartment.cpp) file.   311 

 312 

   The hybrid model simulations were run on an Ivy Bridge-EX E7-4890 v2 2.80 313 

GHz (3.40 GHz Turbo) quad processor nodes. The code was parallelized such 314 

that the simulation time on a single node with four parallel tasks, varied between 315 

9-10 minutes. This runtime was based on the model parameters at the initiation 316 

stage, which included the number of immune cell, bacteria, epithelial cells, 317 

number of time steps, and size of the two-dimensional grid.  To facilitate the 318 

investigation of the mechanisms underlying host responses during H. pylori 319 

infection, anatomical and functional compartments were spatially linked such that 320 

https://github.com/NIMML/ENISI-MSM/src/compartment/Compartment.cpp)
https://github.com/NIMML/ENISI-MSM/src/compartment/Compartment.cpp)
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the agents had both unidirectional and bidirectional movement. All the agents 321 

worked in a synchronous format wherein the two agent populations 322 

(macrophages and T cells) made function calls to their respective ODE models 323 

[2] [23]. These agents used the varying cytokine concentration (i.e., environment 324 

variable) in their grid spaces as inputs to the ODE model, and these models were 325 

run using COPASI [26].  326 

Table 3 shows information on the agents and the states that they can acquire. 327 

Name of agents States it can acquire Name of the states in the 
hybrid model 

Helicobacter pylori 0 H. pylori 

Macrophages 0 
1 
2 
3 

Monocyte 
Resident 

Regulatory 
Inflammatory 

Dendritic cells 0 
1 
2 

Immature 
Effector 

Tolerogenic 

T cell 0 
1 
2 
3 
4 

Naïve 
Th1 

Th17 
iTreg 

Tr 

Epithelial  0 
1 

Healthy 
Damaged 

Bacteria 1 
2 

Infectious 
Tolerogenic 

 328 

Table 3. List of all the agents and the states they can acquire.  329 

All the agents can acquire at least 1 and at the most 5 states. The names chosen 330 

for the acquired states are closely related to their functional properties based on 331 

the underlying “rules”. 332 

 333 

Further, we included the screenshots of one actual in silico simulation of H. pylori 334 

infection to highlight the spatiotemporal aspects of the modeling outputs. The 335 

time snapshots were created using VisIt version 2.12 [27], an interactive 336 
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visualization and analysis tool. As shown in Additional file, Fig S2, the 337 

screenshots at time points 2, 4, 5 and 6 represent the spatial distribution of 338 

different agent cells over time distributed across the 2D grid.  339 

 340 

2.2 Global sensitivity analysis  341 

 342 

To conduct the global SA, we determined a list of 38 parameters to be varied 343 

that were selected based on the calibration process (wherein the parameters 344 

that did not show a lot of variation were not included). A range of values 345 

(maximum and minimum) was specified for each of the parameters (refer to 346 

Additional file Table S1) by expert judgment, summarized by bounded intervals. 347 

The practice of using expert judgment is known in the SA field as supported in 348 

[28]. As discussed in [29], one of the challenges encountered using ABM is the 349 

process of determining the parameter values, for e.g.  this may include the lack 350 

of the availability of experimental techniques to measure such parameters. The 351 

values of the parameters for the model presented here are obtained via the best 352 

guess based on the qualitative comparison of the computer model outputs with 353 

that of the experimental results obtained from the mouse model of H. pylori 354 

infection (Viladomiu, Bassaganya-Riera et al. 2017) (as described in detail in 355 

Section 3.1). Since, the source of the parameters is not known we estimated the 356 

values to fit the data obtained from the mouse model of infection.  357 

The values of these parameters were normalized within the range of 0 and 1 358 

for SA purposes. We employed a two-stage metamodeling methodology to 359 

determine the influence of each input parameter to the model output, in a high 360 

dimensional screening setting inspired by [30]. The step-wise procedure is 361 

described in the Additional file, Fig S3. All the files for global SA are freely 362 
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accessible and can be downloaded at https://github.com/NIMML/Sensitivity-363 

Analysis.  364 

The two-stage global SA is described in detail in the below section. To 365 

summarize, for the first stage the input parameter matrix was designed using the 366 

method described in Moon, Dean et al. 2012 and simulations were run using the 367 

hybrid computer model. The simulation output from the first stage was analyzed 368 

using PRCC as it was computationally efficient, and the active inputs (significant 369 

effect) were screened to reduce the input parameter space. Second, the active 370 

parameters were varied whereas the inactive parameters from the first stage 371 

were maintained at a nominal value for the input parameter matrix design to be 372 

employed for the second stage. Third, the simulation outputs from both stages 373 

were combined and used as a training dataset to fit a spatio-temporal 374 

metamodel. Fourth, the unknown model parameters for the spatio-temporal 375 

metamodel were estimated using the maximum log-likelihood function. The 376 

spatio-temporal metamodel was used as a substitute for the hybrid computer 377 

model, and the variance-decomposition method was used to compute the Sobol’ 378 

total and first-order indices. Overall, we employed both approaches, PRCC 379 

based (for screening) and Sobol’ indices calculation to perform a complete global 380 

SA of the hybrid computer model. The following sections, describe a detailed 381 

step by step explanation of the procedure.  382 

 383 

Design of two-stage experiments and analysis  384 

 385 

The input for the hybrid model are varying parameter values obtained from 386 

the design matrix and the output are the number of cells (agents) that vary over 387 

time. The first stage experiment was focused on the screening of the input 388 

https://github.com/NIMML/Sensitivity-Analysis
https://github.com/NIMML/Sensitivity-Analysis
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variables to reduce the number of input parameters to vary for the SA and to limit 389 

the computational cost. Computational costs are often a limiting factor that play 390 

an important role in the inclusion of model parameters in the SA [21].  For the 391 

design, we assumed the total number of input parameters under consideration 392 

as d (in our case, 38). With an assumption of a maximum of 50% active inputs 393 

that is aimed to improve the screening performance, the number of runs for stage 394 

1, was fixed to n1= 4d, such that n1 > 5*d*0.5 = 2.5d as in [30]. To construct a n1 395 

* (n1-1) preliminary input parameter design matrix, X*, needed to be constructed 396 

([30]). The input parameter design matrix for first stage sampling was drawn from 397 

X*. 398 

The algorithm for the first stage design generated a design matrix X(1) that 399 

satisfied the below three listed properties as in [30] 400 

i) The columns of X* were uncorrelated thereby facilitating the independent 401 

assessments of the effects due to the input parameters.  402 

ii) The maximum and minimum value in each input parameter column were 403 

ensured to be 0 and 1 respectively, thereby preventing any input values 404 

with larger values to have a larger influence on the response, induced by 405 

the design.   406 

iii) The designs defined by X* had “space-filling” properties such that all the 407 

regions of the input space were exhaustively explored.  408 

 409 

First stage sampling plan:  410 

The first stage input parameter design matrix 𝑋(1) was obtained by selecting 411 

the first d columns of 𝑋∗, i.e. 𝑋(1) = (𝜉1, … . , 𝜉𝑑). The hybrid computer model was 412 

run and the simulation outputs at these 𝑛1design points were obtained.  413 
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In our case, the model comprised of d = 38 input variables. The total number of 414 

distinct input parameter design points obtained using the above procedure was 415 

n1 = 152 (4*d = 4* 38). To account for the variability in the output, we run 20 416 

replicates (r). Thus, the total number of simulations run using the hybrid model 417 

computer simulator with 𝑋(1) as input parameter design matrix, were r x n1 = 20 418 

x 152 = 3040.  419 

 420 

First stage analysis  421 

We analyzed the outputs from first stage analysis and screened the active 422 

inputs from using PRCC. To measure the effect of input parameter on output, we 423 

performed both PRCC and the spearman rank correlation coefficient (SRCC) 424 

analysis. PRCC and SRCC were chosen because they were computationally 425 

efficient (accounting for the low computational budget). A correlation analysis 426 

provides a measure of the strength of linear association between input and 427 

output variable [31].  A correlation coefficient between xj and y is calculated as 428 

follows: 429 

𝑟𝑥𝑗𝑦 =
𝐶𝑜𝑣(𝑥𝑗, 𝑦)

√𝑉𝑎𝑟(𝑥𝑗)𝑉𝑎𝑟(𝑦)

=
∑ (𝑥𝑖𝑗 − 𝑥)(𝑦𝑖 − 𝑦𝑁

𝑖=1 )

√∑ (𝑥𝑖𝑗 − 𝑥)2 ∑ (𝑦𝑖 − 𝑦)2𝑁
𝑖=1

𝑁
𝑖=1

 430 

𝑗 = 1,2, … , 𝑘. 431 

where  𝐶𝑜𝑣(𝑥𝑗, 𝑦) stands for the covariance between xj and y, and Var (xj ) and 432 

Var (y) are the variance of xj and y respectively.  433 
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PRCC is performed when i) a non-linear but monotonic relation exists 434 

between the input and outputs, and ii) when little or no correlation exists between 435 

the input variables (which is guaranteed by the property (i) of our input parameter 436 

matrix, X(1) described above). As described in Marino, Hogue et al. 2008, the 437 

PRCC between rank transformed xj and y is the CC between the two residuals 438 

(𝑥𝑗 − 𝑥𝑗)̂ and (𝑦𝑗 − 𝑦𝑗)̂ where 𝑥�̂� and 𝑦�̂� are rank transformed and follow the linear 439 

regression models as follows:   440 

𝑥�̂� =  𝑐𝑜 +  ∑ 𝑐𝑝𝑥𝑝
𝑘
𝑝=𝑗
𝑝≠𝑗

 and 𝑦�̂� =  𝑐𝑜 + ∑ 𝑐𝑝𝑥𝑝
𝑘
𝑝=𝑗
𝑝≠𝑗

 . 441 

We performed the PRCC analysis on the outputs obtained from the hybrid 442 

computer model with X(1) as an input, using ‘epi.prcc’ package in R (https://cran.r-443 

project.org/web/packages/epiR/epiR.pdf). The significance test evaluated the 444 

strength of influence each input parameters and assessed if the PRCC 445 

coefficients were significantly different than zero [31]. We run the PRCC analysis 446 

for 13 output cell populations (Fig 4 shows data for two output populations and 447 

the rest of the data not shown) and identified the active input parameters using 448 

the significance test. PRCC and SRCC produced identical outputs, hence results 449 

from SRCC are not shown here. If an input parameter was shown to be 450 

significant (P < 0.05) in one of the 13 output cell populations, it was considered 451 

as an active input for the second stage input parameter design matrix. 452 

Additionally, domain expert knowledge was employed to include additional 453 

parameters, based on the biological significance, that were otherwise shown to 454 

be non-significant. In all, based on the PRCC analysis performed on the outputs 455 

obtained from the first stage simulations and domain expert knowledge, we 456 

chose 23 input parameters as active inputs for the second stage (see Additional 457 

https://cran.r-project.org/web/packages/epiR/epiR.pdf)
https://cran.r-project.org/web/packages/epiR/epiR.pdf)
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file Fig. S4). Thus, PRCC screened inputs at significance level p < 0.05 and 458 

inputs based on expert knowledge were selected as active inputs to be varied 459 

for the second stage sampling plan.  460 

Second stage sampling plan:  461 

The number of active inputs obtained from the first stage analysis amounted 462 

to 23 parameters out of the initial set of 38 parameters. We followed the design 463 

described in [30] for the second stage and the number of design points amounted 464 

to,  𝑛2= 100%* 5*a where ‘a’ stands for the number of active inputs from the first 465 

stage. This resulted into 𝑛2= 23*5 = 115 parameters combinations for the second 466 

stage input parameter design matrix. Since outputs from both stages are to be 467 

combined for second stage analysis, per [30], the design for the second stage 468 

was chosen to build on top of 𝑋(1). The sampling phase design algorithm ensured 469 

that the columns satisfied the properties (i) (uncorrelated design points) and (ii) 470 

(between values 0 and 1) as listed in the previous section. We constructed the 471 

115 x 38 (115 parameter setting and 38 parameters) design matrix for the second 472 

stage that incorporated the 23 active inputs obtained from the PRCC screening 473 

in the first stage output analysis. After combining the design points from both the 474 

stages, the parameter design matrix X with space filling properties contained 267 475 

(152 from the first stage and 115 from the second stage) design points. 476 

Second stage analysis 477 

We run the computer code for the hybrid model with the second stage input 478 

parameter design matrix (with 115 (n2) design points), for 20 (r) replicates, which 479 

amounted to 115 x 20 (2300) runs. The outputs from the first stage (152 x 20 480 
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runs) and second stage (115 x 20 runs) were combined to provide the training 481 

data to build a spatio-temporal metamodel. For the second stage analyses, we 482 

utilized a metamodeling-based approach. Metamodels are surrogate models that 483 

can be used as a substitute for the simulation model [32]. The use of metamodels 484 

reduces the computational budget, cost of analysis, and are useful options in 485 

cases when the simulation model is expensive to run (in our case 9-10 minutes 486 

for 1 design point) [32]. The various metamodeling techniques used to build 487 

surrogates for a computer model output include linear regression models, neural 488 

networks, high dimensional model representation methods, Gaussian process 489 

(GP) regression models, polynomial chaos expansion and more that are 490 

discussed in length in [33, 34]. Amongst these, GPs are one of the most popular 491 

emulators as it allows modeling of fairly complex functional forms. The GPs not 492 

only provide prediction at a new point but also an estimate of the uncertainty in 493 

that prediction [33]. A GP is a stochastic process for which any finite set of y-494 

variables has a joint multivariate Gaussian distribution [35] [33]. Suppose, 𝑦𝑗(𝑤), 495 

the simulation response obtained on the jth simulation replicate, at a design point 496 

𝑤 = (𝑋𝑇 , 𝑡)𝑇 ∈  𝜒 x Τ, it can be described as follows: 497 

  𝑦𝑗(𝑤) = 𝑌(𝑤)+ 𝜀𝑗(𝑤) =  𝛽0 + 𝑀(𝑤) +  𝜀𝑗(𝑤),             (1) 498 

where Y(w) represents the mean function of  𝑦𝑗(𝑤), the quantity of interest that 499 

we intend to estimate at any design point w. The 𝛽0 is a constant trend term and 500 

is assumed to be unknown. The input parameter 𝑋 ∈  𝜒 ⊂  ℝ𝑑 and the time 𝑡 ∈501 

 Τ ⊂  ℝ+; and 𝑋 is independent of 𝑡. The 𝜀𝑗(𝑤) are represents the sampling 502 

variability inherent in a stochastic simulation, that are  that are assumed to be 503 
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independent and identically distributed across the replications at any given 504 

design point [36]. 505 

The term 𝑀(𝑤) represents a stationary Gaussian process with mean = 0  and 506 

covariance between any points was modeled as the Gaussian covariance 507 

defined in [37]. Thus, the covariance between any design points 𝑤𝑎 =508 

(𝑋𝑎
𝑇 , 𝑡𝑎)𝑇and 𝑤𝑏 = (𝑋𝑏

𝑇 , 𝑡𝑏)𝑇in the random field can be modeled as- 509 

     𝐶𝑜𝑣(𝑀(𝑤𝑎), 𝑀(𝑤𝑏)) = Γ2exp (− ∑ 𝜃𝑟(𝑋𝑎𝑟 −  𝑋𝑏𝑟)2𝑑
𝑟=1 𝑅(𝑡𝑎 −  𝑡𝑏; γ), (2) 510 

wherein, exp (− ∑ 𝜃𝑟(𝑋𝑎𝑟 −  𝑋𝑏𝑟)2𝑑
𝑟=1  ) models the spatial correlation between two 511 

input design points 𝑋𝑎 and  𝑋𝑏 in the input parameter space, whereas 512 

𝑅(𝑡𝑎 −  𝑡𝑏; γ) also given by exp (− ∑ γ𝑟 (𝑡𝑎𝑟 − 𝑡𝑏𝑟)𝑑
𝑟=1

2
) models the temporal 513 

correlation between time points 𝑡𝑎  and 𝑡𝑏 . The parameters 𝜃 and 𝛾 represents 514 

the rate at which i) spatial correlation decreases as the points move farther in 515 

space with the same time index, and ii) temporal correlation decreases as the 516 

time points are farther apart in time at the same input vector, respectively. Both 517 

the spatial correlation and temporal correlation are modeled using the Gaussian 518 

covariance. The parameter Γ2 can be interpreted as the variance of M (w) for all 519 

w. The input parameter design consists of ((𝑤𝑎 , 𝑛𝑖)𝑖=1
𝑘 ) design points to run 520 

independent simulations with replicates applied to each of the design points. Let, 521 

𝑘 ×  1 denote a vector of sample averages of simulation responses given by 𝑦 =522 

(𝑦(𝑤1), 𝑦(𝑤2), … . , 𝑦(𝑤𝑘))𝑇, where in 𝑦(𝑤𝑖) is the resulting estimate of 523 

performance measure obtained at design point 𝑤𝑖 and 𝜀(𝑤𝑖) is the sampling 524 

variability inherent in a stochastic simulation (Ankenman, Nelson, & Staum, 525 
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2010). The equations associated with 𝑦(𝑤𝑖) and 𝜀(𝑤𝑖) are described below in 526 

equation (3): 527 

𝑦(𝑤𝑖) =
1

𝑛𝑖
∑ 𝑦𝑗(𝑤𝑖)𝑛𝑖

𝑗=1 = 𝑌(𝑤𝑖) +  𝜀(𝑤𝑖)  and  𝜀(𝑤𝑖) =
1

𝑛𝑖
∑ 𝜀𝑗(𝑤𝑖)𝑛𝑖

𝑗=1 , 𝑖 = 1,2, … , 𝑘. 528 

(3) 529 

Similar as in (Ankenman, Nelson, & Staum, 2010), shown below in equation (4), 530 

let ∑𝑀 be the k x k covariance matrix across all design points and let ∑ (𝑤𝑜, . )𝑀  be 531 

the k x 1 vector, (Cov[M(w0,w1)], Cov[M(w0,w2)],..,Cov[M(w0,wk)]T that contains 532 

spatial covariance between the k design points and a given prediction point 𝑤𝑜. 533 

Also, let ∑𝜀 be the k x k covariance matrix of the vector of simulation errors 534 

associated with the vector of point estimates 𝑦, across all design points. As 535 

described in [36], the best linear predictor 𝑌(𝑤𝑜) that has the minimum mean 536 

squared error (MSE) among all linear predictors at a given point 𝑤𝑜 =537 

 (𝑋𝑜
𝑇 , 𝑡𝑜)𝑇 can be given by equation (4): 538 

  �̂�(𝑤𝑜) =  𝛽�̂� +  ∑ (𝑤0, . )𝑇
𝑀 [ ∑𝑀 +  ∑𝜀  ]−1(𝑦 − 1𝑘𝛽0),̂   (4) 539 

where, 1k is the k x 1 vector of ones and 𝛽�̂� is estimated to be 1. The 540 

corresponding optimal MSE as in [36] is given by equation (5):  541 

𝑀𝑆𝐸 (�̂�(𝑤𝑜)) =  ∑ 𝑋0, 𝑤𝑜𝑀 − ∑ (𝑤0,. )
𝑇

𝑀 [ ∑𝑀 +  ∑𝜀  ]−1 ∑ (𝑤𝑜, . )𝑀   (5).  542 

To implement the metamodeling approach as described above, the unknown 543 

model parameters are estimated through maximizing the log-likelihood function. 544 

The underlying standard assumption is that (𝑌(𝑤𝑜), �̅�𝑇)𝑇 follows a multivariate 545 

normal distribution, for e.g., see [36] and [38]. The function implemented in the 546 
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mlegp package in R [39] is used for the estimation of the parameters. Once the 547 

parameters are estimated the prediction then follows equations (4) and (5).  548 

 549 

Sensitivity index calculation 550 

 551 

To determine the effect of input variables on the output, we employed the 552 

variance decomposition method. These methods involve the decomposition of 553 

the variance of the output as a sum of the variance produced by each input 554 

parameter [35].  555 

We independently generated 10,000 x 38 sampling matrices, such that the 556 

parameter combinations are generated via Latin Hypercube sampling and as 557 

described in [40]. Simulations were performed using the GP spatio-temporal 558 

model as described in the previous section, and the Sobol’ indices were 559 

computed as described in [41] [40]. The Sobol’ method quantitatively measured 560 

the contribution of each input parameter by computing the first order and total 561 

order index [40]. For output Y, input parameter matrix 𝑋𝑖 where, i is the input 562 

parameters of the model, the Sobol’ indices are computed as follows: 563 

 564 

    𝑆𝐼1
𝑋𝑖 =

𝑉[𝐸(𝑌|𝑋𝑖]

𝑉(𝑌)
 , 565 

 566 

and 567 

    𝑆𝐼𝑡𝑜𝑡
𝑋𝑖 =

𝑉[𝐸(𝑌|𝑋~𝑖]

𝑉(𝑌)
. 568 

 569 
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The Sobol’ first order sensitivity index 𝑆𝐼1
𝑋𝑖 measures the impact of one single 570 

parameter on the model output, whereas the Sobol’ total order index measures 571 

the influence of 𝑋𝑖 including all the interactions with other parameters. The First-572 

order indices were computed using the Sobol-Saltelli’s method as described in 573 

[40] [42] whereas, the total order indices were computed using Sobol-Jansen as 574 

in [40, 43].  575 

     576 

  577 

3. Results 578 

3. 1 Hybrid model simulations produce similar immune response dynamics 579 

observed in previously published experimental data 580 

 581 

We first aimed to simulate the findings observed in previous gut models [24] 582 

to ensure that we obtained similar response dynamics from the hybrid ENISI 583 

model of H. pylori infection. As in [24], to demonstrate that the gastric mucosa 584 

harbors a system of macrophages that contribute to the outcome of H. pylori 585 

infection, we created an in-silico Peroxisome proliferator-activated receptor 586 

gamma (PPAR) macrophage-specific knockout (KO) model. PPAR  is an 587 

important transcription factor that controls the expression of genes that 588 

contribute to the inflammatory response once this is initiated. To disrupt the 589 

downregulation of pro-inflammatory responses, we simulated a PPARg KO 590 

system in either macrophage or T cell populations and compared the response 591 

to a wild-type system. In the model, we created three different macrophage 592 

populations, comprised of, “resident” macrophage agents that mimic the 593 
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properties of the F4/80hi CD11b+ CD64+ CXCR1+ macrophages reported in 594 

[24], monocyte-derived (infiltrating) and macrophage populations with regulatory 595 

(M2, or alternatively activated) and pro-inflammatory  function (M1 or classically 596 

activated)  (see Table 3). 597 

We simulated an in-silico H. pylori infection by creating four groups, i) a control - 598 

WT (representing a wild-type group), ii) CD4Cre (T cell specific PPAR KO-lacks 599 

PPAR gene in all CD4 T cells), iii) LysMCre (Myeloid cell specific PPAR KO-600 

lacks PPAR gene in all macrophages) and clodronate group (simulating the 601 

removal of macrophages by chemical depletion via clodronate treatment). To 602 

simulate the CD4Cre group, the probabilities of a naive T cell transitioning to an 603 

iTreg cell (p_nTtoiTreg) and Th17 cell differentiating to iTreg (p_Th17toiTreg) 604 

were reduced to 5% and 10% of the control value, respectively (refer to Table 605 

S1). As described in [23], to simulate the LysMCre experimental conditions, the 606 

probabilities of i) a monocyte transitioning to a regulatory macrophage 607 

(p_Mregdiff) and ii) immature dendritic cells switching to tolerogenic dendritic 608 

cells (p_iDCtotDC) were reduced approximately to 60% and 30% of the control 609 

value, respectively (refer to Table S1). A complete set of parameter for each of 610 

the biological KOs are included as separate columns in Table S1. Lastly, the 611 

removal of macrophages by clodronate were simulated by decreasing the initial 612 

numbers of the macrophage population including the resident macrophages. The 613 

rationale to include the clodronate group (macrophage removal) was to evaluate 614 

if depletion of phagocytic cells (terminology with respect to model, i.e., 615 

monocytes, resident, monocyte-derived macrophages and inflammatory 616 

macrophages) would affect H. pylori colonization levels, as we have previously 617 
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reported in an in vivo model [24]. Further, to simulate the myeloid cell PPAR KO 618 

system, the initial population of resident macrophages were also reduced.  619 

  All the groups were initialized with equal loads of H. pylori agents. Ten 620 

replicates of the simulations were performed for each of the input parameter 621 

settings specific to each group. The outputs were averaged, and standard error 622 

of the means were plotted as ribbons (shaded regions) across the graphs. After 623 

running the ten replicates of the time series in-silico simulation, the hybrid model 624 

showed significantly (p< 0.05) higher levels of H. pylori in the WT and CD4Cre 625 

groups as compared to LysMCre KO and macrophage-depleted groups (Fig. 3, 626 

panel a and d).  627 

 628 

 629 

Fig 3. Time course simulations representing the immune response during 630 

Helicobacter pylori infection. 631 

The upper half of the plot in both the panels shows the dynamics of the 632 

population cells 633 

over time representing the number of cells (y-axis) versus time (x-axis) in a WT 634 

(black), CD4Cre (green), clodronate (red) and LysMCre (blue) simulated in-silico 635 

groups during H. pylori infection. The cell populations include - a) H. pylori; b) 636 

the resident macrophages and, c) monocyte-derived macrophages in the lamina 637 

propria compartment. The figures in the lower half (d-f) of both the panels, show 638 

the results for statistical comparison between the groups using ANOVA with the 639 

post-hoc analysis. The letters ‘a’, ‘ab’ and ‘b’ represent statistically significant 640 

differences (P < 0.05) between the groups obtained after running the Tukey’s 641 

Honestly Significant Difference. A side by side comparison with the bacterial load 642 
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and macrophage population as observed in the mouse model of H. pylori 643 

infection are also included.  644 

  645 

In addition to the increase in H. pylori, WT and CD4Cre in-silico experimental 646 

groups had a higher resident as well as monocyte-derived regulatory 647 

macrophages as compared to clodronate (macrophage depleted) and LysMCre 648 

groups (Fig. 3b-c, e-f). The results in the mouse model indicated that between 649 

weeks 2 and 3 post-infection a decrease in bacterial burden in the stomach of 650 

LysMcre mice was observed as shown in Fig. 1A of Viladomiu, Bassaganya-651 

Riera et al. 2017. The decrease in bacterial burden led to a significant and 652 

sustained lower colonization levels when compared to WT and CD4Cre. Similar 653 

to the results observed in the mouse model, we observed a significant decrease 654 

(Fig. 3a, d) in the bacterial burden in the simulated LysMcre group as compared 655 

to the simulated WT and CD4cre groups. Furthermore, the results from the 656 

mouse model indicated that a significant increase in numbers of F4/80hiCD11b+ 657 

CD64+ CX3CR1+ cells (here referred to as resident macrophages in this paper), 658 

was observed in WT mice in comparison with LysMcre mice as shown in Fig. 2A, 659 

2E of Viladomiu, Bassaganya-Riera et al. 2017. These cells accumulated in the 660 

stomach mucosa starting on day 14 post-infection in the WT mice but not in the 661 

LysMcre mice. We observed a similar increase (Fig. 3b,e and Fig. 3c,f) in the 662 

number of resident macrophages as well as monocyte derived macrophages in 663 

the simulated WT groups in comparison to the simulated LysMcre group. We 664 

estimated the parameter values to fit the data obtained from the mouse model of 665 

H. pylori infection. Thus, the observations were qualitatively similar to the 666 

findings in [24], where the stomach of WT mice was enriched in a population of 667 

F4/80+CD11b+CD64+ myeloid cells, compared to LysMCre mice.  668 
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    Overall, with the results in Fig. 3, we showed the ability of the hybrid model 669 

to replicate the experimental results in [24], and this preliminary data was used 670 

as a base calibration setting for SA and other in-silico findings.  671 

3.2 Partial correlation coefficient analysis screened the influential 672 

parameters  673 

 674 

To reduce the computational complexity of varying an input parameter space 675 

of 38 parameters, we divided the SA process in two stages. For first-stage 676 

analysis, we utilized the PRCC regression-based SA method to screen the 677 

influential inputs and used it for the second stage design of the experiments (refer 678 

Methods 2.2). Using PRCC, we determined the impact of the input parameters 679 

on the output cell populations in the model. The parameters with significant 680 

correlation with H. pylori in the gastric lamina propria compartment and resident 681 

macrophages are shown in Fig. 4, along with their PRCC values. The bars in 682 

blue, highlight the parameters that are significantly different than 0, at P < 0.05 683 

compared to grey bars which are not significant. It is important to note that at this 684 

stage the analysis using PRCC was non-temporal.  685 

   The SA from first stage results showed that the epithelial damage due to 686 

infectious bacteria (epiinfbctdam) with a coefficient value of (~0.2), was positively 687 

correlated with the colonization of H. pylori in the lamina propria compartment, 688 

indicating the important role of epithelial cell damage during the course of 689 

infection, similar to our findings obtained in [44]. Another parameter included the 690 

probability of the release of IL-6 (IL6) with a coefficient value within the range 691 

(0.3-0.4).  692 
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    Next, the epithelial cell damage parameters (epiinftbctdam = (0.2-0.3), 693 

epiTh17dam = 0-0.2) were shown to have positive influence on the resident 694 

macrophage cells whereas, the T cell type transition parameters (p_iTregtoTh17 695 

= (0.3 - 0.4) and p_Th17toiTreg = (0.1 - 0.2)) showed a negative impact on the 696 

resident macrophages. Similarly, we performed the PRCC analysis for all the cell 697 

populations under consideration during the infection (not shown).   698 

 699 

 700 

Fig 4. Bar plots for the partial rank correlation coefficients.  701 

The magnitude of the bar-plot indicates the value of the partial rank correlation 702 

coefficient. The blue bar indicated the input parameters shown to be significantly 703 

different than 0, at P <0.05 as influential whereas the grey bars indicate the non-704 

influential parameters on a) H. pylori and b) resident macrophages, in the lamina 705 

propria compartment.  706 

 707 

  The significant parameters (marked in blue bars) obtained from the SA of the 708 

output from first stage design of experiments (152 parameter settings with 20 709 

replicates, refer Methods 2.2), were selected to be varied for the second stage 710 

design. All the selected inputs are shown in Additional file Fig. S4. In all, we 711 

obtained 23 active inputs from the first stage.  712 

3.3 Metamodel based spatio-temporal sensitivity analysis 713 

The outputs obtained after running the first (152 x 20 runs) and second (115 714 

x 20 runs) stage simulations, wherein x20 denotes the 20 replicates, were 715 

combined to be used as a training dataset. The combined output was utilized to 716 
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build a Gaussian process based spatiotemporal metamodel (refer  Methods 2.2), 717 

using mlegp package in R [39]. 718 

 719 

The outputs from the training dataset were sub-divided into 6 datasets, 720 

corresponding to six time periods (Days 1-14, 15-21, 22-30, 31-42, 43-90, 91-721 

201) and averaged across these periods. The sub-division of output across the 722 

time periods, aided the temporal analysis over the initiation (Day 1-14), peak of 723 

infection (Days 15-30) and chronic phase (post Day 31) stages as in [24]. We 724 

then fit a Gaussian process model (with nugget) and evaluated the performance 725 

of the fitting of the metamodel for H. pylori, resident macrophages, and 726 

monocyte-derived macrophages in lamina propria compartment, and tolerogenic 727 

DC in the gastric lymph node, using the diagnostic plots (see figures in Additional 728 

file, Fig. S5). After fitting the models, we performed variance based global SA by 729 

computing the Sobol’ total order and first order sensitivity index (refer Methods 730 

2.2). The estimates of the Sobol’ total order indices for the input parameters 731 

calculated over the six time periods are shown in Fig. 5 (a-d).  732 

 733 

 734 

Fig 5. Heat-maps of Sobol’ total order index for the input parameters across 735 

different output populations. 736 

The values in the heat-map indicate the Sobol’ total order sensitivity index 737 

obtained from the metamodel, for the 38 input parameters with respect to the cell 738 

populations. The values with darker color indicate a stronger influence on the cell 739 

population as compared to the ones with lighter shade that indicate non-740 

influential parameters for the cell populations - a) H. pylori, b) monocyte-derived 741 

macrophages, c) resident macrophages, in the lamina propria compartment and 742 
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d) tolerogenic DCs, in the gastric lymph node compartment. The indexes are 743 

calculated over six time points ranging across the three stages of infection, 744 

including initiation (Day 1-14), peak (Days 15-42) and recovery stages (Days 43-745 

201).  746 

 747 

As shown in Fig. 5a, the metamodel based global SA showed that the input 748 

parameters, epithelial cell proliferation (Epiprolifer) and epithelial cell death 749 

(Epicelldeath) had the strongest impact on the population of H. pylori in lamina 750 

propria compartment. As time progressed from initiation of the infection (Days 1-751 

14), through peak (Days 15-30), the epithelial cell proliferation had a continued 752 

impact on the colonization of H. pylori. Next, the influence of the probability of 753 

epithelial cell death decreased over the course of infection. Further, Fig. 5b 754 

highlighted the impact of epithelial cell proliferation (Epiprolifer) and epithelial cell 755 

death (Epicelldeath) on the monocyte-derived macrophages.  756 

For the resident macrophage population in the lamina propria, that have 757 

emergent properties similar to the one characterized in [24], we observed that 758 

the resident macrophage replication parameter (ResmMacRep) has an impact 759 

during the initiation and peak stages of the infection which indicates that these 760 

subsets of macrophages replicate during the course of H. pylori infection. This 761 

result highlights the reliability of the two-staged global SA method used here, as 762 

these findings are consistent with the ones in [24] wherein we observed that 763 

these subsets of macrophages expand in the gastric stomach lamina propria 764 

during the course of H. pylori infection.  765 

Finally, for the tolerogenic DCs in Fig. 5d, we observed that the epithelial cell 766 

death (Epicelldeath) seemed to have an impact. Another parameter that stands 767 

for the probability of naive T cell transitioning to iTreg cell (nTtoiTreg) was shown 768 
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to have an impact on the tolerogenic dendritic cells. Tolerogenic dendritic cells 769 

are involved in the rule that transitions the naive T cells to iTreg cells in the gastric 770 

lymph node, and the stronger impact of the nTtoiTreg during the initiation and 771 

peak stages of the infection highlights the role of the tolerogenic dendritic cells 772 

during the course of infection.  773 

The global SA data suggested that the main contributors of the chronic 774 

colonization of H. pylori in the lamina propria are the epithelial cells, specifically 775 

the epithelial cell proliferation parameter.  776 

3.4 Effect of different ranges of epithelial cell proliferation  777 

An interesting prediction derived from the metamodel based global SA is that 778 

epithelial cell proliferation is one of the parameters that has a strong impact on 779 

the size of H. pylori population. The biological hypothesis derived from this 780 

prediction is that the epithelial cell proliferation is responsible for the higher 781 

colonization of H. pylori. Prior to conducting any experimental studies, we wanted 782 

to explore the hypothesis using our hybrid computer model in silico and study 783 

the model outputs obtained after we changed the epithelial cell proliferation 784 

parameter. Thus, we varied the epithelial cell proliferation parameter across 785 

different ranges (0.1-0.9, with 0.6 being the value for baseline conditions) and 786 

ran the simulations using the hybrid model and studied its effect on the different 787 

output cell population (obtained after running the simulations). These outputs 788 

were the ones obtained after running the simulation using the hybrid computer 789 

model, as we varied the epithelial cell proliferation parameter. We analyzed the 790 

outputs from the hybrid computer model and interestingly, observed that upon 791 

decreasing the Epiprolifer from a range of values 0.9-0.1, the output cell 792 

populations with regulatory function, namely regulatory macrophages and 793 
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tolerogenic dendritic cells were found to vary. We observed a decreasing effect 794 

(Fig. 6a-d) on H. pylori, monocyte-derived macrophages, resident macrophages 795 

in the lamina propria compartment and tolerogenic dendritic cells in gastric lymph 796 

node. Overall, these cell populations varied due to the variation in the epithelial 797 

cell proliferation parameter.  798 

For clarification, such connection was not embedded in the mechanisms 799 

included in Table 1 but it represents an emergent behavior from the simulations 800 

predicting the involvement of regulatory and tolerogenic dendritic cells in the 801 

mechanisms of immunoregulation during H. pylori infection. Finally, the 802 

simulations targeting the epithelial cell proliferation resulted in changes in 803 

regulatory and tolerogenic dendritic cell populations. This shows that the 804 

simulations indirectly targeted the regulatory and tolerogenic dendritic cell 805 

population. Thus, we hypothesize that epithelial cell proliferation might be 806 

responsible for the higher colonization of H. pylori through an immunoregulatory 807 

mechanism that involves regulatory macrophages and tolerogenic cells. This is 808 

in line with our own conclusions drawn from a previous paper [24] where we 809 

show that the presence of cells with regulatory phenotype favor higher levels of 810 

H. pylori colonization. The results from the sensitivity analysis presented in this 811 

paper suggest that epithelial proliferation might be a crucial part of the 812 

mechanisms by which these regulatory responses are induced and that there is 813 

a link between these parameters. The exact biological process however cannot 814 

be inferred from the current model and it will be investigated in follow-up in vivo 815 

studies.  816 

 817 

 818 

 819 
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Fig 6. In silico study of the effect of epithelial cell proliferation parameter 820 

on the cell populations. 821 

The plots show the effect of varying epithelial cell proliferation (p_Epiprolifer) 822 

parameter (with values 0.1, 0.5, 0.6(WT), and 0.9) on the output cell population 823 

of a) H. pylori, b) tolerogenic dendritic cells, c) resident macrophages and d) 824 

monocyte-derived macrophages. The parameter has a decreasing effect on the 825 

cellular populations under consideration, wherein a decrease in the parameter 826 

value, decreases the abundance of the cells over time. The lower half of the 827 

figures (a-d), show the results for statistical comparison between the groups 828 

using ANOVA with the post-hoc analysis. The letters ‘a’, ‘b’, ‘c’, and ‘bc’ represent 829 

statistically significant differences (P<0.05) between the groups obtained after 830 

running the Tukey’s Honestly Significant Difference.  831 

 832 

The in silico findings suggested the involvement of regulatory macrophages 833 

(both resident as well as monocyte-derived) and tolerogenic DC on the 834 

colonization of H. pylori in the gastric lamina propria. This highlighted and 835 

validated the role of epithelial cell proliferation as one of the main factor affecting 836 

H. pylori levels in the gastric niche.  837 

 838 

4. Discussion 839 

H. pylori is the dominant indigenous bacterium of the gastric microbiota. In the 840 

majority of individuals, H. pylori colonizes the stomach without causing adverse 841 

effects, with little to no activation of inflammatory pathways. However, certain 842 

members of the population lose immune tolerance to the bacterium thereby 843 
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contributing to the development of chronic gastric diseases. The immunological 844 

mechanisms underlying its ability to persist in a harsh acidic gastric environment and 845 

its dual role as a pathogen and beneficial organism remain unknown. A subset of 846 

macrophages helps create a regulatory microenvironment that promotes the chronic 847 

colonization of H. pylori [24]. However, the immune regulatory mechanisms are 848 

incompletely understood. Computational models of the immune system featuring 849 

immune responses are powerful tools for testing the different ‘what-if’ scenarios. 850 

Multiscale models of the immune response are attractive in terms of modeling the 851 

responses at different spatiotemporal scales [45].  852 

In this study, we developed a HPC-driven hybrid, high-resolution, multiscale 853 

model to simulate the complex immunoregulatory mechanisms during H. pylori 854 

infection. The hybrid model was integrated with two intracellular ODEs capturing the 855 

dynamics of CD4+ T cells and regulatory macrophages. The inputs to the hybrid 856 

model are the set of parameters whose variation governs the immune system 857 

dynamics during infection. The obtained outputs were emergent patterns of different 858 

cell types, cytokines, and bacterial levels for instance the levels of H. pylori, and that 859 

qualitatively matched the patterns observed in an in vivo infection model [1, 24]. We 860 

presented an in-silico framework that evaluated the global SA of the hybrid model 861 

and studied how the variation in the biological parameters affected the simulation 862 

outputs. The two-stage global SA indicated that epithelial cell parameters, 863 

specifically, the proliferation of epithelial cells affected the colonization of H. pylori in 864 

the gastric mucosa. These results were validated in silico, and highlighted the 865 

involvement of regulatory macrophages and tolerogenic DC in facilitating H. pylori 866 

colonization of the gastric mucosa. Previous studies highlighted H. pylori inhabits the 867 

apical surfaces of the epithelial cells and maintains a persistent infection [46].  868 
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Further, Mimuro et al. demonstrated that H. pylori promotes epithelial gastric cell 869 

survival by attenuating apoptosis. These events showed how H. pylori regulated the 870 

gastric niche and utilized epithelial cells to facilitate its persistence within the 871 

stomach [47] [48]. Thus, the findings in the current study are in line with the literature 872 

that suggests epithelial cell proliferation favor the colonization of H. pylori in the 873 

stomach.  874 

Our group also showed another mechanism used by H. pylori to create a gut 875 

microenvironment that involved the induction of IL-10-driven regulatory mechanism 876 

mediated by CD11b+F4/80hiCD64+CX3CR1+ mononuclear phagocytes, which 877 

facilitated bacterial colonization [24]. Additionally, in this paper, we reported that 878 

regulatory macrophages were involved in the process of colonization with H. pylori 879 

when we varied the epithelial cell proliferation parameter in-silico. Zhang et al., 880 

demonstrated that H. pylori directed active tolerogenic programming of DCs that 881 

favored chronic bacterial colonization, by altering the balance of Th17/Treg cells [49]. 882 

Rizzuti, Ang et al., demonstrated H. pylori-mediated IL-10 release caused the 883 

activation of signal transducer and activator of transcription 3 (STAT3) in DC. This 884 

activation of STAT3 via IL-10 release was shown to induce the production of 885 

tolerogenic DC phenotype [50]. The findings from this paper also indicated the 886 

involvement of tolerogenic DCs in affecting the mucosal levels of H. pylori. 887 

Therefore, the literature combined with the results from this study, collectively 888 

suggest that during H. pylori infection, the epithelial cell favors the colonization of H. 889 

pylori by creating a regulatory microenvironment. This process is mediated by the 890 

regulatory macrophages and tolerogenic programming of DC. Based on the results 891 

from this paper and findings from the literature, this leads us to propose that the 892 

induction of IL-10 by the regulatory macrophages is potentially involved in directing 893 

the tolerogenic programming of DC. All experimental evidence combined with our 894 
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model prediction suggest the action of an underlying biological mechanism that links 895 

the presence of H. pylori in the gastric mucosa with changes in the rates of epithelial 896 

cell proliferation which ultimately affects the levels of colonization. Our prediction 897 

points towards a link between epithelial cell proliferation and the action of tolerogenic 898 

dendritic cells and regulatory macrophages. The exact cellular mechanism induced 899 

during this process however cannot be inferred from the current model and it will be 900 

investigated in follow-up in vivo studies. 901 

 902 

At its current stage, the hybrid ENISI model reproduces the overall immune 903 

system dynamics observed during an H. pylori infection. The parameters of 904 

calibrated ODEs were kept unchanged, whereas the ABM parameters were 905 

calibrated by qualitatively matching the patterns of the output simulations as 906 

observed in an in vivo model of H. pylori infection [24].  For ABM, its calibration and 907 

validation remain the major key issues, discussed elsewhere [21] [51] [52]. Further, 908 

developing targeted methods of SA have been identified as an important challenge 909 

in the field [21, 53, 54]. In this paper, we highlighted the use of SA methods with a 910 

two-stage global SA framework comprised of first, screening the input parameters 911 

(using PRCC) and second, building of a surrogate model (using GP) of the hybrid 912 

model, to understand the emergent behavior of the represented system. It is 913 

important to note that each SA method known, has its own merits and produces 914 

useful information however none provide a complete picture of the emergent model 915 

behavior [21]. First, we employed PRCC methods as the initial step in our two staged 916 

SA that aided the screening of active inputs and reduced the parameter space. The 917 

choice of PRCC was advantageous and justified by the low computational cost and 918 

low complexity in the computation of the coefficients. Another advantage of the 919 

regression-based PRCC method is that the complex output from our hybrid model 920 
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was condensed into a descriptive relationship that can be described by statistical 921 

measures such as R2  [21]. As described in [21] the results from PRCC are good 922 

descriptors of the outputs produced if the regression function constitutes a good fit 923 

to the output [21]. However, if the function does not yield a good fit, the regression-924 

based SA are proven to be useful in screening the influential parameters for further 925 

analysis [21], as described in our analysis.  926 

Further, the interaction effects between the parameters are not considered in 927 

regression-based methods, and hence it was followed by the use of variance-based 928 

methods in later stage analysis. Second, we employed metamodeling-based 929 

approach and Sobol’ method as they provided information on the interaction 930 

between the input variable and the use of metamodels allowed to compute the 931 

sensitivity indices. One of the advantages of the Sobol’ method is that it is model-932 

free and no fitting functions are used to decompose the output variance [32]. It 933 

considers the averaged effect of parameters over the whole parameter space but 934 

fails to explore the different patterns within the space [21]. Further, the method is not 935 

suitable for quantification of output variability if the output distributions deviate from 936 

a normal distribution [21]. The detailed comparison of different SA methods used for 937 

the global SA of ABMs are described in detail in [21]. Thus, we performed both the 938 

PRCC and computation of Sobol’ indices approaches to evaluate the influence of 939 

the input parameter variation and identified the parameters involved in the successful 940 

colonization of the gastric niche by H. pylori. 941 

Some limitations of the model include implementation through a two-dimensional 942 

grid system and including all cells of the same size. Although we parallelize the 943 

computation of the hybrid model output, the large number of simulations required for 944 

the global SA compensates for the benefits of parallelization. To improve the 945 

calibration process and overall usability of the model, the data required for model 946 



 40 

calibration would include tissue biopsies from people infected with H. pylori that can 947 

be used to quantify the cells and take into account their spatial arrangement. The 948 

current version is also limited in terms of the interactions that are based on epithelial 949 

cells and DC as they are strictly rule-based. The building of ODE models for these 950 

cells and integrating them with the ABM model will help capture the dynamics of 951 

epithelial cells and DC more in-depth. Overall the immunoregulatory mechanisms 952 

underlying the chronic colonization of H. pylori and the predictive capacity of the 953 

model can be further improved by incorporating cell-specific models for epithelial 954 

cells and DC. 955 

In summary, a high-resolution, hybrid, multiscale spatiotemporal stochastic 956 

model of H. pylori infection was built and global SA was performed. The results from 957 

the global SA highlight the key role played by epithelial cells in affecting the levels of 958 

H. pylori colonization. The in-silico validation of varying the epithelial cell proliferation 959 

parameter demonstrated the involvement of regulatory macrophages and the 960 

tolerogenic DC. The next steps aimed to enrich the model will involve the validation 961 

of the findings in vivo to study the underlying mechanisms involved in the successful 962 

immune evasion by H. pylori. The computational modeling predictions will be further 963 

validated experimentally and clinically. 964 

 965 

5. Potential Implications 966 

The computational model of the gut contains high-resolution information 967 

processing representations of immune responses that are generalizable for other 968 

infectious and autoimmune diseases. Complex diseases such as autoimmune 969 

disorders, infectious diseases, and cancer all require integration of the multiscale 970 

level data, information and knowledge, ranging from genes, proteins, cells, tissue to 971 

organ level. The ENISI model of the gut presented here can be generalized to other 972 
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diseases by implementing the agents and rules specific to that disease, plus 973 

recalibrating the model based on data that are specific to the new indication. Since 974 

ABMs have modular architectures, an addition of new agent-types and modification 975 

of rules can be done without restructuring the entire simulation setup [19]. The use 976 

of ABM in such hybrid models not only facilitates the implementation of already 977 

known mechanisms but also helps validate and predict any unforeseen new 978 

mechanisms using data analytics methods such as global SA to analyze emerging 979 

behaviors at the systems level. The finer details regarding intracellular and 980 

intercellular interactions that contribute towards the nonlinear and complex behavior 981 

of the gut can also be studied by integrating the intracellular ODE models as 982 

implemented here.  983 

 984 

Tables 985 

 
Name of Agent 

 
Agent Type 

 
Rules 

Helicobacter 
pylori 

H. pylori - Moves across the epithelial cell border if near damaged 
epithelial layer 
- Proliferates in the lumen and lamina propria 
- Dies (removed from the simulation) in lamina propria 
and in the lumen due to the damage of epithelial cells by 
Th1 or Th17 cells 

Macrophages Monocyte 
 

- Proliferates in presence the of effector dendritic cells or 
damaged epithelial cells 
- Proliferates in the lamina propria 
- Differentiates to regulatory macrophage in based on 
the output from the Macrophage ODE 
- Differentiates to inflammatory macrophages in 

presence of IFN- 
- Dies naturally (removed from the model) 

 Resident 
 

- Proliferates in the presence of H. pylori 
- Secretes IL10 
- Dies naturally 
- Dies due to Th1 and Tr cells 

 Regulatory 
 

- Proliferates and removes bacteria 
- Dies 
- Secretes IL10 

 Inflammatory -Proliferates in the presence of damaged epithelial cell 
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-Dies naturally 

Dendritics Immature -Moves from lamina propria to epithelium compartment 
and from the epithelium to the lamina propria 
- Differentiates to tolerogenic dendritic cell in the 
presence of tolerogenic bacteria, both in epithelium and 
lamina propria 
- Differentiates to effector dendritic cell in the presence 
of H. pylori 
- Proliferates in lamina propria and gastric lymph node 
- Dies naturally 

 Effector - Moves from lamina propria to gastric lymph node 
- Moves form epithelium to lamina propria 
- Secretes IL6 and IL12 
- Dies naturally 

 Tolerogenic - Moves from lamina propria to gastric lymph node 
- Moves from epithelium to lamina propria 

- Secretes TGF- 
- Dies naturally 

T cells Naïve 
 

In the presence of effector dendritic cells: 

- Differentiates to Th1 in the presence of IFN- or IL12 

- Differentiates to Th17 in the presences of IL6 or TGF- 
In the presence of tolerogenic dendritic cells: 

- Differentiates to iTreg in the presence of TGF- 
- Differentiates to Tr in the presences of IL10 
- Dies naturally 

 Th1 
 

- Secretes IFN- 
- Moves from gastric lymph node to lamina propria 
- Proliferates in lamina propria and gastric lymph node 
- Dies naturally 

 Th17 - Secretes IL17 
- In the presence of tolerogenic dendritic cell, transition 
to iTreg cells 
- Moves from gastric lymph node to lamina propria 
- Proliferates in lamina propria and gastric lymph node 
- Dies naturally 

 iTreg - Secretes IL10 
- In the presence of tolerogenic dendritic cell, transition 
to iTreg cells 
- Moves from gastric lymph node to lamina propria  
- Proliferates in lamina propria and gastric lymph node 
- Dies naturally 

 Tr - Secretes IL10 
- Dies naturally 
- Proliferates in the lamina propria  

Epithelial Healthy -Damaged due to infectious bacteria 
-Damaged due to Th1 and Th17 cells 
-Proliferates 
-Secretes IL6 and IL12 
-Dies naturally 

 Damaged -Transitions to healthy state in the presence of IL10 
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-Dies naturally 

Bacteria Infectious 
 

- Dies due to Th1 or Th17 or inflammatory macrophages 
or damaged epithelial cells 
- Dies naturally 
- Proliferates in the lamina propria 

 Tolerogenic - Moves from lumen to the epithelium in the presence of 
damaged epithelial cells 
- Becomes infectious if moves in the lamina propria 
compartment 
- Proliferates in lumen and lamina propria 
- Dies naturally 
 

 986 

Table 1. A list of rules for all the agent types implemented in the hybrid model 987 

 988 

 989 

Additional Files 990 

File S1 991 

Fig S1 992 

Table  S1 993 

Fig S2 994 

Fig S3 995 

Fig S4 996 

Fig S5 997 

 998 

File S1 – The detailed instruction to Install ENISI MSM (Step I), Run a simulation 999 

(Step II) and Conduct Sensitivity Analysis (Step III) are described.  1000 

 1001 

Fig S1. Design implementation of the hybrid multiscale model used to 1002 

simulate Helicobacter pylori infection 1003 
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The figure shows the class structure used in the ENISI MSM hybrid agent based-1004 

ODE model. Each group consists of an act() function that includes the 1005 

implemented rule for each agent. The previously published ODE models for T 1006 

cells and Macrophage are used to integrate in the ABM code. 1007 

 1008 

Table S1 Table describing the input parameters used in the sensitivity analysis 1009 

and their ranges used. 1010 

 1011 

Fig S2. Time screenshots of a Helicobacter pylori infection modeled in a 30 mm 1012 

(length) x 10 mm (width) two-dimensional grid. The thickness of the compartment 1013 

is shown on the y-axis, such that: lumen spans (0 to 2) units, epithelium spans 1014 

(2 to 3) units, lamina propria spans (3 to 8) units and gastric lymph node across 1015 

(8-10) units on the scale. Two-dimensional distribution of different cell subsets 1016 

over the time steps (ticks) 2, 4 (top panels), 5 and 6 (bottom panels) are shown. 1017 

The insets in each image shows a zoomed in portion of the respective grids 1018 

across the time steps 2, 4, 5 and 6. The agents represented in the screenshots 1019 

below are only for visual representation and do not represent the actual size of 1020 

the biological cells.  1021 

 1022 

Fig S3. Flowchart for the two-staged global sensitivity analysis. 1023 

 1024 

Fig S4. The active and inactive inputs selected from the stage 1 analysis 1025 

The rows represent the input parameters and columns represent the output cell 1026 

populations. The green boxes highlight the ‘active’ input parameters (row) that 1027 

are shown to have a significant influence (calculated based on the results 1028 
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obtained from partial correlation coefficient analysis), on an output cell (columns) 1029 

under consideration.  1030 

 1031 

Fig S5. Diagnostic and residual plots obtained for the Gaussian processes 1032 

fitted metamodels 1033 

The upper panel represents the diagnostic Q-Q plots where the open circles 1034 

represent the cross-validated predictions; solid black lines represent observed 1035 

response. The “observed simulations” data in the first half of the lower panel, 1036 

refer to the observed output values of the simulations obtained after running the 1037 

hybrid computer model, whereas the y axis refers to the predicted simulation 1038 

values obtained from the Cross-validated model. Each point represents 1 output 1039 

point obtained as an output from the simulation. The second half of the lower 1040 

panel, refers to the standard residual plot wherein the x-axis represents the 1041 

observed simulation values obtained from the simulation and the y-axis refers to 1042 

the residual error ((error (predicted values – observed values) / standard 1043 

deviation (error))) obtained. The diagnostic plots denote the black circles which 1044 

are the cross-validated prediction. Cross-validation is in the sense that for 1045 

predictions made at design point x, all observations at design point x are 1046 

removed from the training set.  The lower panel represents the residual plots for 1047 

the cell populations –(a) Helicobacter pylori; (b) Resident macrophages; (c) 1048 

Monocyte-derived macrophages in the Lamina propria and (d) Tolerogenic 1049 

dendritic cells in the Gastric lymph node compartment.   1050 

 1051 

Data and materials 1052 
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The data sets and files supporting the results of this article are available in the ENISI-MSM 1053 

GitHub repository, RRID: SCR_016918  https://github.com/NIMML/ENISI-MSM. 1054 

Availability of source code and requirements  1055 

 Project Name: ENISI MSM 1056 

 Project homepage: https://github.com/NIMML/ENISI-MSM 1057 

 Operating system(s): Linux, Mac OSX 1058 

 Programming language: C++, R, MATLAB 1059 

 Other requirements: CMake 3.7.2,  1060 

ENISI Dependencies https://github.com/NIMML/ENISI-Dependencies 1061 

 License: Apache License 2.0 1062 

 RRID: SCR_016918 1063 

Availability of supporting data 1064 

Further data supporting this work and snapshots of our code are available in the 1065 

GigaScience repository, GigaDB [55]. 1066 
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Name of Agent 
 

Agent Type 
 

Rules 

Helicobacter 
pylori 

H. pylori - Moves across the epithelial cell border if near damaged 
epithelial layer 
- Proliferates in the lumen and lamina propria 
- Dies (removed from the simulation) in lamina propria 
and in the lumen due to the damage of epithelial cells by 
Th1 or Th17 cells 

Macrophages Monocyte 
 

- Proliferates in presence the of effector dendritic cells or 
damaged epithelial cells 
- Proliferates in the lamina propria 
- Differentiates to regulatory macrophage in based on 
the output from the Macrophage ODE 
- Differentiates to inflammatory macrophages in 

presence of IFN- 
- Dies naturally (removed from the model) 

 Resident 
 

- Proliferates in the presence of H. pylori 
- Secretes IL10 
- Dies naturally 
- Dies due to Th1 and Tr cells 

 Regulatory 
 

- Proliferates and removes bacteria 
- Dies 
- Secretes IL10 

 Inflammatory -Proliferates in the presence of damaged epithelial cell 
-Dies naturally 

Dendritics Immature -Moves from lamina propria to epithelium compartment 
and from the epithelium to the lamina propria 
- Differentiates to tolerogenic dendritic cell in the 
presence of tolerogenic bacteria, both in epithelium and 
lamina propria 
- Differentiates to effector dendritic cell in the presence 
of H. pylori 
- Proliferates in lamina propria and gastric lymph node 
- Dies naturally 

 Effector - Moves from lamina propria to gastric lymph node 
- Moves form epithelium to lamina propria 
- Secretes IL6 and IL12 
- Dies naturally 

 Tolerogenic - Moves from lamina propria to gastric lymph node 
- Moves from epithelium to lamina propria 

- Secretes TGF- 
- Dies naturally 

T cells Naïve 
 

In the presence of effector dendritic cells: 

- Differentiates to Th1 in the presence of IFN- or IL12 

- Differentiates to Th17 in the presences of IL6 or TGF- 
In the presence of tolerogenic dendritic cells: 

- Differentiates to iTreg in the presence of TGF- 
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- Differentiates to Tr in the presences of IL10 
- Dies naturally 

 Th1 
 

- Secretes IFN- 
- Moves from gastric lymph node to lamina propria 
- Proliferates in lamina propria and gastric lymph node 
- Dies naturally 

 Th17 - Secretes IL17 
- in the presence of tolerogenic dendritic cell, transition 
to iTreg cells 
- Moves from gastric lymph node to lamina propria 
- Proliferates in lamina propria and gastric lymph node 
- Dies naturally 

 iTreg - Secretes IL10 
- In the presence of tolerogenic dendritic cell, transition 
to iTreg cells 
- Moves from gastric lymph node to lamina propria  
- Proliferates in lamina propria and gastric lymph node 
- Dies naturally 

 Tr - Secretes IL10 
- Dies naturally 
- Proliferates in the lamina propria  

Epithelial Healthy -Damaged due to infectious bacteria 
-Damaged due to Th1 and Th17 cells 
-Proliferates 
-Secretes IL6 and IL12 
-Dies naturally 

 Damaged -Transitions to healthy state in the presence of IL10 
-Dies naturally 

Bacteria Infectious 
 

- Dies due to Th1 or Th17 or inflammatory macrophages 
or damaged epithelial cells 
- Dies naturally 
- Proliferates in the lamina propria 

 Tolerogenic - Moves from lumen to the epithelium in the presence of 
damaged epithelial cells 
- Becomes infectious if moves in the lamina propria 
compartment 
- Proliferates in lumen and lamina propria 
- Dies naturally 
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Point by point response to reviewers 

Reviewer #3: I appreciate the authors' efforts to revise their manuscript to address the editorial 
and review concerns. However, I'm a little concerned.  

This is the second time the authors have "redefined" what their lattice sites represent.  This is a 
not just a matter of crossing out micrometers and writing millimeters. Either the original simulations 
were actually 30 mm x 10 mm and they just mislabeled twice, or the original simulation was 
performed on the wrong domain size and the simulations now need to be rerun on the correct 30 
mm x 10 mm grid.  

I'd like the authors to clearly answer which correction matches reality for this submission:  

A)      The simulations were originally performed on a 30 nm x 10 nm domain as in the original 
simulation, but they have now re-run all simulations on a correct 30 mm x 10 mm grid and updated 
all the results, figures, and as needed, conclusions.  

B)      The simulations were original performed on a 30 micron x 10 micron domain as in the 
resubmission, but they have now re-run all simulations on a correct 30 mm x 10 mm grid and 
updated all the results figures, and as needed, conclusions.  

C)      The simulations were originally performed on a 30 mm x 10 mm domain, and they were 
mislabeled twice but at last are correctly labeled now. They have verified and rechecked all code 
and configuration settings that the simulation runs truly correspond mathematically to a 30 mm x 
10 mm domain.  

D)      Something else that they 100% clearly state, rather than thanking us and redefining axes 
again.  

The reason we need to be careful on this is that in numerics packages, changing a simulation 
previously run on a small domain to one now corresponding to a big domain is almost never a 
simple matter of relabeling the prior plots.  Rescaling axes without changing the data is equivalent 
to changing the diffusion coefficient (and other parameters).  

Either the original and resubmitted labels were wrong, and they have now corrected. Or their 
original units were correctly stated, the domain size was wrong, and they must correct by 
rerunning the simulations on the correct domain.  Or space was nondimensionalized, and all the 
parameters were internally represented in units of lattice sites instead of physical units. (e.g., 
diffusion coefficients in length units^2 / time units). (But this strikes me as less likely.)  

If I simulate a city block with unrealistic parameters, it doesn't automatically become a correct 
simulation of the entire city by just relabeling axes. The statements about just relabeling units, as 
well as relying upon "configurable run parameters",  gives me pause to be a little cautious before 
accepting.   

An explicit clarification on (A)-(D) (or other) will be helpful. I think the results are probably fine. But 
I want to be sure, and not just probably fine.  

Response: We want to clarify that all the simulations and results were obtained with no units. In 
the first version of the submitted manuscript, we described the model as a region with a 30 x 10 
grid, similar to the area defined in (Mei et al. 2015) as a square region with 100 x 100 2D grid 
cells. Over the course of the reviews, in order to better describe the model, we included the units. 
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Nevertheless, the simulation runs corresponded mathematically to a 30 mm x 10 mm domain. 
The numbers (describing the dimension of the compartments) that represent a region being 
modeled and used to obtain all the simulation results and conclusions; corresponded to ‘mm’ 
units. Thus, there were no changes equivalent to changing the diffusion coefficient since the 
original units modeled were mm. 

The units in the model were annotations and purely aesthetic to provide a closer biological 
meaning. The change in the units did not affect the simulation results.  

To support our claim that the change in the units (annotations) did not affect the simulations 
results, we ran the simulations for a Wild type (WT) scenario with - i) no units (black dot-dashed 
line), ii) nanometer (‘nm’ - green solid line), iii) micrometer (‘μm’ - red dashed line) and iv) 
millimeter (‘mm’ - blue solid line) as units. The figure below shows: (a) the number of Helicobacter 
pylori agents over time, and b) number of resident macrophages agents over time. There was no 
statistically significant difference (P > 0.05), observed between the groups for both the cell 
populations (see - c) and d)).  

 

 

 



Also, now that I'm looking through the GitHub repo for the project, I'd like to see a clearer 
statement on which parameter files to use when running to reproduce the specific results in this 
paper. If any additional scripts or configuration files are needed to create the figures in this paper 
(e.g., parameter sweeps), they should include them somewhere in the github repo with clear 
instructions. (The instructions are presently a bit vague.)  

Response: We included and clarified which parameter files were used to reproduce the results 
in the README.mkd of the repo for the project (see below pages 3-5). The parameter values 
were also listed in Table S1.  

The scripts needed to create all the figures presented in the paper were provided in the form of 
Jupyter notebooks (in the FTP directory of Gigascience). The scripts and other processing files 
and jupyter files are now included in the ‘Processing’ folder on the GitHub repository as well. The 
detailed instructions (scripts and files) to reproduce the figures in the paper are included in the 
GitHub repository (‘Processing/Figures’). The instructions were also in listed in the File S1 of the 
paper (see README.mkd (on pages 3-6) below).  

Thank you. I think with a little more clarification, this paper will be acceptable for publication and 
a great contribution. But relabeling plot axes twice without rerunning anything makes me nervous, 
and I need more clarity to give a green light. 

Response: To summarize, we did not use the units to run the simulations and results, however, 
the simulation runs corresponded mathematically to a ‘mm’ domain. To better describe the model, 
we included units in the consecutive revisions.  

We re-ran the simulations for four (WT) scenarios - i) no units, ii) nanometer (‘nm’), iii) micrometer 
(‘μm’) and iv) millimeter (‘mm’) as units and demonstrated that the simulations results did not 
change because the units in the model are annotations.   

We believe that with these clarifications the paper should be acceptable for publication. 
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README.mkd on the GitHub repository -  

The text includes detailed instructions regarding - i) installing ENISI-MSM and it's 
dependencies, ii) running the program on a local system and on a server and iii) scripts 
used for the processing of the outputs generated from the code. 
Additionally, README.mkd in the /ENISI-MSM/Howtorunasimulation and /ENISI-
MSM/Sensitivity-Analysis folders also provides detailed instructions on running 
simulation and sensitivity analysis respectively. 

Installation 

  mkdir ENISI 
  cd ENISI 
  git clone https://github.com/NIMML/ENISI-Dependencies  
  git clone https://github.com/NIMML/ENISI-MSM 

Building ENISI-Dependencies 

  cd "path-to-ENISI"/ENISI-Dependencies 
  mkdir build 
  cd build 
  cmake ../ 
  make 

Building ENISI-MSM 

  cd "path-to-ENISI"/ENISI-MSM 
  mkdir build 
  cd build 
  cmake -DENISI_MSM_DEPENDENCY="path-to-ENISI"/ENISI-DEPENDENCIES/install" .. 
  make 

Run the program 

Running on the local system 

1. Change the paths below in the run.sh file (can be located in the "path-to-
ENISI"/ENISI-MSM/Howtorunasimulationfolder). 

o Path for mpirun in run.sh to be changed to your "path-to-ENISI"/ENISI-
Dependencies/install/bin/ directory. 

o Path for ENISI-MSM executable to be changed to the location of 
your ~/ENISI/ENISI-MSM/bin/ directory 



2. Create a folder where the output files are to be saved (for e.g. OutputFolder) with 
the following file contents : 

o config.props, run.props, model.props, CD4.cps and MregDiff.cps (All 
included in the "path-to-ENISI"/ENISI-MSM/Howtorunasimulation folder). 

o Configurable parameter file - model.props. 
o run.props and config.props are the configurable files where you can change - 

▪ Number of TICKS (that is a measure of computational time, i.e stop.at = 
number of TICKS) 

▪ Size of the grid cell. 

3. Run the executable - 

   ../run.sh "path-to-OutputFolder" 

Running on server 

1. Install and build ENISI-Dependencies and ENISI-MSM on the server. 

2. Create a folder to run the simulation and store the output files (for 
e.g. OutputFolder). The contents include: 

o config.props, run.props, model.props, 
CD4.cps and MregDiff.cps and job.sh files (All included in the "path-to-
ENISI"/ENISI-MSM/Howtorunasimulation folder). 

o Configurable parameter file - model.props. 
o The run.props and config.props are the files where you can change - 

▪ Number of TICKS (that is a measure of computational time, i.e stop.at = 
number of TICKS) 

▪ Size of the grid cell. 
o The path-to-OutputFolder is provided in the CONFIG variable specified in 

the job.sh file. 

3. Run the executable. 

    sh job.sh 

Scripts 

All the scripts and parameter sets are listed in "path-to-ENISI"/ENISI-
MSM/Processing folder. 

Parameter sets 

● "path-to-ENISI"/ENISI-MSM/Processing/ParameterSets folder contains the parameter 
files (model.props) to be used when running the program (refer to 'Run the 



program' section above) to reproduce the files used to plot the results in the paper 
(currently under review). 

● The files are named as model_*.props where "*" represents the different condition. 
● When running each simulation for the different condition, rename the file to model.props. 

Code for figures in the paper 

● All the jupyter notebooks that create the figure in the paper are provided in the "path-to-
ENISI"/ENISI-MSM/Processing/Figures. 

● The files are named as Fig*_Code.ipynb where "*" represents the figure number. 

Other scripts 

The bash and python scripts are provided in the "path-to-ENISI"/ENISI-
MSM/Processing/Others folder. Each script has a comment section that decribes 
the usage, purpose and required location of the script. 

The folder structure for the below scrips are as follows: 

   ~/alloutputs/allRuns/setting0/run0 

● The alloutputs folder contains the collections of all outputs. 

● The allRuns folder (inside the alloutputs folder) contains the settings folder. 

● The setting folder corresponds to a different set of parameters. 

● The run folder corresponds to the replicates (for e.g. 10) for individual parameter 
set. (The run folder is similar to the folder created in Step 2 of running the jobs 
locally and on the server. The run folders include all the files provided in 
the "path-to-ENISI"/ENISI-MSM/Howtorunasimulation folder) 

i. lp_code.py (can be located in any folder; the "path-to-lp_code.py" is required by 
the tsvcsv.sh). 

ii. tsvcsv.sh (to be located in ~/alloutputs/). 
iii. average_and_SD.py (to be located in ~/alloutputs/allRuns/setting0/). 

The scripts for Sensitivity-Analysis and the steps are detailed in "path-to-ENISI"/ENISI-
MSM/Sensitivity-Analysis/. 

 


