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I. THEORY OF THZ SINGLE-PIXEL IMAGING USING ELECTRO-OPTIC EFFECT

The electro-optic (EO) effect can be used to accurately measure the amplitude and phase of THz

fields [1, 2]. The THz pulses introduce birefringence in EO crystals which changes the polarization

of the probe beam. By using the quarter wave plate (QWP) and Wollaston prism, the probe beam

will be separated into two beams with equal intensity but orthogonal polarization if there is no

overlap with the THz beam. After the THz beam modulates the polarization of the probe beam, the

signal Ps(t) on the balance detector has the following relation with the THz field ETHz(x, y, ωTHz, t)

[1]:

Ps(t) =
∫ ∫

1
c

I0(x, y, ω1)ω1Ln3
0(ω1)r14(x, y)ETHz(x, y, ωTHz, t)dxdy, (1)

where c is the speed of light in vacuum, I0(x, y, ω1) is the intensity distribution of the probe on

the detection crystal. L is the thickness of the detection crystal, and ω1 is the frequency of probe.

n0(ω1) is the refractive index of the detection crystal at optical frequencyω1, and r14(x, y) is the EO

efficient of the detection crystal. From Eqn. (1), one can see that the THz field can only be detected

if it both spatially and temporally coincideswith the probe on the detection crystal. Therefore, solely

manipulating the probe arm in the spatial domain is equivalent to spatially modulating the THz

field in the same manner but leaving the probe field unchanged. Moreover, from the measurement

point of view, as long as the polarization of the optical probe is kept, spatially changing the probe

field will not change the signal on the balanced detector. Therefore, in the THz computational

sampling, it does not matter whether we manipulate the THz field or the probe field. However,

even both methods give the same result in principle, encoding patterns on the probe beam can give

more benefits as what we discuss in the main paper. Therefore, we can use probe beam encoding

to combine computational imaging algorithms and THz imaging techniques.

Recently, computational imaging becomes a promising candidate of single-pixel imaging meth-

ods. In essence, measuring a N pixel field, i.e. imaging a field, is equivalent tomeasure an unknown

vector ψ in a N dimensional Hilbert space. Therefore, this unknown vector can be decomposed

into a set of complete orthogonal basis H in that N dimensional Hilbert space with a coefficient

set φ. We can rewrite this decomposition into the matrix form: ψ = Hφ, where ψ and φ are two

N dimensional column vectors representing the unknown vector and the coefficients of each basis

vector respectively. H is a N ×N matrix and each row represents a basis vector in the Hilbert space.

Therefore, one can reconstruct the unknown vector ψ by measuring the coefficients sets φ in the



complete orthogonal basis H, and these coefficients can be found as φ = H−1ψ. In our case, this

complete orthogonal basis is Hadamard Matrix (HM), which can minimize the mean square error

of the image [3]. HM is a square matrix with +1 or −1 elements, and the rows of HM are mutually

orthogonal. Therefore it satisfies the relation: HN HT
N = HT

N HN = NIN , where HN is the HM in

a N dimensional Hilbert space, HT
N is the transpose of HN and IN is the N dimensional identity

matrix. The HM consists of +1 or −1 elements, but our SLM can only provide +1 or 0 elements for

on and off measurements. Thus, we decompose the HM matrix into HN,1 and HN,−1 which carries

only +1 or 0 elements and −1 or 0 elements respectively: HN = HN,1 + HN,−1 = HN,1 − |HN,−1 |.

Considering the rules of linear algebra, we have the following relation to reconstruct the image:

ψ = (HN,1 − |HN,−1 |)φ, (2)

where both HN,1 and |HN,−1 | only carry +1 or 0 elements so that they can be generated from SLM

directly. Therefore, in the experiment, we encode the probe beam with HN,1 and |HN,−1 | patterns

sequentially, and record the corresponding signals. To reconstruct the image, one needs to subtract

the |HN,−1 | patterns weighted by the corresponding signal from HN,1 patterns weighted by the

corresponding signal. Although this differential method will double the measurement time, it can

eliminate the source noise if one immediately shines the |HN,−1 | mask right after the corresponding

HN,1 mask. That is to say, one does not need to introduce any additional power monitor to track

the laser power fluctuation.

Now we consider an unknown object with intensity distribution O(x, y) placed before the

detection crystal. For a given ith HM pattern Ii(x, y, ω1) which is imaged from SLM plane onto the

detection ZnTe crystal with thickness d = z1 − z0, we can find the measured THz total field Ps,i

from Eqn. (1) as:

Ps,i(t) =
∫ ∫ ∫ z1

z0

1
c

Ii(x, y, z, ω1)ω1Ln0(ω1)
3r14(x, y)ETHz(x, y, z, ωTHz, t)dxdydz, (3)

where ETHz(x, y, z, ωTHz, t) can be found from scalar diffraction theory using angular spectrum:

ETHz(x, y, z, ωTHz, t) = F −1{F [O(x, y, 0)]exp[i2π
√
(kTHz/2π)2 − f 2

x − f 2
y z]}. (4)

The F and F −1 represent Fourier Transform and Inverse Fourier Transform respectively. fx and

fy are spatial frequencies in x and y directions. Here, we have assumed that the THz wave has

a uniformly distributed intensity. One can then find the corresponding HM pattern Ii(x, y, z, ω1)

using Eqn. (4). With Ii(x, y, z, ω1) and ETHz(x, y, z, ωTHz, t), we can find the signal Ps,i for the



ith pattern. By repeating this procedure for all patterns, we can get the signal set Ps,i which form

the coefficient vector φ. This coefficient vector will be used to reconstruct the image vector ψ

through Eqn. (2). To show the state of art, the analysis here does not include the broadband nature

of THz pulse. However, the simulation we will show already take the spectra contribution into

consideration.

II. THEORY OF COMPRESSED SENSING

The basic idea of compressed sensing comes from the fact that, for a N dimensional vector ψ,

it is possible to find an orthogonal basis T that most coefficients in the coefficient set φ are zero

or very small. Due to this sparsity in the vector decomposition, there will no much information

loss if we discard these small or zero coefficients. Therefore, one can recover the original vector ψ

with a high fidelity using only those large coefficients. Now we assume the THz field can still be

represented by a N dimensional column vector ψ in the Hilbert space. In the conventional linear

solutions, as what we discuss in the last section, we can write the solution to ψ in the matrix form

as: φ = Qψ, where Q represents the linear transformation matrix representing the basis, and φ still

represents the coefficients set. Now we consider another set of basis represented by T , which is

assumed to be incoherent with basis Q. If we assume that there are only few nonzero coefficients

under this transformation T , we can recover the ψ using a nonlinear strategy by solving the convex

optimization problem with [4]:

min
ψ
′
‖Tψ

′

‖`1, subject to Qψ
′

= φ, (5)

where ‖ · ‖`1 is the 1-norm. If the coherent coefficient between two bases Q and T is very little,

i.e. two bases are incoherent, the THz field vector ψ can be reconstructed with M ≥ O[Klog(N)]

measurements, where K is the number of nonzero components of vector Tψ [5]. Therefore, we

can sub-sample the THz field by the Nyquist-Shannon law but still recover the field with a high

fidelity.

From the practical point of view, we use the TVAL3 package to solve the minimization problem.

The package was provided by Chengbo Li, Wotao Yin and Yin Zhang from Rice University [6].

There are 4 different models available and we use TV/L2+model for our field reconstruction. More

than 10 parameters can be adjusted in the model. In principle, it is possible to improve the fidelity

by carefully adjusting each parameter. However, this will be trivial and beyond the scope of our



work.

III. COMMON PATH INTERFEROMETER

If we illuminate an arbitrarily polarized light onto the liquid crystal SLM, only the horizontally

polarized portion gets modulated. Therefore, through the utilization of this property, we will use

common path interferometer to transfer the phase-only spatial patterns into intensity-only patterns.

In our case, the axis of HWP 1 in Fig. 1(a) is fixed at 22.5◦ so that the polarization of the optical

probe beam is changed from horizontal polarization to diagonal polarization (45◦ to the horizontal

direction). We can write the polarization state |D〉 before the SLM as:

|D〉 =
1
√

2
(|H〉 + |V〉), (6)

where |H〉 and |V〉 represent the horizontal and vertical polarization states respectively. The phase

masks on the SLM are binary masks with 0 and π phase delay. Therefore, after reflected by the

SLM, the polarization of areas with π phase delay is in anti-diagonal polarization state |A〉. If we

assume the binary spatial phase mask on the SLM can be represented by term ψ(x, y), we will find

the state after the SLM |D〉SLM in the form:

|D〉SLM =
1
√

2
(|H〉 + exp(iψ(x, y))|V〉). (7)

Right after the SLM, we use a polarizer with its axis at 45◦ to interfere the |H〉 and |V〉 components:

〈D |D〉SLM =
1
2
(1 + exp(iψ(x, y))). (8)

For those parts with the phase delay equal to π, Eqn. (4) will become 0, and the 0 phase delay

parts will become unity. Hence, we get a binary intensity pattern from the phase-only SLM using

common path interferometer.

Even though the intensity-only device such as digital micromirror device (DMD) has a much

higher speed (kHz level), there are two advantages of using the phase-only SLM. Since the

micromirror array, which basically works like a grating, will lead to strong diffraction to the

incoming beam, these DMDs usually have low efficiencies. The other drawback is that, due to

the reflection nature of micromirror array, it will spatially shear the pulse front. In our test, the

duration of a pulse can be stretched from 200 f s to 4 ps. Therefore, in order to use the DMD, one

has to compensate this spatial shear effect. A recently published work also discussing this effect

and applying it to THz pulse generation when we prepare the draft [7].



IV. RESOLUTION ESTIMATION

Fig. S1: (a) and (b) are intensity cross sections of element set 3-1 and 3-2 in Fig. 2(b) in the main

text respectively.

We first define the spatial resolution as the size of the smallest resolvable feature in the image

of the object. The criterion to justify whether the feature can be âĂŹresolvedâĂŹ is Rayleigh

criterion, which yields a 20% contrast ratio if the feature is barely resolved. Therefore, in our

resolution estimation procedure, we first take the intensity cross sections of different element sets

and then calculate the contrasts. As shown in Fig. S2, the intensity cross sections of element set

with d = 55 µm and d = 62 µm are shown. From these two plots, the average contrast ratio can be

found as 18.10% and 32.28% respectively. As a result, we can claim that the resolution is 62 µm.

Here we show some numerical simulation results to estimate the theoretical resolution limit of

this technique by varying different parameters. The simulation is based on the theory shown in

the first section. As mentioned in the main paper, we investigate the influences of three different

parameters: the thickness of detection crystal, the pixel size and the central wavelength of the THz

pulse.

Three different thicknesses of detection ZnTe crystal are chosen with a 32 µm pixel size and

128 pixels: 50 µm, 100 µm and 200 µm. The central wavelength is 940 µm. As shown in Fig.

S2(a)-(c), the reconstructed field with 50 µm crystal thickness is the most clear one. By calculating

the contrast of each element using the same method as mentioned in the main draft (the example



Fig. S2: (a) to (c). Normalized results with different crystal thicknesses. (d) to (f). Normalized

results with different pixel sizes. (g) to (i). Normalized results with different central wavelengths.

of the cross sections can be found in Fig. S3(c)), we find that with 50 µm and 100 µm detection

crystal thicknesses, even the element 3-6 (d = 35 µm) can be fully resolved with a 35.36% contrast

and a 28.47% contrast respectively. As a comparison, the resolution in Fig. S2(c) is only 88 µm

with a 20.79% contrast. To estimate the resolution limit of our current setup, we choose a 20 µm

thick detection crystal with a 8 µm pixel size. As shown in Fig. S3(d), under this configuration,

the resolution can easily reach 8.8 µm with a 30.00% average contrast. The reason why we change

the pixel size is that, from the comparison below, a large pixel size can strongly limit the resolution

even though the thickness is small. To reduce the pixelization effect, we change the pixel size here



to a lower level for a fair comparison. Therefore, a thin detection crystal can significantly increase

the resolution.

Fig. S3: (a). The intensity cross section comparisons with different crystal thickness. (b). The

intensity cross section comparisons with different pixel size. (c). The intensity cross section

comparisons with different central wavelength. The gray stripes stands for the intensity cross

section of element 3-1 in the original AF target. (d). Recovered image with 20 µm thick detection

crystal and 8 µm pixel size. (e). Recovered image with 100 µm thick detection crystal and 8 µm

pixel size.

Three different pixel sizes are simulated under a 100 µm thick detection crystal with a 940 µm

central wavelength THz pulse: 128 µm, 64 µm and 32 µm. Since our field size is fixed, the number

of pixels in each case then becomes 32, 64 and 128 respectively. The recovered figures are shown

in Fig. S2(d)-(f) respectively. Through calculating the contrast using cross sections (as shown

in Fig. S3(b)), the resolution in Fig. S2(d) is 125 µm and the contrast is only 22.08%. As the

comparison, the resolution in Fig. S2(e) is 88 µm with a 25.96% contrast while the resolution in

Fig. S2(f) is less than 35 µm as we discussed in previous paragraph. These results shows that the

pixelization effect can significantly reduce the resolution and contrast, and one can expect a better

resolution if we use a smaller pixel size. Therefore, as shown in Fig. S3(e), when we decrease

the pixel size to 8 µm, the resolution is found to be 11 µm (λ/86) with a 33.7% average contrast.



That is to say, optical SLMs are more favorable than THz SLMs in computational imaging since

the pixel size is much smaller, which indicates that our method can provide better performance

than those methods with THz SLMs. One should note that since the pixel size cannot be infinitely

small, the resolution in our approach will be limited by the pixel size projected on the detection

crystal, which is a common resolution limit of computational imaging methods.

Three different central wavelength with a same spectrum shape are analyzed with a 100 µm

thick detection crystal: 2000 µm, 940 µm, 400 µm. The number of pixels is 128 so that the pixel

size is 32 µm. Note that even the central wavelength has shifted, the shapes of the spectrum are

same for all three cases. Intuitively speaking, Fig. S2(g) (2000 µm central wavelength) has the

best contrast while Fig. S2(i) is the worst. By calculating the contrast of the elements in all three

figures (the example of the cross sections can be found in Fig. S3(c)), we find that the resolution

in Fig. S2(i) is only 125 µm with a 21.05%. That is to say, in the sub-wavelength region, the

resolution in Fig. S2(i) is worse than the resolution in Fig. S2(c) even the detection crystal is much

thinner. However, the resolution in Fig. S2(g) should be much less than 35 µm since the contrast

of element 3-6 is found to be 48.11%, which is much higher than the contrast of the same element

in Fig. S2(a). Therefore, in the near-field region, a longer central wavelength pulse will provide a

better resolution even when the detection crystal is thicker. The conclusion here is very different

from the conclusion in far-field imaging where a shorter wavelength is always desired for a higher

resolution.

V. IMPROVED RESOLUTION COMPARED TO NEAR-FIELD EO IMAGING

The conventional near-field EO imaging utilizes the similar detection method as ours [8, 9].

One can use an optical CCD array to retrieve real time images of the THz field. Unlike other

near-field imaging techniques, this EO imaging technique also provides noninvasive measurements

with a concise and reliable setup. However, the resolution of this technique is not as good as our

approach especially when the crystal goes thicker. The resolution limitations in both cases highly

depend on the thickness of the detection crystal. However, this factor has less impact in our case

because we measure the total electrical field of each spatial pattern as shown in Eqn. (3), which is

an accumulation result through the whole thickness of detection crystal. Therefore, we can find a

position z′ where the product of THz field, the ith spatial pattern and the thickness of the crystal

d is exactly equivalent to the integral in Eqn. (3). That is to say, we can rewrite the Eqn. (3) into



another form:

Fig. S4: (a) to (c). Normalized results using computational imaging methods. (d) to (f).

Normalized results using EO imaging methods. The figure (a) and (d) both have a 50 µm thick

detection crystal while the crystal thicknesses in figure (b) and (e) are both 100 µm. The crystal

thicknesses in figure (c) and (f) are 200 µm. (g) and (h). Intensity cross sections of element 3-1

using computational imaging and EO imaging respectively.

Ps,i(t) =
∫ ∫ ∫ z1

z0

1
c

Ii(x, y, z, ω1)ω1Ln3
0(ω1)r14(x, y)×

ETHz(x, y, z, ωTHz, t)dxdydz

=

∫ ∫
1
c

z′Ii(x, y, z′, ω1)ω1Ln3
0(ω1)r14(x, y)×

ETHz(x, y, z′, ωTHz, t)dxdy,

(9)

where ETHz(x, y, z′, ωTHz) and Ii(x, y, z′, ω1) are THz field and ith spatial pattern at distance z′

respectively. Note that z′ is less than z1 so that the THz field at z′ is less diffracted than the field

at z1. Therefore, what the computational imaging recovers is not the field at the end of detection



crystal but the field at position z′. However, in the EO near-field imaging case, what the camera

measures is the transverse structure of the THz field at the rear surface of detection crystal (i.e.,

z1), which is more blurred due to the relatively stronger diffraction. In another word, when the

detection crystal has a thickness d = z1 − z0, the field recovered by the computational imaging

method with this crystal is equivalent to the field imaged by EO imaging with a thinner crystal

thickness d′ = z′ − z0. This difference in the measurement favors the superior resolution in our

sampling technique by sacrificing the image acquisition time. Another drawback in the near-field

EO imaging is the requirement of high power lasers [10]. As what we discuss in the last section,

a thinner crystal can give better resolution but worse contrast and SNR. Therefore, to get high

resolution images with a good contrast, a high energy laser is used to provide a strong THz field.

However, in our case, high contrast images can be retrieved with a low intensity pump laser and a

extremely weak probe.

To intuitively show the comparison, we compare the reconstructed images from computational

imaging and the images from near-field EO imaging with different thicknesses of the crystal. As

shown in Fig. S4(a)-(c), three different images with thicknesses 50 µm, 100 µm and 200 µm are

reconstructed. To keep the comparison fair, this set of images all have 128 pixels with 32 µm

pixel size. After calculating the contrast of each element from intensity cross sections (as shown

in Fig. S4(g) and (h)), the element 3-6 (d = 35 µm) can still be fully resolved in Fig. S4(d)

but with a 26.11% contrast, which is much lower than the contrast using computational imaging

method in Fig. S4(a). For Fig. S4(e) and (f), there is no element can be resolved. That is to say,

our computational imaging method can significantly improve the resolution especially when the

detection crystal is quite thick, which matches our prediction. Therefore, for applications requiring

a thick detection crystal, our approach can provide much better performance than the conventional

EO imaging. Therefore, under the same conditions, our computational method is superior than the

conventional EO imaging in resolution and contrast with a sacrifice of imaging speed.
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