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1 Detailed Methods

Statistical Modeling

Hospital-specific operative mortality rates, major complication rates among survivors, and distributions
of LOS among survivors were estimated in a multivariate hierarchical model with hospital-specific ran-
dom effects. The term multivariate refers to the fact that the three endpoints were analyzed together
in a single model, not estimated one at a time in separate models. Random-effects refers to the as-
sumption that the hospital-specific parameters of interest arise from a probability distribution defined by
parameters that are also estimated in the modelling process. The strategy of modeling multiple end-
points jointly was intended to improve estimation efficiency by borrowing information across multiple
endpoints per patient both within and across hospitals.

Estimation of Risk Scores

In order to adjust for case mix, we first estimated a set of risk scores for predicting each of the three
endpoints on the basis of preoperative prognostic factors. For operative mortality, risk scores were
obtained by applying the published STS congenital mortality model methodology [ref]. Factors ad-
justed in the model include: age, weight among infants and neonates, prior cardiothoracic operation,
any noncardiac congenital anatomic abnormality, any chromosomal abnormality or syndrome, prema-
turity, preoperative/preprocedural mechanical circulatory support, shock persistent at the time of the
operation, renal dysfunction or renal failure requiring dialysis (or both), mechanical ventilation to treat
cardiorespiratory failure, preoperative neurological deficit, any other preoperative factor, and strata de-
fined by the cross-classification of primary procedure and age group (neonate, infant, child, adult). In
accordance with the published methodology, coefficients for age group× primary procedure strata were
estimated using empirical Bayes shrinkage estimators with an auxiliary adjustment for STAT Mortality
Categories [ref] in the modeling of shrinkage targets. A patient’s mortality risk score was then calculated
as x1β̂1 + x2β̂2 + . . . + xqβ̂q where xi denotes the patient’s numerical value for the i-th covariate and β̂i
denotes the corresponding estimated regression coefficient. An analogous method was used to create
risk scores for major complications among operative mortality survivors and LOS among survivors. The
form of the risk score model was a logistic regression for major complications and a linear regression
for log(LOS). Covariates were identical to the mortality model with the exception that STS Morbidity
Categories [ref] were used in place of STAT Mortality Categories in the modeling of shrinkage targets
for shrinkage estimation. Before using risk scores to adjust for case mix, each risk score model’s fit
to the current study data was tested. Calibration was assessed by comparing observed versus ex-
pected outcomes overall and within subgroups based on deciles of predicted risk and by analyzing the
distribution of LOS residuals.
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Multivariate Hierarchical Model

For the i-th of nj patients at the j-th hospital (j = 1, 2, . . . , N ), let Y1ji be a binary indicator of operative
mortality status (0=alive, 1=dead), Y2ji be an indicator of major complications (0 = none, 1 = at least
one), and let Y3ji = log(LOSji), where LOSji denotes the patient’s length of stay truncated at 90 days.
Risk scores for the k-th endpoint are denoted by xkji where k = 1 refers to operative mortality, k = 2
refers to major complications, and k = 3 refers to LOS. Define:

(operative mortality) π1ji = Pr(Y1ji = 1|x1ji,hospital = j)
(major complications) π2ji = Pr(Y2ji = 1|x1ji,hospital = j, Y1ji = 0)

(LOS mean) π3ji = E(Y3ji = 1|x1ji,hospital = j, Y1ji = 0)
(LOS variance) σ2 = V (Y3ji = 1|x1ji,hospital = j, Y1ji = 0).

In words, π1ji is the probability of mortality, π2ji is the probability of major complications conditional
on being an operative mortality survivor, π3ji is the average log(LOS) conditional on being an operative
mortality survivor, and σ2 is the variance of log(LOS) conditional on being an operative mortality survivor
(assumed constant). Variations in the πkji are assumed to be described by a multivariate generalized
linear mixed model with a logistic link function for mortality, a logistic link function for complications, and
an identity link function for log(LOS). At the first level, we assume:

(operative mortality) Y1ji
ind∼ Bernoulli(π1ji)

(major complications) Y2ji
ind∼ Bernoulli(π2ji)

(LOS) Y3ji
ind∼ Normal(π3ji, σ2)

where
(operative mortality) log

(
π1ji

1−π1ji

)
= α1j + x1jiβ1

(major complication) log
(

π2ji
1−π2ji

)
= α2j + x2jiβ2

(LOS) π3ji = α3j + x3jiβ3

where α1j, α2j, α3j denote a set of unknown hospital-specific random intercepts and β1, β2, β3 denote a
set of unknown regression coefficients. Within patients, the outcomes Y1ji, Y2ji, Y3ji are assumed to be
conditionally independent given the parameters π1ji, π2ji, π3ji. Outcomes of patients at different hospi-
tals are assumed to be statistically independent, and outcomes of patients at the same hospital are
assumed to be conditionally independent given (α1j, α2j, α3j). The assumption that Y1ji, Y2ji, Y3ji are
conditionally independent given π1ji, π2ji, π3ji is likely to be violated in practice but is made in order to
facilitate computation. Although the model assumes conditional independence between Y1ji, Y2ji, Y3ji,
the model does not assume marginal independence between these three variables, as the underly-
ing parameters π1ji, π2ji, π3ji depend on random effects parameters which account for within-hospital
correlation.

At the second level, variation in the αkj parameters was modeled by assuming

(α1j, α2j, α3j)
iid∼ N(µ,Σ),

where N(µ,Σ) denotes a trivariate normal distribution with mean µ = (µ1, µ2, µ3) and covariance Σ =
(σ11, σ12, σ13, σ22, σ23, σ33).

Estimation

Model parameters were estimated in a Bayesian framework by specifying a prior probability distribution
for the unknown model parameters and using Markov Chain Monte Carlo (MCMC) simulations for in-
ference. Briefly, Bayesian inference uses the language of probability to express beliefs about clinically
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interesting hypotheses and quantities. The output of a Bayesian analysis is a probability distribution
describing the most likely numerical estimates of unknown model parameters. MCMC simulations are
used to generate representative samples of parameter values, which are then analyzed to create appro-
priate estimates and summary measures. Advantages of fully Bayesian estimation include the ability
to perform inference about complex functions of unknown quantities and the ability to calculate the
probability of any clinically interesting hypothesis (e.g., the probability that a given hospital’s compos-
ite score is greater than the STS average). Unlike frequentist confidence intervals, Bayesian interval
estimates (known as credible intervals [CrI’s]) have an intuitively direct interpretation as an interval
containing the true value with a specified probability (eg, 95%). Because our prior knowledge was lim-
ited, we specified a vague proper prior distribution that consisted of independent normal distributions
for regression coefficients (β1, β2, β3), an inverse gamma distribution for σ2, and an inverse Wishart
distribution for Σ = (σ11, σ12, σ13, σ22, σ23, σ33). Posterior means and credible intervals were calculated
using MCMC simulations as implemented in WinBUGS version 1.4.3 software. Posterior summaries
were calculated by generating 175,000 sets of simulated parameter values after a burn-in period of
5,000 MCMC iterations to ensure convergence. Adequacy of the number of MCMC iterations was as-
sessed by the methods of Raftery and Lewis (1992) and Geweke (1991) as implemented in the CODA
add-on package for R statistical software. To facilitate subsequent data processing, we reduced the
number of samples by retaining only 1 of every 25 MCMC iterations for a final sample size of 7000
MCMC iterations. Let θj denote the j-th hospital’s composite score. The parameter θj was estimated
as θ̂j =

∑7000
l=1 θ

(l)
j

/
7000, where θ(l)j denotes the simulated values of θj at the l-th iteration of the MCMC

procedure. A 95% Bayesian credible interval was obtained by calculating the 175-th lowest and 175-th
highest values of θj across the 7000 simulated values.

Definition of Risk-Adjusted Outcome Metrics

Based on this model, the j-th hospital’s risk-adjusted ratio (RAR) was defined for operative mortality
(RARMORT), major complications (RARCOMP), and LOS (RARLOS) as follows:

(RARMORT) θ1j =

∑nj

i=1 expit(α1j + x′jiβ1)∑nj

i=1 expit(µ1 + x′jiβ1)

(RARCOMP) θ2j =

∑nj

i=1 expit(α2j + x′jiβ2)∑nj

i=1 expit(µ2 + x′jiβ2)

(RARLOS) θ3j = exp(α3j − µ3).

The j-th hospitals risk-adjusted mortality rate (RAMR), risk-adjusted complication rate (RACR), and
risk-adjusted median LOS were defined as RAMRj = θ1j × Y 1, RACRj = θ2j × Y 2, and RAMLOSj =
θ3j×Y 3, respectively, where Y 1 denotes the overall aggregate observed rate of operative mortality in the
study sample, Y 2 denotes the overall aggregate observed rate of major complication among operative
mortality survivors, and Y 3 denotes the overall median LOS among operative mortality survivors. The
j-th hospital’s composite score was defined by the formula

θj =
[θ1j + (θ2j + θ3)/2]

2
.

Methods for Figures 1 and 3 (Technical Details)

To create the top panel of Figure 1, the range of possible risk-adjusted mortality rate (RAMR) values (0
to 100%) was partitioned into 201 equally-sized categories with cutpoints 0, 0.5, 1.0, etc. Let κc denote
the unknown number of hospital’s (out of 100) that have true RAMR values falling in the interval ( c−1

2
, c
2
),
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for c = 1, 2, . . . , 200. The posterior mean of each κc was calculated as E[κc|data] = 1
7000

∑7000
l=1 κ

(l)
c where

7000 is the number of MCMC iterations and κ(l)c is the value of κc on the l-th MCMC iteration. The top
panel of Figure 1 was obtained by plotting bars of width ( c−1

2
, c
2
) and height E[κc|data] over the range for

which E[κc|data] > 0. Numerical summaries of the RAMR distribution were estimated as follows. Let
γ
(l)
p denote the empirical p-th percentile of the set of numbers RAMR(l)

1 , RAMR(l)
2 , . . ., RAMR(l)

100, where
RAMR(l)

j denotes the simulated value of the RAMR of the j-th hospital on the l-th MCMC iteration. An
estimate of the empirical p-th percentile of RAMR’s was obtained as γ̂p = (1/7000)

∑7000
l=1 γ

(l)
p , where p

= 10, 50 (median), or 90. Methods for the other two panels of Figure 1 were essentially identical to the
top panel and are omitted for brevity.

To create the top left panel of Figure 3, we focused on the 9 hospitals that were classified as having
worse-than-expected composite outcomes according to the methods described above and in the main
methods section. Let κc denote the unknown number of these hospitals (out of 9) that have true RAMR’s
falling in the interval ( c−1

2
, c
2
). The top left panel of Figure 3 was created by plotting bars of width ( c−1

2
, c
2
)

and height E[κc|data] over the range for which E[κc|data] > 0 (see prior paragraph for details). Methods
for the top middle and right panels of Figure 3 were exactly analogous. Methods for the bottom panels
were identical except that they focused on the 16 hospitals that were classified as having better-than-
expected composite outcomes.

Estimation of Reliability (Tables 2 and 3)

Calculations for Overall 4 Year Cohort

Reliability is conventionally defined as the proportion of variation in a measure that is due to true
between-unit differences (i.e., signal) as opposed to random statistical fluctuations (i.e., noise). Equiv-
alently, it is the squared correlation between a measurement and the true value. Accordingly, reliability
was defined as the square of the Pearson correlation coefficient (ρ2) between the set of hospital-specific
estimates θ̂1, . . . , θ̂N and the corresponding unknown true values θ1, . . . , θN , that is:

ρ2 =

∑N
j=1(θ̂j −

1
N

∑N
h=1 θ̂h)(θj −

1
N

∑N
h=1 θh)∑N

j=1(θ̂j −
1
N

∑N
h=1 θ̂h)

2
∑N

j=1(θj −
1
N

∑N
h=1 θh)

2

The quantity ρ2 was estimated by its posterior mean, namely,

ρ̂2 =
1

7000

7000∑
l=1

ρ2(l)

where

ρ2(l) =

∑N
j=1(θ̂j −

1
N

∑N
h=1 θ̂h)(θ

(l)
j − 1

N

∑N
h=1 θ

(l)
h )∑N

j=1(θ̂j −
1
N

∑N
h=1 θ̂h)

2
∑N

j=1(θ
(l)
j − 1

N

∑N
h=1 θ

(l)
h )2

with θ
(l)
h denoting the value of θj on the l-th MCMC sample θ̂j =

∑7000
l=1 θ

(l)
j /7000 denoting the posterior

mean of θj. A 95% credible interval for ρ2 was obtained by calculating the 125th smallest and 125th
largest values of ρ2(l) across the 7000 MCMC samples.

Reliability as a Function of the Measurement Window

We used Brown’s prophecy formula to estimate the reliability that would be achieved hypothetically
if composite scores were to be re-estimated with a narrower measurement window assuming each
hospital’s performance and case volumes remain constant over time. Suppose reliability using all 4
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years of data is denoted by ρ. According to Brown’s prophecy formula, reliability would be equal to
ρk/(ρk+(1−ρ)) if reliability were to be estimated using a fraction k of each hospital’s data. The numbers
in the top row of Table 3 were calculated by substituting ρ = 0.73 and plugging in k = 0.75 for 3 years of
data, k = 0.50 of 2 years of data, and k = 0.25 for 1 year of data. Note: Most publications discussing the
Brown prophecy formula assume that all units have the same sample size, that the measure of interest
is a simple average (no shrinkage or risk adjustment), and that the measure of interest is based on a
continuous variable with constant error variance. Using basic probability arguments, the same formula
can be derived assuming that (1) a hospital’s # of eligible cases per unit of time is a random variable, (2)
a hospital’s # of eligible cases per unit time is potentially correlated with a hospital’s true performance,
(3) the measure of interest is a weighted average of multiple individual measures (e.g. mortality rate,
complication, rate, average LOS), and (4) the error variance is not necessarily constant. The main
additional assumption is that a hospital’s number of eligible cases per unit time and its performance
remain constant over time. However, this formula is only a rough approximation of actual reliability
because it assumes that the individual measures being combined in the composite are simple averages
and does not account for the use of shrinkage estimation or risk adjustment.

Reliability as a Function of Sample Size

In order to shed light on the minimum sufficient sample size for the estimation of composite scores, we
estimated the reliability that would be achieved hypothetically if composite scores were to be estimated
using data from a stratified random sample of n eligible operations per hospital. For each hospital, we
assumed that n patients are randomly sampled from a large (conceptually infinite) population that is
unique to that particular hospital. The distribution of risk scores in a hospital’s population was assumed
to be identical to the hospital’s risk score distribution in the current analysis. In addition, hospital-specific
outcomes were assumed to follow distributions described by this paper’s multivariate hierarchical model.
To make these calculations tractable, we assumed that composite scores are unadjusted for case mix
and that estimation is based on a simple non-hierarchical modeling analysis. The formula for estimating
the j-th hospital’s composite score is:

θ̂∗j =
Ȳ1j
2c1

+
Ȳ2j
4c2

+
exp(Ȳ3j)

4 exp(c3)

where Ȳ1j, Ȳ2j, Ȳ3j are the j-th hospital’s observed mortality rate, observed major complication rate, and
observed average log(LOS), respectively, and c1, c2, c3 are constants representing the average hospital-
specific mortality rate, average hospital-specific major complications rate, and average hospital-specific
mean log(LOS), respectively, across the N = 100 hospitals. We also assume that Ȳ1j, Ȳ2j, Ȳ3j are con-
ditionally independent conditional on the set of hierarchical model parameters. The following additional
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notation will be used in this section:

π̄1j =
1

nj

nj∑
i=1

π1ji, π̄2j =
1

nj

nj∑
i=1

π2ji, π̄3j =
1

nj

nj∑
i=1

π3ji

¯̄π1 =
1

N

N∑
j=1

π̄1j, ¯̄π2 =
1

N

N∑
j=1

π̄2j, ¯̄π3 =
1

N

N∑
j=1

π̄3j,

θ∗j =
π̄1j
2¯̄π1

+
π̄2j
4¯̄π2

+
exp(π̄3j)

4 exp(¯̄π3)
, θ̄∗ =

1

N

N∑
j=1

θ∗j

Vj(n) =
π̄1j(1− π̄1j)/n

4¯̄π1
2 +

π̄2j(1− π̄2j)/n
16¯̄π2

2 +
[exp(σ2/n)− 1] exp(2π̄3j + σ2/n)

16[exp(¯̄π3)]2

B =
1

N

N∑
j=1

(θ∗j − θ̄∗)2, V̄n =
1

N

N∑
j=1

Vj(n)

In order to estimate reliability, we started with the reliability definition

reliability = ρn = {cor[θ̂∗J , E(θ̂∗J)]}2

and then used mathematical properties of the binomial and normal distribution to derive the expression:

ρn = B/(B + V̄n)

where B and V̄n are defined above. In the definition of reliability given above, J is a random variable
representing the index of a randomly selected hospital. The expectation E[θ̂∗J ] is taken over the random
selection of a single hospital out of the N = 100 hospitals, the random sample of n operations from
this hospital’s population, and the set of all possible outcomes of these n operations. The expression
ρn = B/(B + V̄n) then follows from basic probability arguments under the assumption that

nȲ1j|π̄1j ∼ Binomial(n, π̄1j)
nȲ2j|π̄2j ∼ Binomial(n, π̄2j)
Ȳ3j|π̄3j ∼ Normal(π̄3j, σ2/n).

The quantity ρn cannot be observed directly because it depends on the unknown πmji’s and σ2. Instead,
we estimated ρn using MCMC methods. Let ρ(l)n be the value obtained when ρn is calculated from the
l-th set of randomly sampled parameter values from the MCMC procedure. Our estimate of ρn was the
posterior mean

ρ̂n =
1

M

M∑
l=1

ρ(l)n .

Methods for Quantifying Impact of a Change in a Single Endpoint

As noted above and in the manuscript body, the final composite score equation can be expressed as

1

2
× RARMORT +

1

4
× RARCOMP +

1

4
× RARLOS,

and each RARis interpreted as the ratio of observed to expected outcomes. In other words, it has the
form

1

2
× actual % mortality

expected % mortality
+

1

4
× actual major % complications

expected % major complications
+

1

4
× actual median LOS

expected median LOS
.
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If a hospital’s case mix was similar to the overall study population, then its expected outcomes would
be 3.1% for mortality, 11.3% for major complications, and median 7 days for LOS, and so this hospital’s
composite score would have the form

1

2
× actual % mortality

3.1
+

1

4
× actual % major complications

11.3
+

1

4
× actual median LOS

7
.

If this hospital’s complication rate and LOS were exactly as expected but its mortality rate was 1 per-
centage point higher than expected (e.g. 4.1% actual mortality versus 3.1% expected mortality), then
the hospital’s composite score would be

1

2
×
(

3.1 + 1

3.1

)
+

1

4
× (1) +

1

4
× (1) = 1.16.

In order to determine the difference in major complications and LOS that would have the same impact
as a 1 percentage point increase in mortality, we solved for δCOMP and δLOS in the equations

1

2
× (1) +

1

4
×
(

13.3 + δCOMP

13.3

)
+

1

4
× (1) = 1.16

and

1

2
× (1) +

1

4
× (1) +

1

4
×
(

7 + δLOS

7

)
= 1.16

to obtain δCOMP = 7.2% and δLOS = 4.5 days. In other words, a 1 percentage point excess in mortality
has the same impact as a 7.2 percentage point excess in major complications or a 4.5 day excess in
LOS.

Impact of Change in a Single Endpoint in Selected Operations

As described above and in the main manuscript, we found that an absolute change of 1 percentage
point in a hospital’s adjusted mortality rate (e.g. 4.1% versus 3.1%) would have the same impact on the
composite score as an absolute change of 7.2 percentage points in a hospital’s adjusted complication
rate or a change of 4.5 days in a hospi-tal’s adjusted LOS. To further understand the influence of the
individual component metrics on the overall composite, and to ensure that complications and LOS did
not have an undue influence, we estimated the impact on the composite score of changes in a hos-
pital’s complication rate and LOS vs. mortality across several representative operations spanning the
spectrum of case complexity: Tetralogy of Fallot (TOF) repair, arterial switch operation (ASO), and the
Norwood operation.

Methods. We repeated the calculation of δCOMP assuming a case mix typical for Norwood operations
(expected median LOS = 32 days), ASO operations (expected median LOS = 13 days), and TOF repair
operations (expected median LOS = 8 days), to obtain:

1

2
× (1) +

1

4
× (1) +

1

4
×
(

32 + δNorwood
LOS

32

)
= 1.16 =⇒ δNorwood

LOS ≈ 20 days

1

2
× (1) +

1

4
× (1) +

1

4
×
(

13 + δASO
LOS

13

)
= 1.16 =⇒ δASO

LOS ≈ 8 days

1

2
× (1) +

1

4
× (1) +

1

4
×
(

8 + δTOF
LOS

8

)
= 1.16 =⇒ δTOF

LOS ≈ 5 days.
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Results. These changes in overall LOS on the hospital level equate to a change of ∼20 days for
the Norwood operation (for reference, median Norwood LOS among survivors is 32 days, interquartile
range 21–51 days), ∼8 days for the ASO (median ASO LOS among survivors is 13 days, interquartile
range 9–19 days), and ∼5 days for TOF repair (median TOF repair LOS among survivors is 8 days,
interquartile range 6-11 days). In other words, these changes in LOS are relatively large and essentially
equate to moving from the median to near or beyond the interquartile range for all operations examined.
Overall, these values suggest that complications and LOS do not have too great an influence on the
composite measure with the final weighting scheme chosen.
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2 Length of Stay (LOS) Sensitivity Analysis

A sensitivity analysis was performed to understand the impact of the inclusion of LOS in the composite
measure on hospitals whose typical practice involved keeping patients undergoing the Norwood opera-
tion in the hospital until Stage II. Based on the distribution of the data in the study population, hospitals
with a high proportion of such patients were defined as those where >20% of their patients stayed in
the hospital from the Norwood operation through Stage II palliation. In the five hospitals that met this
criteria, we investigated whether their performance as assessed by the composite measure (classifica-
tion as same, better, or worse-than expected) changed if LOS was included or excluded. None of these
hospitals changed their performance category (see table below) suggesting that this practice does not
negatively impact these hospitals, and supporting the retention of LOS in the composite.

Hospital Hospital Hospital Hospital Hospital
#1 #2 #3 #4 #5

Number of
Norwoods

9 13 44 3 54

% of Norwoods kept
in-house though Stage II

22.2% 23.1% 27.3% 33.3% 40.7%

Composite Score RAR
— LOS included

1.11
(0.92, 1.33)

1.05
(0.88, 1.24)

0.99
(0.89, 1.11)

0.89
(0.68, 0.16)

0.72
(0.65, 0.81)

Composite Performance Category
— LOS included

Same as
Expected

Same as
Expected

Same as
Expected

Same as
Expected

Better than
Expected

Composite Score RAR
— LOS excluded

1.17
(0.93, 1.47)

1.03
(0.81, 1.28)

0.97
(0.84, 1.13)

0.84
(0.56, 1.20)

0.60
(0.50, 0.71)

Composite Performance Category
— LOS excluded

Same as
Expected

Same as
Expected

Same as
Expected

Same as
Expected

Better than
Expected
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3 Heart and Lung Transplant Sensitivity Analysis
A sensitivity analysis was performed to examine the influence of inclusion of heart and lung transplant procedures
in the study population. We repeated the estimation of composite scores after excluding transplant procedures
(heart transplant, lung transplant, and combined heart/lung transplant). As shown in the figure below, compos-
ite estimates calculated with and without the inclusion of transplant procedures were highly similar (correlation
= 0.997). One hospital was re-classified from “better-than-expected performance” to“same-as-expected perfor-
mance” after transplant procedures were excluded (red dot in figure). The lower limit of this hospital’s 95%
credible interval fell a tiny amount above the STS average when transplants were included and was a tiny amount
below the STS average after transplants were excluded. Based on these findings, transplant procedures were
retained in the final study population to be consistent with other STS reporting conventions.
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4 Composite Classifications by Center Volume and Case Mix
We examined the distribution of hospital performance categories across different categories of center volume and
case-mix. With regard to volume, more hospitals in the higher vs. lower volume categories were classified in the
better-than-expected category, which is anticipated given the known volume-outcome relationship demonstrated
by many previous analyses in the field.

Volume
Category

Number of
Hospitals

Worse-Than-
Expected

Same-As-
Expected

Better-Than-
Expected

<75 25 2 (8%) 22 (88%) 1 (4%)
75 – 149 24 3 (12%) 20 (83%) 1 (4%)

150 – 249 19 0 (0%) 17 (89%) 2 (11%)
250 – 349 17 3 (18%) 8 (47%) 6 (35%)

350+ 15 1 (7%) 8 (53%) 6 (40%)
Total 100 9 (9%) 75 (75%) 16 (16%)

With regard to case-mix, there is no current gold standard for assessment. In the absence of this we used
the metric of percent of STAT 5 cases. There was a generally similar distribution of center performance across
different percentiles or categories of case-mix. This is anticipated based on the methodology used for quality
measures both in the present analyses and across many other fields, which allows one to discern how a hospital
is performing in relation to what would be expected for their particular case-mix, as described in the discussion
of the main manuscript. Thus, hospitals performing better- or worse-than-expected can be found across all levels
of case-mix as shown in these tables. It is also for this reason that such quality metrics are not meant to be
used to “rank” hospitals with differing case-mix one against another, as it cannot be assumed for example that a
hospital with a relatively low complexity case-mix would achieve the same performance if faced with a relatively
high complexity case-mix.

Percent of
STAT 5 Cases

Number of
Hospitals

Worse-Than-
Expected

Same-As-
Expected

Better-Than-
Expected

<2.4% (lowest 25% of hospitals) 25 3 (12%) 19 (76%) 3 (12%)
2.4% – 4.8% (middle 50% of hospitals) 50 4 (8%) 36 (72%) 10 (20%)
≥4.9% (highest 25% of hospitals) 25 2 (8%) 20 (80%) 3 (12%)

Total 100 9 (9%) 75 (75%) 16 (16%)
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5 Comparison of Alternative Composite Weighting Strategies
We evaluated several potential methods for calculating the composite score. For each of the methods, we as-
sessed composite measure properties including the hospital-level correlations between each of the individual
component metrics and the overall composite score (to examine clinical-face validity and the overall influence of
the individual components on the composite score, reliability (signal-to-noise ratio), and the proportion of hospitals
classified in different composite performance categories.

Selection of Candidate Composite Formulas
Our initial set of candidate composite formulas was based on combinations of:

• 3 methods of standardizing the individual metrics to account for unequal standard deviations, and

• 2 methods of weighting the individual metrics after they were standardized.

Standardization Methods.

As noted in the manuscript, the construction of a composite measure must account for unlike measurement
scales (e.g. mortality measured by percentages compared to LOS measured in days ). RAR’s address this
issue by producing a metric that is unitless and has a similar numerical interpretation for each endpoint as a ratio
of observed to expected outcomes. However, even if all metrics or on the same scale numerically, their actual
standard deviations may differ, and the resulting composite is likely to be influenced most heavily by items with
the largest standard deviations. This may be desirable if items with large standard deviations are regarded as
most important by users of the composite measure but may be undesirable otherwise. To address this issue,
we considered 3 different transformations of the individual metrics which result in different ratios of standard
deviations across them.

1. Use unstandardized RAR’s. The resulting composite is a weighted average of RAR’s.

2. Normalize RAR’s by dividing by their respective standard deviations. The RAR for each endpoint
is divided by its standard deviation across hospitals. The final composite is a weighted average of the
normalized RAR’s.

3. Use log-transformed RAR’s. The log(RAR) values are averaged together and the resulting average is
then exponentiated in order to be on the same scale as the original RAR’s. This method is equivalent to
calculating a geometric average of the RAR’s.

Choice of Weights.

As described in the manuscript, the final composite score was calculated as an equally weighted average of
case-mix adjusted mortality and case-mix adjusted morbidity. Mathematically, the form of the composite mea-
sure calculation was: composite score = (mortality + morbidity) / 2 where mortality = RARMORT and morbidity =
(RARCOMP + RARLOS)/2. A mathematically equivalent representation is to say that RARMORT, RARCOMP, and
RARLOS are weighted in a 2:1:1 ratio. The set of weights that we considered for alternative composite measure
formulas was as follows:

2:1:1 weighting of mortality, major complications, and LOS

1:1:1 weighting of mortality, major complications, and LOS

4:2:1 weighting of mortality, major complications, and LOS

The first two sets of weights were tested in combination with all 3 standardization methods, whereas the 4:2:1
weighting was only applied to unstandardized RAR’s. Thus, a total of 7 composite formulas were tested.
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Results
As shown in the table, across all methods reliability and the proportion of hospitals classified as statistical per-
formance outliers were generally similar (although these increased somewhat with increasing weight placed on
LOS). Therefore, the investigator team primarily considered clinical face-validity (see manuscript for further de-
tails) and ease of interpretation in selection of the final weighting scheme, and the alternate methods were
rejected as they resulted in greater influence of complications and LOS vs. mortality on the overall composite
score which was less desirable.

Final Alternate Alternate Alternate Alternate Alternate Alternate
Comp. Method Method Method Method Method Method
Method #1 #2 #3 #4 #5 #6

Composite Method
Standardization method RAR RAR/sd logRAR RAR RAR/sd logRAR RAR
Weighting∗ 2:1:1 2:1:1 2:1:1 1:1:1 1:1:1 1:1:1 4:2:1

Correlation of individual
components with overall
composite score

Mortality 0.87 0.81 0.87 0.74 0.74 0.73 0.87
Major Complications 0.70 0.63 0.70 0.82 0.66 0.82 0.72
LOS 0.47 0.67 0.45 0.49 0.71 0.46 0.39

Number of hospitals
classified in composite
performance categories

Worse-than-expected 9 14 8 13 16 13 8
Same-as-expected 75 64 74 66 60 66 78
Better-than-expected 16 22 18 21 24 21 14

Reliability 0.73 0.80 0.75 0.81 0.84 0.82 0.72

*Relative weighting of mortality, major complications, and LOS, respectively.
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