
Reviewers' comments:  
 
Reviewer #1 (Remarks to the Author):  
 
In this paper Wimmer and Buchel investigate the coding of current and predictive state information 
in a temporally extended Y maze using fMRI. In their task participants move through a Y maze 
that a number of different states. Crucially, these states include an initial choice state (State 1) 
and two pre-reward states (State 3) that are dependent on the choice. Each of these three states 
is represented by a different category of object (faces, scenes or objects) allowing past, present, 
future (and even counterfactual) states to potentially be decoded using MVPA techniques. Using 
this approach they find representations of both present and future state in OFC, and 
representations of present state in hippocampus. Moreover, the representation of future state in 
OFC gets stronger with learning.  
 
These findings add to mounting evidence that OFC represents state information during learning 
and decision making tasks. The novelty in this paper is twofold: first they show how *predictive* 
state information is encoded in OFC over relatively long times (40s); and second they show that 
these predictive representations develop quickly (after 1 trial, but increasing up to 3 trials). These 
are important results and, I think, would be appropriate for Nature Comms. Apart from the first 
point below, my comments are mostly minor.  
 
Perhaps my biggest reservation about this paper is the relatively small sample size (32 after 
exclusions I believe) that are used to detect relatively small effects. Such small effects are to be 
expected with a classification paper – especially in OFC – where Schuck et al. also have pretty 
small effects. This concern is somewhat mitigated by the strong prior hypotheses which, for 
example, allowed them to define an OFC ROI based on earlier work, but it still puts a question 
mark on the results for me. If this were a behavioral study I would ask for a replication, for an 
fMRI study I realize such a request may be too much. However, I would like to see the small 
effects acknowledged a bit more in the Discussion – perhaps even report a power analysis showing 
the number of subjects that would be required for a replication of the main findings. Also I think it 
would be good to compare the classification accuracies with Schuck et al. – are you in the same 
ballpark for classification accuracy of the current state?  
 
Minor points  
 
As I understand the design of this experiment, because the classifier is trained on a localizer task 
with no value, there’s no confound here between expected value and future state. Is this correct? 
If so, I think this point should be highlighted, because the first question that comes to mind when 
reading this is that you are simply decoding value not state.  
 
Would be nice to have a searchlight analysis for classifier. I realize this will be terribly 
underpowered, but (as with the exploratory PPI analysis) would give a hint of whether there are 
other regions involved and how specific results are to OFC.  
Legends on the supplementary Figures would make for easier reading! Figure S1 especially, but 
also S3, S4, S5  
 
I see that the data will be shared (thank you!), but will the analysis code also be shared? Also, will 
the shared data include the excl  
 
 
 
Reviewer #2 (Remarks to the Author):  
 
In this paper, Wimmer & Buchel examine the role of the hippocampus and OFC in acquiring 
predictive information during goal directed learning. Unlike many previous reports, they focus on 



rewards/feedback that is extended well beyond just a few seconds. They find that the 
hippocampus exhibited the highest activity during initial exposure; this hippocampal activation 
decayed over additional repetitions of the maze. In addition, they also report that patterns within 
the OFC/VMPFC that represent predictive information about temporally distant states around 30 
seconds in the future.  
 
Overall, I think this is a clever study and a well-written manuscript with rigorous analyses. The 
authors should be commended for the open sharing of data and statistical maps (and presumably 
analysis code after publication). Nevertheless, I have a few (relatively minor) concerns that should 
be addressed in a revision.  
 
 
Primary Issues  
 
1) Perhaps I missed something, but the relationship between states also isn’t clear. Understanding 
how the states (and decisions) are related could put this work into the context of decision trees 
(e.g., Huys et al., 2012, PLoS Computational Biology; and other work from Peter Dayan). Although 
these paradigms generally involve feedback at each stage, the overall final outcome is temporally 
extended, similar to the present work. Thus, I think it would be beneficial to discuss this work and 
related papers, particularly ones that omit intervening feedback.  
 
2) The description of the task is not completely clear to me. Complicating this matter is the fact 
that the journal guidelines place the Methods at the end of the paper, making it more important to 
have a clear task description before presenting the primary results. Thus, I think expanding the 
figure caption and Introduction to clarify the goals of the maze task at each stage (e.g., what is 
the subject doing and why) could help.  
 
3) Regarding the predictive OFC responses in Figure 3, are these effects time locked to the initial 
state? That seems to be the case, but I think it would be important to show that the results are 
specific to that state and not seen at other time periods and state transitions.  
 
 
Minor Comments  
 
1) I’m not sure I fully understand the advantage of MVPA in this paper. Could the authors arrive at 
the exact same conclusions with standard univariate analyses? Is there a specific pattern in the 
OFC that is predictive? Would that pattern be visible in standard univariate analyses? Please 
clarify.  
 
2) The neuroimaging results are particularly noisy. Although the authors implement standard 
corrections for head motion, there’s still activation outside the brain and in the white matter (e.g., 
Figure 2). Is this due to how the task is being modeled or are the potentially sources of noises that 
are unaccounted for (or both)? I realize there is always unaccounted for variance, but I am 
concerned that some of the presented results are not within grey matter and could be due to head 
motion (or other issues).  
 
3) I think it would be helpful for the authors to further clarify the relationship between the 
motivation for this paper and their recent Journal of Neuroscience paper (“Reward learning over 
weeks versus minutes increases the neural representation of value in the human brain”). Although 
the papers seem to be focused on distinct questions, both seem to address the temporal nature 
and maintenance of learning signals.  
 
4) In Figure 3, what is chance in the predictions? The classification accuracy seems quite low, but 
the authors don’t provide a clear intuition about the nature of chance in these predictions.  
 



 
 
Reviewer #3 (Remarks to the Author):  
 
This paper examines whether a representation of a forthcoming state can be decoded from human 
orbitofrontal cortex when deciding between two alternative courses of action. This question is of 
interest because of the recent literature suggesting that the hippocampus and orbitofrontal cortex 
may together represent the structure of the environment, in the form of a cognitive map.  
 
The central result of the paper (figure 3) is that when choosing between two actions at an initial 
starting state (‘state 1’), it is possible to use multivariate pattern analysis on OFC/VMPFC data to: 
(a) not only decode whether subjects are currently examining a face, house or scene (‘current 
state’); (b) but also whether they will examine a face/house/scene in an intermediate state (‘state 
3’) visited en route to reward, which is modulated by how often that state has been viewed in the 
past (‘future * repetition’ interaction).  
 
A strength of the study is that it cleverly examines how a map may be learnt over periods of time 
that are less susceptible to being solved using working memory (maze repetitions are several 
minutes apart). It also looks at predictive information over a longer timescale typically than that 
studied in reinforcement learning tasks. If the claim is robust, it will be of interest to researchers 
interested in memory, learning and decision making. I also applaud the researchers for their 
efforts in sharing raw data on OpenNeuro.org, and using open-source pipelines for analysis to 
maximise transparency.  
 
There are a couple of points that made me sceptical as to whether the central claim is sufficiently 
robust to merit publication in its present form.  
1. The main result depends upon first rejecting subjects who have a poor representation of the 
current state, and then only using the remaining subjects to look for representations of the future 
state (and interactions with repetition). This is OK in principle. However, given that one of the 
main results is only marginally significant (p = 0.047), it could leave the reader suspicious that the 
exclusion criteria were driven by a desire for this main result to have become significant. More 
details of these exclusions are needed. The most transparent way for the results to be plotted 
would be in figure 3B to not have error bars, but instead have individual data points for each 
subject. Those subjects who the authors have excluded could also be plotted but in a different 
colour/marker style, and the figure legend can highlight that the bar height reflects the mean of 
subjects who are included based upon their current state representation being above a certain 
threshold (the threshold and number of subjects excluded should be reported in the methods).  
2. There are potential difficulties with testing decoding accuracies against chance level using T-
tests (see Allefeld, Görgen and Haynes, Neuroimage 2016). I'm not sure that this appears to be a 
problem for the Future*Rep interaction term (as the question here relates to whether decoding 
accuracy changes across the experiment), but perhaps it is a problem for the Future state 
decoding?  
 
 
Minor comments  
 
Results section: when the task is first introduced, it would help if we knew the core details about 
the number of different mazes subjects saw (8?), how far apart repetitions of mazes were on 
average (~4 minutes), etc. This info is already in the methods, but it would aid clarity to mention 
it also in the results. As part of this, I would also suggesting shifting (or copying) the sentence 
“This large delay strongly reduces the likelihood of between-repetition working memory 
maintenance as an explanation of learning performance, a common problem in reward learning 
paradigms where learning repetitions are separated only by several seconds on average” from the 
methods to the results.  



 
p.10 For the visual ROIs, there is a typo for the AUC (it should lie between 47.61 and 48.85)  



Reviewer #1 
 
In this paper Wimmer and Buchel investigate the coding of current and predictive state 
information in a temporally extended Y maze using fMRI. In their task participants move 
through a Y maze that a number of different states. Crucially, these states include an 
initial choice state (State 1) and two pre-reward states (State 3) that are dependent on 
the choice. Each of these three states is represented by a different category of object 
(faces, scenes or objects) allowing past, present, future (and even counterfactual) 
states to potentially be decoded using MVPA techniques. Using this approach they find 
representations of both present and future state in OFC, and representations of present 
state in hippocampus. Moreover, the representation of future state in OFC gets stronger 
with learning. 
 
These findings add to mounting evidence that OFC represents state information during 
learning and decision making tasks. The novelty in this paper is twofold: first they show 
how *predictive* state information is encoded in OFC over relatively long times (40s); 
and second they show that these predictive representations develop quickly (after 1 
trial, but increasing up to 3 trials). These are important results and, I think, would be 
appropriate for Nature Comms. Apart from the first point below, my comments are 
mostly minor. 
 

 We thank the reviewer for their insightful reading of our manuscript and greatly 

appreciate that she or he finds our results to be both novel and important. We 

aim to fully address the concerns below in our response. 

  
 
Perhaps my biggest reservation about this paper is the relatively small sample size (32 
after exclusions I believe) that are used to detect relatively small effects. Such small 
effects are to be expected with a classification paper – especially in OFC – where 
Schuck et al. also have pretty small effects. This concern is somewhat mitigated by the 
strong prior hypotheses which, for example, allowed them to define an OFC ROI based 
on earlier work, but it still puts a question mark on the results for me. If this were a 
behavioral study I would ask for a replication, for an fMRI study I realize such a request 
may be too much. However, I would like to see the small effects acknowledged a bit 
more in the Discussion – perhaps even report a power analysis showing the number of 
subjects that would be required for a replication of the main findings. Also I think it 
would be good to compare the classification accuracies with Schuck et al. – are you in 
the same ballpark for classification accuracy of the current state?  
 

We appreciate the reviewer’s concern about the strength of the primary OFC-

VMPFC future by correct repetition interaction (shown in Figure 3B) and we have 



focused our work in revision on additional analyses that we believe provide 

significant support for this result. 

 

We examined the strength of the OFC-VMPFC future state by correct repetition 

interaction and compared this representation of hidden information, as well as 

on-screen stimulus decoding, to a recent paper in this area (Schuck et al. 2016, 

Neuron). These results are described in the Results section (p. 10, p. 12) and the 

Discussion section (p. 21-22). 

 

Our total scanned sample size was 35; after exclusions based on poor behavior, 

movement, and fMRI localizer quality, 31 participants remained. Of these, two 

exhibited poor generalization of classification from the localizer to the learning 

phase and were excluded (note this this exclusion did not affect our results; see 

below), leaving 29 participants in the multivariate analysis. Importantly, this 

number of participants for classification analyses of ‘hidden’ state representations 

in the OFC is in the same range as the number of participants in Schuck et al. 

2016, which included 27 participants. 

 

The critical OFC-VMPFC future state by correct repetition effect size is d = 0.47. 

With this medium effect size, a minimum of 38 participants would be required in a 

replication to achieve 80 % power to detect an effect. This sample size is within 

the range of common fMRI sample sizes, and indeed is only a few participants 

more than our initial sample size before exclusions. We now include this 

information in the Results (p. 12). 

 

Regarding collecting additional fMRI data, while it would normally be difficult to 

collect additional participants to contribute to the sample months or years after 

the original acquisition, in our case, this is not a possibility, as the Siemens 

scanner at the UKE underwent a significant upgrade including a new gradient 

and RF system since the MRI data was acquired. 



 

For the comparison of sample size, in the paper by Schuck et al. (2016), 27 

participants are included in their OFC hidden state analysis. Their results for 

decoding current state (which was composed of both stimulus category and 

stimulus age) versus chance (50 %) were mixed, although exact statistics are not 

reported. Current state category was decoded at approximately 52 % (noted as p 

< 0.05), while current state age was below-chance, at approximately 49.5 %. Our 

ability to decode current state (faces, scenes, and objects) in the OFC-VMPFC in 

our paradigm appears to be higher, with an AUC of 9.88 (versus zero; CI [6.45 

13.31]; t(30) = 5.88, p < 0.001). This comparison is noted in the Results (p. 10). 

  

The OFC-VMPFC hidden state classification results of Schuck et al. 2016 are 

stronger than our OFC-VMPFC future by repetition effect. It is important to 

consider, however, that because we focused specifically on learning across long 

delays, the rapid event-related experiment by Schuck et al. included more than 

10x as many trials as in our design. This large difference in trial numbers likely 

contributes to the different effect sizes. We note this in the Discussion (p. 21-22). 

 

We believe the additions to the manuscript provide support for our result, as well 

as providing a foundation for future replications. 

 

 

Minor points 
 
As I understand the design of this experiment, because the classifier is trained on a 
localizer task with no value, there’s no confound here between expected value and 
future state. Is this correct? If so, I think this point should be highlighted, because the 
first question that comes to mind when reading this is that you are simply decoding 
value not state. 
  

 This is a critical point to clarify and we appreciate the reviewer bringing it up. The 

reviewer is correct in stating that there is no confound between value and future 



state. We have added a discussion of this point to the Methods (p. 38) as well as 

the Results (p. 11).  

 

Because the classifier is trained after learning and all 3 categories ended with 

approximately the same average value, discrimination of localizer patterns is very 

unlikely to be affected by value. Moreover, it is not possible for any changes in 

classification over learning – which underlie our OFC-VMPFC effect – to be 

affected by reward associations present during the localizer because the trained 

classifier itself does not change. 

 
 
Would be nice to have a searchlight analysis for classifier. I realize this will be terribly 
underpowered, but (as with the exploratory PPI analysis) would give a hint of whether 
there are other regions involved and how specific results are to OFC. 
 

 Thank you for this suggestion. To explore the selectivity of the OFC-VMPFC 

effect, we have conducted an equivalent ROI analysis tiling the PFC and found 

only 1 of 25 regions exhibited an effect at the p < 0.05 level. These results are 

included in the Results section (p. 15; see also the Methods section p. 41-42) 

and in Figure S10 and Table S1. 

 

A common approach to whole-region analyses is to use a “searchlight” analysis, 

based on classification accuracy in a spherical region around each voxel. Our 

primary multi-category and multiple regression analysis of state information 

representation change, however, makes a common searchlight approach quite 

complex. As an alternative, we examined the information content of regions in the 

PFC in an approximately tiled manner. This approach has a benefit over 

searchlight analyses in that it pools voxels together that have a common 

functional architecture, thus respecting the boundaries of different functional 

regions. 

 



Our PFC regions of interest were selected from a 50-region whole-brain 

parcellation map derived from coactivation patterns across more than 10,000 

published studies in the Neurosynth database (Chang et al., 2018). 

 

From this parcellation mask, we extracted 14 ROIs (5 medial and 9 with separate 

left and right ROIs) in the prefrontal cortex with clustered spatial distributions and 

sizes approximately matching our OFC-VMPFC ROI, plus one additional self-

created bilateral OFC ROI in a region lacking parcellation coverage (Figure S10); 

see the full ROI map here: https://neurovault.org/images/122507/. In addition to 

the PFC ROIs, we also separately re-analyzed hippocampal responses by 

subdividing the ROI into 4 subregions: right anterior hippocampus, left anterior 

hippocampus (both defined by y > -20), right posterior hippocampus and left 

posterior hippocampus (both defined by y < -20). 

 

In these 29 additional analyses we find only one region in the lateralized DLPFC 

exhibiting a future by repetition effect (p < 0.01; Results p. 15). The results for 

state 1 are described in Table S2, which includes the strength of current state 

decoding across all 31 participants and the strength of the future state by correct 

repetition along with the number of included participants. 

 

The lack of general effects supports our a priori focus on the OFC-VMPFC, 

indicating relative selectivity. Second, the selective OFC-VMPFC effect indicates 

that this result is not likely to be due to a general confound or weakness in the 

analysis and design that would produce this result frequently irrespective of an 

underlying true effect. 

 

New PPI analysis: 

The reviewer also mentions the exploratory psychophysiological interaction (PPI) 

in the original submission. To provide further support for the OFC-VMPFC effect, 

we conducted a new PPI analysis to examine whether changes in OFC-VMPFC 



connectivity related to the increase in the coding of future state representations in 

the OFC-VMPFC across the task. We find an increase in OFC-VMPFC to 

hippocampal activity across learning that correlates with the OFC-VMPFC future 

by repetition effect. These results are described in the Methods section (p. 35-36) 

and the Results section (p. 16-17). 

  

Our initial submission included a basic connectivity analysis examining general 

connectivity between the OFC-VMPFC and other brain regions across different 

maze states. This analysis identified strong connectivity between the OFC-

VMPFC and hippocampus, but these effects were not linked to task behavior or 

neural information coding. We conducted a new PPI model to specifically test for 

learning effects. We thus examined changes in OFC-VMPFC connectivity with 

the rest of the brain across repetitions of mazes that were successfully learned. 

 

The psychological term in the PPI was a contrast between repetitions 2 and 3 

(late learning) and repetitions 0 and 1 (early learning). Mazes where above-

chance performance was not achieved were omitted from this contrast. Our goal 

in this analysis was to examine changes in connectivity that may relate to 

learning, so we additionally entered the OFC-VMPFC future by correct repetition 

effect as a covariate. This analysis tests for increases in OFC-VMPFC 

connectivity across learning that positively relate to increases in OFC-VMPFC 

future state representation across learning. Additional PPI models were 

estimated for state 2, state 3, and the feedback state as controls. 

 

We found no significant positive or negative main effects of learning repetition on 

OFC-VMPFC connectivity with other regions. Importantly, however, we found a 

significant positive relationship between the strength of OFC-VMPFC connectivity 

and individual differences in OFC-VMPFC acquisition of future state 

representation in a cluster including the right hippocampus, midbrain, and 

thalamus (Results, p. 16-17; Figure S12). This indicates that increases in OFC-



VMPFC representation of future states across learning were related to concurrent 

increases in functional connectivity between the OFC-VMPFC and hippocampus. 

Moreover, the relationship with hippocampal activity showed a clear effect not 

driven by outliers (Figure S12C). Additional clusters included the putamen as well 

as the dorsal medial and lateral PFC (Figure S12; Table S3). As a control, we 

conducted the same PPI analysis on the different time periods in a maze trial 

(state 2, state 3, and the feedback state) and found no significant correlations 

with the OFC-VMPFC future by repetition effect (Table S3). 

 

  
Legends on the supplementary Figures would make for easier reading! Figure S1 
especially, but also S3, S4, S5. 
  
 We apologize for the hard to follow figures and have now added legends. 
 
I see that the data will be shared (thank you!), but will the analysis code also be shared? 
Also, will the shared data include the excl. 
  

 Thank you for this suggestion to share the multivariate data and code. We have 

added these to a public repository (https://github.com/gewimmer-neuro/ofc-

prediction). 

 

  



Reviewer #2 
 
In this paper, Wimmer & Buchel examine the role of the hippocampus and OFC in 
acquiring predictive information during goal directed learning. Unlike many previous 
reports, they focus on rewards/feedback that is extended well beyond just a few 
seconds. They find that the hippocampus exhibited the highest activity during initial 
exposure; this hippocampal activation decayed over additional repetitions of the maze. 
In addition, they also report that patterns within the OFC/VMPFC that represent 
predictive information about temporally distant states around 30 seconds in the future. 
 
Overall, I think this is a clever study and a well-written manuscript with rigorous 
analyses. The authors should be commended for the open sharing of data and 
statistical maps (and presumably analysis code after publication). Nevertheless, I have 
a few (relatively minor) concerns that should be addressed in a revision. 
 
 

 We thank the reviewer for their constructive feedback on our manuscript and 

greatly appreciate that she or he finds our design to be clever and our analyses 

to be rigorous. We aim to fully address the concerns below in our response.  

 
 
Primary Issues  
 
1) Perhaps I missed something, but the relationship between states also isn’t clear. 
Understanding how the states (and decisions) are related could put this work into the 
context of decision trees (e.g., Huys et al., 2012, PLoS Computational Biology; and 
other work from Peter Dayan). Although these paradigms generally involve feedback at 
each stage, the overall final outcome is temporally extended, similar to the present 
work. Thus, I think it would be beneficial to discuss this work and related papers, 
particularly ones that omit intervening feedback. 
 

 We greatly appreciate the suggestion to broaden the discussion of our results 

and relate it to other work on multi-stage decision making. (In part, we limited the 

length of the Discussion in our first submission to fit within a brief report format.) 

We have added a discussion of these connections to the Introduction section (p. 

5) and Discussion section (p. 18-19). 

 

As described in response to the next comment, we have also endeavored to 

greatly improve our description of the task in the Introduction (p. 5) and Figure 1.  



 

Our experimental paradigm was designed to be relatively simple in order to 

isolate effects of interest and enable a reasonable scan duration for the 

participants. This led to only including a single choice at the top of the Y-maze, 

as including choices at later states or more than 2 branches would exponentially 

increase the time that participants needed to explore each maze. (Which would, 

in turn, reduce the number of possible mazes and reduce our power to detect 

effects.) 

 

We strongly agree that our OFC-VMPFC findings may inform studies of more 

complex multi-state problems or decision trees such as that described by Huys et 

al. 2012 and Lee et al. 2014 (Intro, p. 5; Discussion p. 18-19). Our results, in 

combination with studies in rodents, indicate that the OFC-VMPFC may be 

critical for representing goal states of potential actions as learning develops. 

 
 
2) The description of the task is not completely clear to me. Complicating this matter is 
the fact that the journal guidelines place the Methods at the end of the paper, making it 
more important to have a clear task description before presenting the primary results. 
Thus, I think expanding the figure caption and Introduction to clarify the goals of the 
maze task at each stage (e.g., what is the subject doing and why) could help. 
  

 We apologize for the difficulty in understanding the task (our original submission 

text was aiming for the word limits of a brief report) and we greatly appreciate the 

suggested clarifications. 

 

We have added a further description of the task to the Introduction (p. 5), 

expanded the description of the task in the caption to Figure 1, and highlighted 

the critical period for multivariate decoding analyses in Figure 1 with a shaded 

and labeled blue box above state 1. 

 
 



3) Regarding the predictive OFC responses in Figure 3, are these effects time locked to 
the initial state? That seems to be the case, but I think it would be important to show 
that the results are specific to that state and not seen at other time periods and state 
transitions.  
  

 It is a critical point that our results are time-locked to the onset of the maze state 

1, as the reviewer correctly assumes, and we appreciate the reviewer suggesting 

improvements to the description of this analysis. We have added this point to the 

Results section (p. 10-11), Methods section (p. 37), Figure 1, and the caption for 

Figure 3. 

 

We indeed find that the OFC-VMPFC future (state 3) by correct repetition effect 

is selective to the onset of the maze trials. The effects in state 1 are the only 

significant positive effects of future by repetition (and this results is not affected 

by outlier exclusion, see below response to Reviewer 3). 

 

Additionally, we now highlight the results at other states that are included as 

supplemental Figures S7-S9. Of interest, OFC-VMPFC activity at state 2 onset 

shows a trend for a positive future by correct repetition effect (p = 0.062), 

indicating that OFC-VMPFC representation of future states may continue for 

multiple seconds after the choice. 

 

At state 3, the same analysis finds a decrease in representation of the state 3 

stimulus across learning. This effect may indicate that as the OFC-VMPFC circuit 

increases expectations for state 3 across learning, actual responses to state 3 

decrease (as would be expected in a predictive coding framework). Finally, at the 

feedback state, all responses in all ROIs are largely flat. 

 

The selective finding of a positive OFC-VMPFC future by repetition effect time-

locked to state 1 (with a weaker trend effect at state 2) supports the interpretation 

of this effect as a meaningful representation of future information. 



 

Category generality: 

To provide further support for the VMPFC-OFC effect at state 1, in response to 

the reviewer’s concerns, we also examined whether OFC-VMPFC information 

coding was similar across the three categories. We indeed find the same pattern 

of results across the three categories. These results are described in the 

Methods section (p. 41), the Results section (p. 15), and in a new supplemental 

figure, Figure S5. 

 

The regressions used in our analysis of the multivariate data collapse across the 

three categories in the mazes (face, scene, and object) that collectively allow for 

us to examine information coding during state 1 choices. As shown in Figure S5, 

the OFC-VMPFC shows a positive effect in the future state by correct repetition 

interaction, although the interaction effect for objects is weaker than the effect for 

faces or scenes. (The weaker effect for objects is not surprising given that 

decoding of on-screen object stimuli was weaker than faces or scenes in the full 

n = 31 group of participants.) 

 

   
Minor Comments 
 
1) I’m not sure I fully understand the advantage of MVPA in this paper. Could the 
authors arrive at the exact same conclusions with standard univariate analyses? Is 
there a specific pattern in the OFC that is predictive? Would that pattern be visible in 
standard univariate analyses? Please clarify.  
 

We appreciate the opportunity to clarify the importance and features of the 

multivariate analysis, and have added a discussion of this to the Methods (p. 36).  

The multivariate analysis is critically important to examine information content in 

our regions of interest, and especially for detecting changes in representations 

over time. 

 



For the internal representation of a single stimulus category, a univariate 

response is sometimes sufficient if categories evoke responses in different 

regions (e.g. Wimmer & Shohamy 2012, Science). However, if the goal is to 

understand internal or predictive representations in the same region for multiple 

categories, univariate responses are not sufficient. 

 

If region A shows no mean univariate response differential between categories, 

then region A cannot be used to understand information representation. For 

example, the hippocampus shows no strong differences in univariate responses 

to faces, scenes, or objects. Nevertheless, from multivariate distribute patterns of 

voxel activity, we can accurately decode at a reasonably high level whether a 

given stimulus on the screen is a face, scene, or object. 

 

However, even if a region shows a univariate response to different categories, it 

does not help disambiguate representational content.  For example, say that 

region A shows a univariate increase in responses to faces, a decrease in 

response to scenes, and a medium positive response to objects. Over the course 

of learning, the participant learns to avoid the initially-selected arm that ends in a 

face and select the arm that ends in a scene. And in region A, we see a decrease 

in univariate activity at state 1. It is not possible to disambiguate whether this 

means that the distal scene arm is represented more across learning, that the 

response to the on-screen object decreases over time, or that the response to 

the avoided face arm decreases over time. 

 

A univariate analysis also cannot detect the increase in future state 

representation over repetitions for an additional more practical reason because 

the classifiers are trained to discriminate categories versus other categories.  

 



For these reasons, we did not look for (and did not find) a specific univariate 

response in the OFC-VMPFC that was related to our multivariate decoding 

results (the future by correct repetition interaction). 

 

(It is important to note that this category-versus-category classifier training does 

not affect the regression results; as shown in Figure S4, the effects do not 

change with the inclusion of a regressor for a different category, e.g. the state 1 

on-screen stimulus.) 

 

 

2) The neuroimaging results are particularly noisy. Although the authors implement 
standard corrections for head motion, there’s still activation outside the brain and in the 
white matter (e.g., Figure 2). Is this due to how the task is being modeled or are the 
potentially sources of noises that are unaccounted for (or both)? I realize there is always 
unaccounted for variance, but I am concerned that some of the presented results are 
not within grey matter and could be due to head motion (or other issues). 
 
  

 We appreciate the reviewer’s attention to the fMRI univariate results. The 

reviewer is correct that several clusters extend beyond the mean anatomical 

image underlay. The full SPM results images can be viewed – with variable 

thresholding or no threshold – at https://neurovault.org/collections/4420/ 

 

The greater extent of some activation clusters is due to the lower mean signal 

intensity threshold we applied in whole-brain masking during first-level analysis. 

We deliberately did not employ any final stage “cosmetic” masking for 

appearance, as is often employed in fMRI data analyses. Our data thus might 

appear to be hampered by artefacts, whereas in fact we simply show unmasked 

data. 

 

SPM by default excludes regions below a threshold of 80 % of mean across-

volume signal, which usually leads to results restricted only to the brain. Critically, 



depending on the ratio between brain and background voxels this can potentially 

remove signal in brain regions with low signal intensity such as the ventral 

striatum, medial temporal lobe, and orbitofrontal cortex from the results. (E.g. 

early studies in the 2000s of reward prediction error using SPM did not find 

results in the ventral striatum potentially because of this setting (O’Doherty et al. 

2003, Neuron).) 

 

In order to examine results in these regions, and as a consequence of not using 

this high cut-off, our results maps also include lower mean signal voxels outside 

of cortical grey matter, which, due to normal smoothing (6mm FWHM) leads to 

some effects “bleeding over” into the space outside the average anatomical, as 

the reviewer points out. However, after preprocessing, we did apply a dilated 

mean anatomical mask to the functional data in order to limit multiple 

comparisons correction at the second level.   

 

Effects extending beyond the edge of the brain would be seen in any unmasked 

fMRI study with smoothing and across-participant anatomical variability. For 

many studies not focused on low-SNR regions, the high 80 % signal cutoff 

employed by SPM indeed leads to a clearer exclusion of voxels outside the 

cortex and the appearance of cleaner results. This would give the impression that 

our results are outliers, but this impression is due to the particular features of the 

common analysis pathway described above. 

 

The distribution of our fMRI results in the current study are similar to other 

studies where we have used similar methods to examine low-signal regions, 

including the results of Wimmer & Shohamy, 2012 Science 

(https://neurovault.org/collections/2389/), and this spread can be found across 

other studies where full maps are uploaded, such as Chang et al. 2016 PLoS 

Biology (https://neurovault.org/images/1696/). 

 



We are happy to present our results in full and without additional masking 

(https://neurovault.org/collections/4420/), and additionally provide the full fMRI 

dataset at openneuro.org for those who wish to replicate our analyses. If it is 

helpful, we would be happy to add a statement about the above to the current 

manuscript. 

  

  

3) I think it would be helpful for the authors to further clarify the relationship between the 
motivation for this paper and their recent Journal of Neuroscience paper (“Reward 
learning over weeks versus minutes increases the neural representation of value in the 
human brain”). Although the papers seem to be focused on distinct questions, both 
seem to address the temporal nature and maintenance of learning signals. 
  

 Thank you for pointing out the relationship between our current paper and our 

recent publication (J Neurosci, 2018). We have added a discussion of this point 

to the Discussion section (p. 20). 

 

Our recent paper focused on learning from relatively immediate feedback but 

where learning sessions were spaced over weeks versus condensed into one 

session. 

 

In that paper, spacing between trials within a session was relatively condensed 

and similar to other rapid event-related designs. Our current paper is focused 

instead on examining predictive representations during learning where feedback 

is significantly delayed, by more than 40 seconds.  

 

However, there is some broad conceptual overlap regarding between-learning-

event spacing in that repetitions of mazes are spread across more than 4 min, 

while sessions in our previous study are spread across days in the recent study. 

 

Additionally, as in the current study, we found a role for working memory in the 

maintenance of recently learned value associations. 



 

  
4) In Figure 3, what is chance in the predictions? The classification accuracy seems 
quite low, but the authors don’t provide a clear intuition about the nature of chance in 
these predictions. 
  

 We apologize for the lack of a specific definition of chance for the critical 

regression analysis in our manuscript and have added a discussion of this to the 

Methods (p. 39) and Results (p. 11). 

 

Our regression analysis on decision values on the single participant level 

provides regression coefficients for the main effects and interactions (with 

individual participant effects now shown as black points in Figure 3B and Figure 

S3). At the second level, we conduct one-sample t-tests (two-tailed) across these 

coefficients to determine whether they are significantly different from zero. Thus, 

while our primary analysis does not rely on typical multivariate measures of 

chance (e.g. 50 %) and should not be interpreted as a percentage measure, the 

effect size of d = 0.47 that we now include in the revised manuscript can be 

compared across studies. 

 

Further, the critical effect in the OFC-VMPFC is related to a change in 

representations across learning; thus, the comparison is not to chance or zero 

but to the change in this effect across four repetitions (as shown in Figure 3C). 

 

For the basic initial sanity check of across-phase classification of face, scenes, 

and objects, we use AUC, where the chance level is also zero (similar to a 50 % 

chance classification baseline). We have added a note (Results, p. 10) that our 

results in the OFC-VMPFC are comparable or higher than other studies (e.g. 

Schuck et al. 2016). 

 
 
  



Reviewer #3 
 
This paper examines whether a representation of a forthcoming state can be decoded 
from human orbitofrontal cortex when deciding between two alternative courses of 
action. This question is of interest because of the recent literature suggesting that the 
hippocampus and orbitofrontal cortex may together represent the structure of the 
environment, in the form of a cognitive map. 
 
The central result of the paper (figure 3) is that when choosing between two actions at 
an initial starting state (‘state 1’), it is possible to use multivariate pattern analysis on 
OFC/VMPFC data to: (a) not only decode whether subjects are currently examining a 
face, house or scene (‘current state’); (b) but also whether they will examine a 
face/house/scene in an intermediate state (‘state 3’) visited en route to reward, which is 
modulated by how often that state has been viewed in the past (‘future * repetition’ 
interaction). 
 
A strength of the study is that it cleverly examines how a map may be learnt over 
periods of time that are less susceptible to being solved using working memory (maze 
repetitions are several minutes apart). It also looks at predictive information over a 
longer timescale typically than that studied in reinforcement learning tasks. If the claim 
is robust, it will be of interest to researchers interested in memory, learning and decision 
making. I also applaud the researchers for their efforts in sharing raw data on 
OpenNeuro.org, and using open-source pipelines for analysis to maximise 
transparency. 
 
 

 We thank the reviewer for their insightful reading of our manuscript and greatly 

appreciate that she or he finds our question of interest and our results to be of 

broad interest to the neuroscience community. We aim to fully address the 

concerns below in our response. 

 
 
There are a couple of points that made me sceptical as to whether the central claim is 
sufficiently robust to merit publication in its present form. 
 
1. The main result depends upon first rejecting subjects who have a poor representation 
of the current state, and then only using the remaining subjects to look for 
representations of the future state (and interactions with repetition). This is OK in 
principle. However, given that one of the main results is only marginally significant (p = 
0.047), it could leave the reader suspicious that the exclusion criteria were driven by a 
desire for this main result to have become significant. More details of these exclusions 
are needed. The most transparent way for the results to be plotted would be in figure 3B 



to not have error bars, but instead have individual data points for each subject. Those 
subjects who the authors have excluded could also be plotted but in a different 
colour/marker style, and the figure legend can highlight that the bar height reflects the 
mean of subjects who are included based upon their current state representation being 
above a certain threshold (the threshold and number of subjects excluded should be 
reported in the methods). 
 

 The criteria for inclusion and the robustness of our results is a critical point and 

we welcome the reviewer’s questions in this area. In short, we find no influence 

on the OFC-VMPFC future by correct repetition effect of the inclusion of 2 

excluded participants. These findings are described in the Results (p. 14) and 

represented in Figure S3, and Figure 3B has been updated to show individual 

datapoints from included participants in a violin plot. 

 

We found no influence on the OFC-VMPFC future by correct repetition effect of 

the inclusion of 2 excluded participants. The 2 excluded participants did not meet 

the a priori requirement of above-zero classification of actual on-screen state 1 

and state 3 stimuli in any of the 3 categories. When included, across In the full 

group of 31 participants, the OFC-VMPFC effect remains significant (p = 0.027; 

Results, p. 14). The results including all participants are shown in Figure S3, 

which highlights the 2 excluded participants with yellow dots (black dots 

represent the other participants). A separate panel in Figure S3 includes the new 

main Figure 3B violin plot for direct comparison. We believe these results further 

support the robustness of the OFC-VMPFC effect. 

 

Regarding the main effect of future state in the OFC-VMPFC, which the reviewer 

correctly notes is weaker effect than the critical future state by correct repetition 

interaction, we did not have specific a priori predictions. It is not clear what an 

effect of future state alone means, given that this analysis includes the initial 

repetition where the future category has not yet been experienced. (Indeed, this 

effect is not significant when including all participants as shown in Figure S3.) We 



did not intend to highlight this result and have adjusted the text accordingly 

(Results, p. 12). 

  
   
2. There are potential difficulties with testing decoding accuracies against chance level 
using T-tests (see Allefeld, Görgen and Haynes, Neuroimage 2016). I'm not sure that 
this appears to be a problem for the Future*Rep interaction term (as the question here 
relates to whether decoding accuracy changes across the experiment), but perhaps it is 
a problem for the Future state decoding? 
  

 We appreciate the point about significance in classification as highlighted by 

Allefeld et al. 2016, and while we did indeed consider it when we were examining 

our results, we apologize for omitting a discussion of how this concern relates to 

our data. The reviewer is correct that the primary finding, the future state by 

correct repetition interaction in the OFC-VMPFC, is not a test against any chance 

or null-information value and thus does not fall under the area of concern 

highlighted by Allefeld et al. This is addressed in the revision (Methods p. 40; 

Results p. 11-12). 

 

To explicitly address the concerns about classification versus chance, we have 

added a discussion to the Methods section (p. 40) where we specify that our 

primary predictions are not affected by this issue. Further, specifically for the 

understanding of current state classification in the Results (p. 11-12), we now 

add a caveat about interpreting the strength of these effects, noting, however, 

that we are testing cross-classification and not relying on the cross-validation 

case which presents the specific problem (as explicitly stated in Allefeld et al. 

2016). 

 

 The basic concern raised by Allefeld et al. is that second-level t-tests on cross-

validated information measures do not provide for population inference. The 

consequence is that t-tests on such results support fixed-rather than random-

effects inference. 



 

We agree with the reviewer that the primary finding, the future by repetition 

interaction, is not a test against any chance or null-information value and thus 

does not fall under the area of concern highlighted by Allefeld et al. Specifically, 

we do not rely on classification evidence being judged versus chance or any 

other value but instead of whether this evidence changes over time – a measure 

derived from classification values being compared to other classification values 

over repetitions). Thus the main claims of our paper are not affected. 

 

Inferences about current state (and future state) classification alone are tested 

versus chance, and while Allefeld et al. state specifically that their argument does 

not apply to cross-classification cases such as ours, it is possible that these 

analyses are also susceptible to the concerns raised in Allefeld et al.  

 

It is of some interest that our regions of interest exhibited above-chance 

discrimination of the current state, but for the future state we had no prediction 

about and draw no conclusions from these results. However, at the group level 

for the current state and future state, we do report the strength of classification 

using a t-test we now add a caveat to the Results (p. 11-12) about interpreting 

the strength of these effects alone. 

 

Finally, for current state classification, our per-participant per-category exclusion 

criteria do rely on using the strength of current state classification, but this 

operation is reliant only on whether classification is above zero (specifically, 

whether the regression coefficient of trial-by-trial decision values versus actual 

category is greater than zero) and not on any kind significance threshold.  

 
 
 
 
 



Minor comments 
 
Results section: when the task is first introduced, it would help if we knew the core 
details about the number of different mazes subjects saw (8?), how far apart repetitions 
of mazes were on average (~4 minutes), etc. This info is already in the methods, but it 
would aid clarity to mention it also in the results. As part of this, I would also suggesting 
shifting (or copying) the sentence “This large delay strongly reduces the likelihood of 
between-repetition working memory maintenance as an explanation of learning 
performance, a common problem in reward learning paradigms where learning 
repetitions are separated only by several seconds on average” from the methods to the 
results. 
 

 We apologize for the difficulty in understanding the task (our original submission 

text was aiming for the word limits of a brief report) and we greatly appreciate the 

suggested clarifications. 

 

We have added a further description of the task to the Introduction (p. 5), 

including the important point that repetitions were separated by several minutes 

which we also note in the Results (p. 7). We have also expanded the description 

of the task in the caption to Figure 1. 

 
 
p.10 For the visual ROIs, there is a typo for the AUC (it should lie between 47.61 and 
48.85) 
  

 We appreciate the detection of this typo and have added the correct AUC value 

(48.23). 
 



REVIEWERS' COMMENTS:  
 
Reviewer #1 (Remarks to the Author):  
 
You have answered all of my concerns. Congratulations on a great paper!  
 
 
Reviewer #2 (Remarks to the Author):  
 
The authors have addressed my original concerns. The task description is much clearer and the 
paper is easier to follow. I only have a couple of minor follow up questions/comments that do not 
require re-review:  
 
1) In reply to Reviewer 1, the authors quote an effect size of d = 0.47 and state that 38 
participants would be needed to detect that effect with 80% power. Could the authors clarify two 
things: 1) What is the variability associated with this Cohen's d estimate? 2) Is this power analysis 
set for an alpha of p = 0.05 (uncorrected)?  
 
2) I appreciate the authors' efforts to be more transparent with respect to their results by not 
applying additional "cosmetic" masking. And I generally follow the authors' reasoning behind the 
non-gray matter activation. It's true that smoothing could cause some minor bleeding over to non-
gray matter voxels (e.g., air, CSF, white matter), but there must be some signal in these non-gray 
matter regions to start with, which is why I raised this (minor) issue originally. I think it merits a 
brief mention (if there's space) in the Discussion since some of these patterns of activation would 
be excluded with some denoising approaches (e.g., Pruim et al., 2015, NeuroImage) and newer 
surface- and gray matter-centric data formats (e.g., Glasser et al., 2016, Nature Neuroscience).  
 
I thank the authors for their careful revisions and thoughtful paper. Although the current paper 
could potentially benefit from additional data (like nearly all neuroscience studies), the fact that 
the authors have openly shared their data and code raises the possibility that other research 
groups could easily extend this study.  
 
 
Reviewer #3 (Remarks to the Author):  
 
I thank the authors for their responses to my previous reviews. I think they have been 
satisfactorily addressed, and the paper now merits publication.  



Reviewer #2 
 
The authors have addressed my original concerns. The task description is much clearer 
and the paper is easier to follow. I only have a couple of minor follow up 
questions/comments that do not require re-review: 
 
1) In reply to Reviewer 1, the authors quote an effect size of d = 0.47 and state that 38 
participants would be needed to detect that effect with 80% power. Could the authors 
clarify two things: 1) What is the variability associated with this Cohen's d estimate? 2) 
Is this power analysis set for an alpha of p = 0.05 (uncorrected)? 
 

We appreciate the opportunity to add detail to the power analysis results. The 

effect size of d = 0.47 has a confidence interval (derived from the confidence 

interval of the underlying effect) ranging from 0.01 to 0.85. Second, the power 

analysis was for a two-tailed (uncorrected) test. A one-tailed test indicates a 

lower sample of n = 30. This information has been added to the Results, p. 12-

13: 

 

“With a medium effect size (d  = 0.47 CI [0.01 0.85]), a replication of the OFC-

VMPFC result aiming for 80 % power to detect an effect would require a 

minimum of 38 participants (two-tailed, uncorrected; n = 30, one-tailed).” 

 
2) I appreciate the authors' efforts to be more transparent with respect to their results by 
not applying additional "cosmetic" masking. And I generally follow the authors' 
reasoning behind the non-gray matter activation. It's true that smoothing could cause 
some minor bleeding over to non-gray matter voxels (e.g., air, CSF, white matter), but 
there must be some signal in these non-gray matter regions to start with, which is why I 
raised this (minor) issue originally. I think it merits a brief mention (if there's space) in 
the Discussion since some of these patterns of activation would be excluded with some 
denoising approaches (e.g., Pruim et al., 2015, NeuroImage) and newer surface- and 
gray matter-centric data formats (e.g., Glasser et al., 2016, Nature Neuroscience).  
 

 We agree that it is possible that the effects in non-gray matter regions could be 

due to effects of non-interest such as motion or other noise sources. For the 

benefit of future research projects, we have added a point on this and the 

relevant references provided by the reviewer. 

  



We believe it was best to address this concern directly in the Results section (p. 

8-9): 

 

 “Note that these results revealed some clusters of apparent activation on the 

edge of the grey matter which could be due to residual noise or motion; it is 

possible that such effects could be removed with more advanced motion- and 

noise-correction algorithms (Pruim et al., 2015; Glasser et al., 2016).” 

 
I thank the authors for their careful revisions and thoughtful paper. Although the current 
paper could potentially benefit from additional data (like nearly all neuroscience 
studies), the fact that the authors have openly shared their data and code raises the 
possibility that other research groups could easily extend this study.  
 

 We thank the reviewers for their focus on improving the paper by supporting the 

main results, and by the suggestion to post the multivariate data and code online. 

We too hope that this will support future replications and explorations of these 

questions.  
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