Supplemental Table S1. Direct effects of TNF- α on skeletal muscle.

Isolated Tissue	Culture Conditions	Maximum Specific Force	Overall Protein Content	Myofibrillar Protein Content	Fusion Parameters
Costal diaphragm fibers; ICR mice ³	Intraperitoneal injection of 2000 U/g*, 1hr prior to muscle excision	<i>Stimulated at 300 Hz</i> Control: 26 ± 2 N/cm² 2000 U/g: 19 ± 2 N/cm²	-	-	-
EDL muscle; guinea pig ¹	Immersion of isolated muscle in 200 U/mL* of TNFα, 2hr prior to force testing	Stimulated at 200 Hz Control: 16.8 ± 1.6 N/cm² 200 U/mL: 4.7 ± 1.0 N/cm²	-	-	-
EDL muscle; Sprague Dawley rats ²	Intravenous injection of 2400 U/mg**, 8hr prior to muscle excision	-	<i>Tyrosine release rate</i> [#] Control: 105 ± 5 nmol/hr/g 2400 U/mg: 133 ± 7 nmol/hr/g	Methylhistidine release rate † Control: 2.12 ± 0.17 nmol/hr/g 2400 U/mg: 3.00 ± 0.24 nmol/hr/g	-
<i>In vitro</i> culture	Culture Conditions	Maximum Specific Force	Overall Protein Content	Myofibrillar Protein Content	Fusion Parameters
C2C12 myoblasts ⁴	2, 20, 200 U/mL*, refreshed daily over 5 days	-	<i>Protein per plate</i> Control: 359 ± 6 μg 2 U/mL: 344 ± 10 μg 20 U/mL: 309 ± 29 μg 200 U/mL: 286 ± 32 μg	Decreased MyHCf expression	Percent of nuclei in cells with ≥3 nuclei Control: 43 ± 2% 2 U/mL: 32 ± 2% 20 U/mL: 24 ± 1% 200 U/mL: 2 ± 1%
L6 myoblasts ⁶	2000 U/mL***, cultured for 5 days	-	-	Decreased presence of MHC isoforms in immunofluorescent images	Percent nuclei in myosin heavy chain positive cells Control: 19 +- 5% 2000 U/mL: 3 +- 1%
C2C12 myoblasts ⁷	20 U/mL*, cultured for 3 days	-	-	MyHCf/GAPDH abundance based on Western blot analysis Control: 0.72 ± 0.02 AU 20 U/mL: 0.02 ± 0.01 AU	Percent nuclei in cells with ≥2 nuclei Control: 26% 2000 U/mL: 19%
C2C12 myoblasts⁵	400 U/mL*, cultured for 5 days and refreshed 48 hours before measurements	-	-	Decreased presence of MHC isoforms in immunofluorescent images	Percent nuclei in cells with ≥2 nuclei Control: 68 ± 3% 400 U/mL: 30 ± 3%

All data reported as Mean ± SEM;

*Specific activity (SA) of murine recombinant TNFa was not reported in these studies. Concentrations (ng/mL) were converted using average activity reported by the manufacturers of $2*10^7$ U/mg; **Converted using reported SA of $8*10^6$ U/µg (human recombinant TNFa); ***Converted using reported SA of $4*10^8$ U/mg. #Tyrosine release rate is indicative of overall protein catalysis; †Methylhistidine release rate is indicative of myofibrillar protein catalysis.

References

- 1. Alloatti G, Penna C, Mariano F, Camussi G. Role of NO and PAF in the impairment of skeletal muscle contractility induced by TNF-alpha. American journal of physiology. Regulatory, integrative and comparative physiology. 279:R2156-2163, 2000.
- 2. Goodman MN. Tumor necrosis factor induces skeletal muscle protein breakdown in rats. Am J Physiol. 260:E727-730, 1991.
- 3. Hardin BJ, Campbell KS, Smith JD, et al. TNF-alpha acts via TNFR1 and muscle-derived oxidants to depress myofibrillar force in murine skeletal muscle. Journal of applied physiology (Bethesda, Md. : 1985). 104:694-699, 2008.
- 4. Langen RC, Schols AM, Kelders MC, Wouters EF, Janssen-Heininger YM. Inflammatory cytokines inhibit myogenic differentiation through activation of nuclear factor-kappaB. FASEB journal : official publication of the Federation of American Societies for Experimental Biology. 15:1169-1180, 2001.
- 5. Magee P, Pearson S, Allen J. The omega-3 fatty acid, eicosapentaenoic acid (EPA), prevents the damaging effects of tumour necrosis factor (TNF)-alpha during murine skeletal muscle cell differentiation. Lipids in health and disease. 7:24, 2008.
- 6. Moresi V, Adamo S, Coletti D. Bimodal effects of TNF-α on differentiation and hypertrophy of skeletal muscle cell cultures Basic Appl Myol. 16:163-168, 2006.
- 7. Verhees KJ, Pansters NA, Baarsma HA, et al. Pharmacological inhibition of GSK-3 in a guinea pig model of LPS-induced pulmonary inflammation: II. Effects on skeletal muscle atrophy. Respir Res. 14:117, 2013.