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Supplementary Figure 1. HapMap principal component (PC) plots showing genetic structure in the GLOBAL cohort 
(grey points). Samples from the HapMap project1 are colored. It is observed, that the GLOBAL cohort is genetically 
diverse and highly admixed. YRI: Yorubans from Ibadan; MKK: Masai from Kenya; LWK: Luhya from Kenya; CEU: 
Utah residents of Northern and Western European ancestry; TSI: Italians from Tuscany; CHB: Han Chinese from 
Beijing; JPT: Japanese from Tokyo; CHD: Han Chinese living in Denver; GIH: Gujarati Indians from Houston; MEX: 
Mexicans from the Southwest; ASW: African Americans from the Southwest. 
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Supplementary Figure 2. EURO cohort principal component (PC) construct (PC1 up until PC6) with relevant 1000 
Genome population samples projected in. Plot showing genetic structure of the EURO cohort (grey points) alongside 
samples of European ancestry from the 1000 genomes project (colored points) projected into the space. CEU: Utah 
residents with Northern and Western European ancestry; FIN: Finnish from Finland; GBR: British from England and 
Scotland; IBS: Iberians from Spain; TSI: Italians from Tuscani; MXL: Mexicans from Los Angeles, USA. The MXL 
were included to tease apart the Native American ancestry component in Hispanic individuals in the EURO cohort. 
Note, the 1000 Genome samples, are used solely to illustrate here and have not been used throughout the analysis in 
the main manuscript. Bottom right panel, PC1 vs PC4, which are the two dimensions that tested significantly against 
facial variations in the EURO cohort, and that therefore drive the genomic background results for this cohort. Note 
that PC1 and PC4, are not just driven by Hispanic individuals in contrast to PC2. 
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Supplementary Figure 3. Schematic overview of methods and data partitioning. Left, starting from the top: the 
complete set of participants was used for a hierarchical phenotyping approach that segments 3D facial shape into 
multiple layers of information; subsequently, facial features were obtained by first applying Generalized Procrustes 
Analysis separately to the quasi-landmarks comprising each facial segment, followed by PCA. Using the training set 
only, we performed a series of association studies to test the possible link of genetic features with the shape 
information. Subsequently, face-to-DNA classifiers were built and each of them labelled facial images into possible 
categories of a specific genetic feature of interest (sex, Age, body mass index, genetic principal components, and 
individual single nucleotide polymorphisms). Multiple matching scores for different associated genetic features were 
combined into a single overall matching score using a classification-based multi-biometric fusing system: the 
validation set was used to train the fuser, which was then applied to new test instances. Finally, we performed standard 
biometric analysis comprising identification and verification setup in order to test our ability to classify faces in the 
context of multiple genetic features. Right, each cohort was randomly partitioned into training, validation, and test 
sets. First, we created non-overlapping training and remaining sets. The training set, being the majority (75%) of the 
data. The remaining set was further partitioned randomly into three non-overlapping folds: two folds combined 
constituted the validation set, and the third remaining fold constituted the test set. This was done three times, such that 
each fold was used as test set once, while the other two folds were used as validation set. This generated three runs of 
results  
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Supplementary Figure 4. Number of principal components (PCs) and variation explained per facial segment. 
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Supplementary Figure 5. Manhattan plots. Top, –log10 of the statistical evidence (p-value) over all 63 facial 
segments combined for all 987 genomic principal components tested in a Manhattan plot-like fashion. Bigger solid 
dots represent the –log10(p-value) for the full facial segment. The colors are random and have no specific meaning. 
Bottom, Manhattan plot of all 63 facial segments combined illustrating the chromosomal position of the 32 loci (grey 
dots highlight Peak SNPs, see methods for their definition) discovered in the EURO cohort. The bottom horizontal 
line (thick grey) represents the FDRd threshold (p ≤ 7.7 x 10-8), and the top horizontal line (thin dotted grey) represents 
genome-wide significance (p ≤ 5 x 10-8). The correspondence of the 32 loci is indicated by color, ordered by 
chromosome number, left to right.  
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Supplementary Figure 6. Illustration of fusing matching scores. Pairwise face-to-DNA matches from the validation 
datasets generate two-dimensional matching vectors, one dimension for sex (x-axis) and another for age (y-axis). If a 
face is matched to its own DNA profile, a genuine instance (black labels) is obtained. If a face is matched to another 
person’s DNA profile, an imposter instance (red labels) is created. If a red label overlaps with a black label in the two-
dimensional scoring space, the red label is removed, prior to learning a naïve Bayes classifier. Genuine instances 
occupy a specific subspace (upper left quadrant, where both sex and age match (higher positive value), and the naïve 
Bayes classifier, explicitly delineates this subspace, by generating a higher probability value for instances lying in this 
subspace (blue represents a low probability (p=0) and yellow represents a high probability (p=max) of being a genuine 
instance). Adding remaining aspects increases the dimensionality of the scoring space, and separates genuine from 
imposter matches more specifically.   
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Supplementary Figure 7. Biometric evaluation per molecular aspect. Cumulative matching characteristic (CMC) 
curves (Left) and Receiver operating characteristic (ROC) curves (right) of each genetic aspect separately for the 
GLOBAL and EURO cohort, respectively. Genetic aspects for the GLOBAL cohort are sex, genomic background 
(GB), body mass index (BMI) and age. The curve for genomic background refers to the 382 genomic principal 
components (PCs). The list of genetic aspects for the EURO cohort include sex, individual single nucleotide 
polymorphisms (SNPs) (32), genomic background (2 PCs), BMI and age. 
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Supplementary Table 1. Summary results of sex, age and BMI for both cohorts. CC: canonical correlation; CC2: 
canonical correlation squared; DF1: degrees of freedom numerator; DF2: degrees of freedom denominator; -1: fraction 
of people assigned the value -1; 1: fraction of people assigned the value 1. 

  PROPERTIES EFFECT FACE-TO-DNA CLASSIFIER 

ASPECT CC CC2 DF1 DF2 p-value quadrant segment threshold unit -1 1 

GLOBAL COHORT 

SEX 0.88 0.77 51 2419 0 0 1 0 a.n. 0.34 0.66 

AGE 0.78 0.61 51 2419 0 0 1 30 years 0.75 0.25 

BMI 0.56 0.32 51 2419 3.8E-161 0 1 23.62 kg/m^2 0.50 0.50 

EURO COHORT 

SEX 0.89 0.79 50 2605 0 0 1 0 n.a. 0.35 0.65 

AGE 0.69 0.48 50 2605 0 0 1 30 years 0.73 0.27 

BMI 0.57 0.32 50 2605 1.1E-183 0 1 23.78 kg/m^2 0.50 0.50 
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Supplementary Table 2. Additional details of 32 genetic loci identified using a GWAS on the EURO training data 
set. SNP, single nucleotide polymorphism; Chr., Chromosome; CC, canonical correlation; CC2 canonical correlation 
squared; DF1 degrees of freedom numerator; DF2 degrees of freedom denominator. Quadrant and Module number 
as given in Figure 3 of the facial segment associated most strongly.  

Locus Chr. Position SNP Candidate Gene Quadrant Module CC CC2 DF1 DF2 

1p32.2 1 57048961 rs2404983 PLPP3 2 41 0.15 0.02 14 2637 

1p32.1 1 61020499 rs4916071 intergenic 2 41 0.20 0.04 14 2640 
1p12 1 119564215 rs200100774 WARS2 0 1 0.23 0.05 50 2565 

1p12 1 119643820 rs61808932 WARS2  4 31 0.24 0.06 21 2617 

1q31.3 1 197343295 rs949977 CRB1 3 24 0.15 0.02 10 2639 

1q31.3 1 197343950 rs2821107 CRB1 3 12 0.23 0.05 14 2614 

2q31.1 2 177111819  rs970797 
MTX2 (or HOXD 

cluster) 2 5 0.20 0.04 31 2624 

2q36.1 2 223030502  rs1370926 PAX3 2 41 0.17 0.03 14 2624 

3q21.3 3 127961305 rs2955084 EEFSEC  2 5 0.20 0.04 31 2600 

3q21.3 3 128106267 rs2977562 EEFSEC (or DNAJB8) 2 11 0.20 0.04 18 2596 

4q31.3 4 154820806 rs10020603 RNF175 (or TLR2) 2 5 0.24 0.06 31 2604 
4q31.3 4 154831619 rs17299889 RNF175 (or TLR2) 2 5 0.19 0.04 31 2612 

4q34.1 4 174462975 rs1059045 
NBLA00301 (or 

HAND2) 3 12 0.19 0.03 14 2534 

6p21.1 6 44681257 rs227832 
BX647715 (or 

SUPT3H) 2 43 0.18 0.03 12 2643 
6p21.1 6 45220175 rs9395084 SUPT3H (or RUNX2) 2 5 0.19 0.04 31 2603 

6p21.1 6 45256286 rs73735344 SUPT3H (or RUNX2) 2 43 0.17 0.03 12 2599 

6q23.2 6 133609328 rs402020 EYA4 4 30 0.18 0.03 15 2588 

7p21.1 7 18741367 rs1178103 HDAC9 2 41 0.16 0.02 14 2629 
7q21.3 7 96124975 rs10238953 C7orf76 (or SHFM1) 3 24 0.25 0.06 10 2616 

7q21.3 7 96308943 rs2272224 SHFM1 3 13 0.18 0.03 15 2629 

8p23.1 8 8114141 rs2980419 
FAM86B3P (or 

SGK223) 2 5 0.19 0.03 31 2595 

9p22.2 9 16619529 rs13290470 BNC2 0 1 0.22 0.05 50 2605 

11p11.2 11 47385400 rs150863859 SPI1  1 39 0.16 0.03 16 2589 
11q22.3 11 103900016 rs7930466 PDGFD 3 25 0.14 0.02 9 2642 

11q23.2 11 113875575 rs7925936 HTR3A (or ZBTB16) 1 38 0.15 0.02 9 2521 

12q21.31 12 85577001 rs7966105 LRRIQ1 0 1 0.22 0.05 50 2601 

13q12.11 13 22449588 rs2985662 LINC00424 2 45 0.15 0.02 11 2615 

14q12 14 30426467 rs143974562 PRKD1 3 13 0.16 0.03 15 2565 

17q24.3 17 69128981 rs72866756 BC039327 2 10 0.20 0.04 20 2624 

17q24.3 17 70029448 rs11871949 D43770 (or AK094963) 2 10 0.20 0.04 20 2600 

20p11.22 20 21628942 rs2424392 PAX1 (or Nkx2_2as) 2 40 0.15 0.02 9 2634 
20p11.22 20 21758674 rs6035946 PAX1 1 36 0.16 0.02 14 2575 
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Supplementary Note 1: Supplementary analysis on DNA facial phenotyping 
 

DNA facial phenotyping followed by face-to-face matching provides an alternative method 
to establish the identity of a probe DNA with unknown identity against facial images with known 
identity.  Such a strategy was recently reported in the work of Lippert et al.2  in which multiple 
phenotypes (facial shape and color, sex, age, height, weight, BMI, skin and eye color, ancestry and 
voice) are estimated from DNA profiles and subsequently matched against corresponding 
phenotypes in a database with known identities. Therefore, of particular interest in comparison to 
our work is the performance of DNA based facial phenotyping followed by face-to-face matching 
in a biometric evaluation. 

 
DNA facial phenotyping: Following the work of Lippert et al., we implemented a series 

of facial prediction models to reconstruct the full facial shape of individuals (facial segment 1 in 
Figure 3), represented as shape PCs (GLOBAL cohort: 51 shape PCs, EURO cohort: 50 shape 
PCs, see Supplementary Figure 4), from a set of predictors (Sex, Age, BMI, genomic PCs and/or 
individual SNPs). Age, BMI, and genomic PCs were not converted to binary variables and were 
used unconverted as continuous predictors. For each of the shape PCs, using the training set of 
each cohort, a regularized linear regression model using a 10-fold cross-validation and the elastic 
net method with Alpha = 0.75 (MatlabTM function: lasso) was trained. The 10-fold cross-validation 
served to tune the Lambda regularization parameter in the regression model. Facial predictions for 
the validation and/or test sets of each cohort were subsequently obtained by applying the regression 
models for each of the shape PCs, the combination of which constituted a multidimensional facial 
prediction. Note that in the work of Lippert et al. the results reported were based on a ridge instead 
of a lasso regression. However, they investigated several regression models, including a Lasso 
regression, with little impact on the results for facial prediction.  

 
Face-to-Face matching: Matching scores between faces predicted and faces observed in 

the larger dataset were obtained by a cosine distance between facial shape PCs represented as 
vectors and by supervised metric learning resulting in a weighted distance between facial shape 
PCs. For the latter, the validation set of each cohort was used to determine an optimal weight for 
each of the shape PCs using Linear Discriminant Analysis (LDA) that maximizes the separation 
of supervised genuine versus imposter face-to-face pairwise combinations. Subsequently, the 
matching scores between faces predicted and faces observed in the test set of each cohort were 
subjected to the biometric identification and verification tasks. 
 

In this supplement, we first use the EURO cohort with sex, age, BMI and the first and 
fourth Genomic PC as predictors for facial shape, to investigate the two different face-to-face 
distances as matching scores in a biometric evaluation, followed by the effect of increasing the 
amount of genomic PCs and adding individual genetic loci as predictors for facial shape. Then we 
report on the results for the GLOBAL cohort. 
 

Comparison of cosine and weighted distance for face-to-face matching: The cosine 
distance and a metric learning based (using YASMET instead of LDA) weighted distance were 
also compared in the work of Lippert et al., with the latter outperforming the former. In the work 
of Lippert et al., shape PCs were analyzed together with color PCs and values of sex, age and 
ancestry predicted from faces. Therefore, we analyzed both types of distances as matching scores 
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for shape PCs only and for shape PCs augmented with the predictions of sex, age, BMI and 
genomic PCs from faces using the respectively trained facial classifiers in this work. The results 
for the cosine distance and weighted distance are given in Supplementary Figure 8 and 
Supplementary Figure 9, respectively. The summary statistics for both distances, across the three 
test sets are given in Supplementary Table 3. 

 

 
Supplementary Figure 8. Identification and verification results for the EURO cohort using the cosine distance as 
face-to-face matching score. Solid lines, results for shape principal components (PCs) only. Dash-dotted lines, results 
for shape PCs augmented with estimations of sex, age, body mass index, and genomic PCs from the face. Blue color, 
test dataset 1, orange color, test dataset 2, yellow color, test dataset 3. 

 
Supplementary Figure 9. Identification and Verification results EURO cohort using the weighted distance as face-
to-face matching score. Solid lines, results for shape PCs only. Dash-dotted lines, results for shape PCs augmented 
with estimations of sex, age, BMI, and genomic PCs from the face. Blue color, test dataset 1, orange color, test dataset 
2, yellow color, test dataset 3. PCs, principal components; BMI, body mass index. 
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information EER σ AUC σ R1 (%) σ R10 (%) σ R20 (%) σ 

Cosine shape PCs 0.256 0.008 0.818 0.006 5.643 1.408 44.356 2.341 68.623 2.543 

Cosine shape PCs + Sex, Age, BMI, GB 0.239 0.018 0.840 0.010 7.111 0.350 53.498 0.926 73.479 2.547 

Metric learning shape PCs 0.394 0.011 0.648 0.006 2.934 0.193 29.117 2.658 49.998 1.503 

Metric learning shape PCs + Sex, Age, BMI, GB 0.224 0.014 0.853 0.009 4.740 0.669 51.580 2.212 74.832 1.253 

Supplementary Table 3. Average identification and verification results over the three test runs. EER, verification 
equal error rate; AUC, verification area under the curve; R1, rank 1% identification rate; R10 rank 10% identification 
rate; R20 rank 20% identification rate; σ standard deviation. Random performance is given as EER=0.5, AUC=0.5, 
R1=1%, R10 = 10%, R20 = 20%. % refers to the percentage of individuals in the gallery (EURO = 295, the test 
datasets). PCs, principal components; BMI, body mass index; GB, genomic background or genomic PCs. 

 
When using shape PCs only, it is observed that the cosine distance is significantly better 

than the weighted distance. When using shape PCs augmented with predictions of sex, Age, BMI 
and genomic PCs, it is observed that the performance of both distances increases. The performance 
of the weighted distance increases substantially, and is now slightly better than the cosine distance, 
which is conform the results reported in Lippert et al. Based on these results, and since we are 
interested in comparing our approach using face-to-DNA classifiers only against DNA-to-face 
regressions only, the cosine distance between shape PCs is opted for. 
 

European genomic PCs:  In our work, the investigation of genomic PCs in the EURO 
cohort was mainly restricted to those selected following a GWAS paradigm to control for 
population stratification. Therefore, we mainly investigated the first four genomic PCs, of which 
only the first and the fourth showed a good association to facial shape. However, for regression 
based facial predictions as done in the work of Lippert et al., up to 1000 genomic PCs were 
incorporated for a heterogeneous dataset like our GLOBAL cohort. Therefore, we investigated if 
working with 1000 genomic PCs in the EURO cohort potentially improves the regression based 
facial predictions. The results are visualized in Supplementary Figure 10 and the summary 
statistics across the three test sets are given in Supplementary Table 4. 

 
Supplementary Figure 10. Identification and Verification results EURO cohort using two sets of predictors. Solid 
lines, results for X = [Sex, Age, BMI, Genomic PCs1,4]. Dash-dotted lines, results for X = [Sex, Age, BMI, Genomic 
PCs1-1000]. Blue color, test dataset 1, orange color, test dataset 2, yellow color, test dataset 3. PCs, principal 
components; BMI, body mass index; 
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information EER σ AUC σ R1 (%) σ R10 (%) σ R20 (%) σ 

X = [Sex,Age,BMI,Genomic PC1,4] 0.256 0.008 0.818 0.006 5.643 1.408 44.356 2.341 68.623 2.543 

X = [Sex,Age,BMI,Genomic PC1-1000] 0.264 0.005 0.813 0.005 5.306 1.098 43.901 3.313 67.832 2.460 

Supplementary Table 4. Average identification and verification results over the three test runs. EER, verification 
equal error rate; AUC, verification area under the curve; R1, rank 1% identification rate; R10 rank 10% identification 
rate; R20 rank 20% identification rate; σ standard deviation. Random performance is given as EER=0.5, AUC=0.5, 
R1=1%, R10 = 10%, R20 = 20%. % refers to the percentage of individuals in the gallery (EURO = 295, the test 
datasets). PCs, principal components; BMI, body mass index; 

 
These results indicate that adding more genomic PCs in the EURO cohort does not improve 

or change the results compared to using only the ones (Genomic PC 1 and 4) we selected in our 
work as strongly associated to facial shape. In contrast to the GLOBAL cohort, the EURO cohort 
is a homogenous population sample, and global ancestry estimations using genomic PCs are 
therefore mainly restricted to deal with population stratification. 

 
Individual genetic loci:  The main contribution of our work using face-to-DNA classifiers 

involves the ability to incorporate individual genetic loci throughout the genome in improving the 
biometric outcomes. Doing so, moves from the identification of an individual’s population 
background to the identification of an individual within a single homogenous population. Here we 
investigated if such an improvement could also be obtained using the regression based DNA-to-
Face prediction strategy, by adding the 32 Peak SNPs under the additive genetic model (AA=0, 
Aa=1, aa=2) from our GWAS as additional predictors for facial shape PCs. The results are 
visualized in Supplementary Figure 11 and the summary statistics across the three test sets are 
given in Supplementary Table 5. 

 

 
Supplementary Figure 11. Identification and verification results EURO cohort using two sets of predictors. Solid 
lines, results for X = [Sex, Age, BMI, Genomic PCs1,4]. Dash-dotted lines, results for X = [Sex, Age, BMI, Genomic 
PCs1,4, SNPs1-32]. Blue color, test dataset 1, orange color, test dataset 2, yellow color, test dataset 3. PCs, principal 
components; BMI, body mass index; 
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information EER σ AUC σ R1 (%) σ R10 (%) σ R20 (%) σ 

X = [Sex,Age,BMI,Genomic PC1,4] 0.256 0.008 0.818 0.006 5.643 1.408 44.356 2.341 68.623 2.543 

X = [Sex,Age,BMI,Genomic PC1,4, SNPs1-32] 0.254 0.008 0.825 0.005 6.320 0.516 48.195 0.796 70.881 0.291 

Supplementary Table 5. Average identification and verification results over the three test runs. EER, verification 
equal error rate; AUC, verification area under the curve; R1, rank 1% identification rate; R10 rank 10% identification 
rate; R20 rank 20% identification rate; σ standard deviation. Random performance is given as EER=0.5, AUC=0.5, 
R1=1%, R10 = 10%, R20 = 20%. % refers to the percentage of individuals in the gallery (EURO = 295, the test 
datasets). PCs, principal components; BMI, body mass index; SNPs single nucleotide polymorphisms. 

 
These results indicate that the addition of individual genetic loci in the prediction of faces 

from DNA do not contribute differentially over all biometric metrics. This is in contrast to the 
consistent contribution of individual SNPs on all biometric metrics as reported in Table 3 of the 
main manuscript. Furthermore, compared to the results reported in Table 3 of the main manuscript 
based on the same selection of predictors, those in Supplementary Table 5 are substantially lower. 
We do note that this is the case for the regression based facial prediction as implemented here. 
Since, in our work using face-to-DNA classifiers, the genetic loci identified contribute to the 
overall performance, it remains possible that yet more advanced and future facial prediction 
models can incorporate these loci as well. However, to date, and to the best of our knowledge on 
related work, such results have not been achieved yet. The same applies for the classifiers used in 
this work, more advanced and future facial classifiers can improve on our results, making this work 
a baseline for future work on DNA-to-face prediction and face-to-DNA classification for biometric 
scenarios. 
 

GLOBAL cohort:  Similar to the EURO cohort, we investigated the influence of using the 
382 selected genomic PCs associated to facial shape against using all 987 genomic PCs available. 
The results are visualized in Supplementary Figure 12 and the summary statistics across the three 
test sets are given in Supplementary Table 6. 
  

 
Supplementary Figure 12. Identification and verification results GLOBAL cohort using two sets of predictors. Solid 
lines, results for X = [Sex, Age, BMI, Genomic PCs1-382]. Dash-dotted lines, results for X = [Sex, Age, BMI, Genomic 
PCs1-987]. Blue color, test dataset 1, orange color, test dataset 2, yellow color, test dataset 3. PCs, principal components; 
BMI, body mass index. 
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information EER σ AUC σ R1 (%) σ R10 (%) σ R20 (%) σ 

X = [Sex,Age,BMI,Genomic PC1-382] 0.198 0.015 0.882 0.009 11.648 1.800 65.655 2.088 84.102 1.105 

X = [Sex,Age,BMI,Genomic PC1-987] 0.203 0.012 0.875 0.011 10.436 0.536 64.200 3.765 82.889 2.742 

Supplementary Table 6. Average identification and verification results over the three test runs. EER, verification 
equal error rate; AUC, verification area under the curve; R1, rank 1% identification rate; R10 rank 10% identification 
rate; R20 rank 20% identification rate; σ standard deviation. Random performance is given as EER=0.5, AUC=0.5, 
R1=1%, R10 = 10%, R20 = 20%. % refers to the percentage of individuals in the gallery (GLOBAL = 275, the test 
datasets). PCs, principal components; BMI, body mass index. 

 
Similar to the EURO cohort, these results indicate that the use of selected genomic PCs 

associated to facial shape is as good as using all genomic PCs available. Compared to the results 
reported in Table 2 of the main manuscript, the performances are along the same line, but lower 
than using face-to-DNA classifiers. 
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Supplementary Note 2: Supplementary analysis on genomic PCs in the EURO cohort 
 

In our work, the investigation of genomic PCs in the EURO cohort was mainly restricted 
to those selected following a GWAS paradigm to control for population stratification. Therefore, 
we mainly investigated the first four genomic PCs, of which only the first and the fourth showed 
a good association to facial shape. Here, we investigated the contribution of additional genomic 
PCs in the EURO cohort, each time using the genomic PCs only and using the genomic PCs 
augmented with the 32 SNPs to see if the contribution of the SNPs is lost when adding more 
genomic PC based face-to-DNA classifiers. Additional genomic PCs were selected by 1) looking 
beyond the first 4 genomic PCs, and 2) lowering the selection threshold from 5x10-5 to 5x10-4, 
5x10-3, and 5x10-2. The biometric performances are listed in Supplementary Table 7. 

 
Genomic PCs Threshold Nr EER σ AUC σ R1 (%) σ R10 (%) σ R20 (%) σ 

1 to 4 5e-05 2 0.427 0.003 0.607 0.005 1.354 0.003 17.046 2.526 31.153 1.407 

1 to 1000 5e-05 5 0.427 0.008 0.615 0.005 1.580 0.706 17.157 1.582 32.844 0.622 

1 to 1000 5e-04 5 0.427 0.009 0.615 0.005 1.580 0.706 17.271 1.721 32.731 0.471 

1 to 1000 5e-03 204 0.445 0.018 0.577 0.014 2.032 0.590 14.785 1.188 27.537 2.878 

1 to 1000 5e-02 204 0.446 0.028 0.577 0.014 2.032 0.590 14.446 2.400 27.537 2.333 

Genomic PCs + SNPs                   

1 to 4 5e-05 2 0.375 0.010 0.671 0.008 2.709 0.898 25.623 3.350 40.972 1.802 

1 to 1000 5e-05 5 0.373 0.015 0.673 0.008 2.935 0.707 25.848 2.017 41.875 1.097 

1 to 1000 5e-04 5 0.374 0.014 0.673 0.008 2.935 0.707 25.848 2.017 41.762 1.257 

1 to 1000 5e-03 204 0.395 0.004 0.645 0.008 3.386 0.344 22.686 0.301 36.457 1.947 

1 to 1000 5e-02 204 0.395 0.004 0.644 0.008 3.048 0.682 22.460 1.256 36.682 1.699 

Supplementary Table 7: Average identification and verification results over the three test runs for different selections 
of genomic PCs with or without SNPs in the EURO cohort. Genomic PCs, the amount of genomic PCs investigated; 
Threshold, the threshold applied to select genomic PCs; Nr, the amount of genomic PCs selected; EER, verification 
equal error rate; AUC, verification area under the curve; R1, rank 1% identification rate; R10 rank 10% identification 
rate; R20 rank 20% identification rate; σ standard deviation. Random performance is given as EER=0.5, AUC=0.5, 
R1=1%, R10 = 10%, R20 = 20%. % refers to the percentage of individuals in the gallery (EURO = 275, the test 
datasets). PCs, principal components; SNPs, single nucleotide polymorphisms 
 

Three main observations are made from these results. First, at the threshold of 5x10-5 (as 
applied in the manuscript) the results are close to the same when investigating the first four 
genomic PCs only. Second, the incorporation of additional genomic PCs, by lowering the selection 
threshold decreases the performance notably. This further confirms that sufficient statistical 
association of molecular features to facial shape is required in the proposed paradigm. Third, in 
each scenario of different genomic PCs, the added SNPs improve the performances consistently. 
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Supplementary Note 3: Simulated DNA-inferred age and BMI 

Age estimation from DNA methylation markers is of fundamental relevance in forensics 
and has witnessed an exponential spread of interest. In order to simulate DNA predicted age, we 
refer to the paper of Xu et al.3 as they achieved the least mean absolute deviation value (MAD) for 
age prediction from DNA methylation markers. They reported a MAD = 2.8 year from real 
chronological age. In order to reach this value, we computed the MAD value between self-reported 
age and age corrupted by increasing noise levels until it reached the value reported in Xu et al.  

Body mass index (BMI) is a non-invasive and inexpensive tissue mass measure in an 
individual. It is an important risk indicator for obesity and related diseases and most importantly, 
its prediction from the genotype leads to new insights compared to the measured BMI. Guo et al.4 
reported a prediction standard error between genetically predicted versus measured BMI of 0.0266. 
We added this value to measured BMI in order to simulate genetically predicted BMI from the 
self-reported height and weight values. 

Subsequently, we used simulated DNA predicted age and BMI values from noise injected 
self-reported values, reaching the prediction accuracies reported in the literature, prior to grouping 
into upper/lower classes. Recognition performances for age and BMI under various levels of noise 
injection are presented in Supplementary Figure 13, where we observed only small declines in 
performance using the reported levels of DNA-based prediction accuracies. This was mainly due 
to the fact that we turned these continuous variables into a “cruder” two-class classification, where 
deviations on predicted values only affected a small portion of the individuals at the boundary 
between both classes. 
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Supplementary Figure 13. Simulated effects on age and BMI. Self-reported age and BMI values were injected with 
increasing level of noise, starting from the prediction accuracies from DNA as found in the literature (MAD = 2.8 
years for age and standard deviation (sigma) = 0.0286 for BMI). The results refer to one single data fold. For age (top), 
noise was added to self-reported age in the form of a standard normal distribution which was multiplied to a value 
within the interval [3.5 20] with a step = 5. For BMI (bottom), we multiplied a standard deviation (range = [0.0286 
20], step = 2) to a standard random distribution and added it to BMI. For age, we observe a decline in performance 
when MAD = 6.8 and particularly accentuated for MAD = 14.8, where the curves also lose their desired rounded up 
shapes (instead clear dents and drop backs in the curves are seen). For BMI, we observe a decline in performance 
approaching chance results. Similar results were obtained on the EURO cohort (data not shown). BMI, body mass 
index; MAD, median absolute distance. 
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Supplementary Note 4: Forensic and criminal justice challenges 

Methods like DNA facial phenotyping and matching faces directly to DNA raise 
undeniable risks of racial disparities in criminal justice that warrant caution against premature 
application of the techniques until proper safeguards are in place. Public debates on pending 
legislation would be enriched if they were to include consideration of explicit and implicit biases 
of those individuals involved5 and algorithmic biases6 in the computational techniques and training 
panel study designs. Understanding the biases of the fragmented databases used by local, state, 
and federal authorities is necessary to inform the development of pragmatic policies for how law 
enforcement could use such techniques responsibly in ways that would not infringe upon rights of 
innocent individuals under the US constitution or erode the public’s trust.  

Georgetown Law’s Center on Privacy & Technology has devoted efforts to better 
understanding the use of face-to-face recognition technologies in the United States and has 
developed important online resources7 to guide discussions  regarding the ethical, legal, and social 
implications (ELSI), which are also relevant to the proof of concept face-from DNA recognition 
research reported here, including a review of law enforcement’s use of facial recognition 
technologies by jurisdiction, model face recognition legislation, and a model face recognition use 
policy7. The Center issued 30 specific recommendations for legislatures, law enforcement, 
industry, and community leaders to establish responsible limits on face recognition. Among the 
recommendations are that Congress and state legislatures should pass measures that would require 
mug shot databases used for face recognition to exclude photos of those individuals who have been 
found not-guilty or against whom charges were dropped or dismissed, prohibit the use of driver’s 
license databases for face recognition unless expressly allowed by state statutes, promote more 
diverse photo datasets for training, and condition state and federal financial assistance on 
transparency, oversight, and accountability7. 

In its 2009 report Strengthening Forensic Science in the United States: A Path Forward, 
the National Research Council detailed the many challenges facing forensic sciences and strongly 
advocated for the establishment of the National Institute of Forensic Science, which has not yet 
happened. In 2013 the National Commission on Forensic Science (NCFS) was created as a Federal 
Advisory Committee [https://www.gsa.gov/portal/content/100916] to “enhance the practice and 
improve the reliability of forensic science” and make policy recommendations to the U.S. Attorney 
General. The NCFS had notable breadth of expertise among its members, and the NCFS provided 
a much-needed independent forum where forensic science could be critiqued and improved and 
where policies could be developed for the appropriate use of forensic science by law enforcement 
and in courtroom settings. Unfortunately, the Trump Administration allowed the NCFS to expire 
on April 23, 2017. As summarized in its final report, the NCFS adopted 43 work products (ten of 
which focused on foundational issues to ensure the validity, accuracy, and effectiveness of forensic 
science) but considered its mission of “determining how to move forward in creating a more robust 
research culture” to be unfinished 
[https://www.justice.gov/archives/ncfs/page/file/959356/download]. This was met with outspoken 
criticism—including, for example, by U.S. Senators Richard Blumenthal and Cory A. Booker, in 
a letter submitted on June 9, 2017, responded to the Department of Justice’s request for public 
comment [Docket No. OLP 160] by stating “We believe allowing this federal advisory committee 
to expire was a mistake, and that there is a very easy and simple answer as to how the Department 
ought to proceed; the Department ought to renew the Commission’s charter” [regulations.gov 
tracking number 1k1-8wv9-qm9h]. John F. Holloway, Executive Director of the Quattrone Center 
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for the Fair Administration of Justice at the University of Pennsylvania Law School, stated the 
decision “creates a substantial void and reduces the quality of forensic science” and emphasizing 
the need for “independence, fairness, and transparency” in “Response of the Quattrone Center for 
the Fair Administration of Justice at the University of Pennsylvania Law School to the Department 
of Justice Notice of Public Comment Period on Advancing Forensic Science, Docket No. OLP 
160,” submitted June 8, 2017 [regulations.gov tracking number 1k1-8wug-s31c]. The American 
Association for the Advancement of Science, American Chemical Society, Federation of 
Associations in Behavioral and Brain Sciences, and Human Factors and Ergonomics Society letter 
in response to DOJ-LA-2017-0006-0001, submitted June 9, 2017, explained that the NCFS “has 
served a crucial role in bringing together all relevant stakeholders” and attributing its ability “to 
make progress on multiple fronts” to this broad stakeholder engagement [regulations.gov tracking 
number 1k1-8wv6-rc9c]. The Department of Justice later announced it would launch a Forensic 
Science Working Group; however, it is unclear whether this internal group will promote more 
reliable forensic science or policies for fairness in their practice and application [See, e.g., Alan 
Pyke. “Sessions relaunches Obama-era forensics review months after he shuttered it.” Think 
Progress. August 8, 2017.]. The Innocence Project, for example, publicly expressed 
disappointment in this move “away from a public, transparent, and science-centered process...” 
[Pema Levy. “Sessions’ New Forensic Science Advisor Has a History of Opposing Pro-Science 
Reforms.” Mother Jones. August 10, 2017].  The proof of concept reported here for facial 
recognition from DNA underscores the need for rigorous scientific critique and transparent policy 
deliberations to ensure that any practice or application by law enforcement be delayed until there 
are robust foundational data for its validity and reliability, adequate operational safeguards in place 
for quality assurance, and sufficient guidance for communication and translation to achieve 
fairness.  
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Supplementary Note 5: Re-identification and privacy challenges in genomic research 

The proof of concept reported here for facial recognition from DNA also underscores the 
critical and increasing importance of ethical, legal, and social implications (ELSI)-research related 
to the privacy challenges in genomic research. The National Human Genome Research Institute, 
for example, has articulated a diverse set of prioritized research domains, which include topics 
relevant to this proof of concept method, including (but not limited to) re-identification, security, 
and data privacy topics8. Before this proof of concept approach is implemented in any setting 
(forensic or otherwise), it should be preceded by a multifaceted ELSI risk assessment. The 
following is offered as an introduction to some of the pertinent issues that might serve as a starting 
point for relevant literature review and further scholarly inquiry.   

Open access has served the genomics and molecular genetics fields well with rapid and 
relatively easy access to raw data and policies that include releasing data prior to publication. 
When genomic data on living persons is connected to sensitive data (such as data from health 
records, financial records, consumer transactions, education, employment, housing, and other 
societal contexts), the release of these data might challenge the participant’s privacy and 
confidentiality. One solution that has been widely supported and implemented in human 
participants’ data sharing protocols is to de-identify the participant data, separating the personally 
identifiable information (e.g., name, phone number, medical record number) from the sensitive 
and genotype data. However, in the context of this work, it is necessary to acknowledge that the 
identifiability of human genomes and reasonable expectations of genomic privacy have been the 
focus of extensive ELSI scholarship9–12. The importance of this privacy issue is boosted by the 
wide availability of facial images and widespread use of these images by companies who are all 
marketing facial applications (namely, Google, Amazon, IBM, Microsoft, and Facebook)—which, 
not coincidentally, have recently come under fierce criticism for the exploitation of those pictured, 
insufficient consent processes, and biases (racial, ethnic, and gender) [See, e.g., IBM using Flickr 
images13–15 and Amazon’s facial recognition doorbell plans16,17]. 

The ELSI community increasingly appreciates that DNA is “uniquely identifiable”18 and 
“the ultimate digital identifier”19 and that “de-identification” of genomes is a delusion [JK Wagner. 
“Re-Identification Is Not the Problem. The Delusion of De-Identification Is.” Harvard Law Petrie-
Flom Center Bill of Health online symposium on the Law, Ethics, and Science of Re-Identification 
Demonstrations, organized by Michelle Meyer. May 22, 2013]. Rodriguez et al.20 (2013) 
acknowledged recent studies have “call[ed] into question whether the goal of complete de-
identification of many types of human data is realistic in today’s information-rich society”. Some 
have suggested that governance efforts might be better spent focusing attention less on mitigation 
of risks and more on mitigation of actual harms21, and several “privacy-preserving strategies” have 
been suggested, including minimizing risks of re-identification of individuals who have 
participated in genomic research through various forms of data access controls, data 
anonymization (using, for example, k-anonymity or differential privacy techniques), and 
cryptographic solutions22. Given the challenges of identifiability and the “rise and fall of de-
identification,”23 several scholars have been firm advocates for open consent practices24 that 
emphasize veracity of consent through candid, honest disclosure of the risks of participation and 
ending the practice of making “potentially disingenuous promises of anonymity, privacy, and 
confidentiality.”25 Some have advocated a shift in attention from balancing data privacy and utility 
to enabling trust23 or promoting solidarity21. Support for an open approach is not universal, with 
some warning of the negative consequences of a surveillance state and the challenges of an 
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informed consent approach for genomic research that remains focused on an individual, which 
fails to account for the probabilistic information that can be gleaned—and societal risks that 
accompany those insights—regarding unaware relatives or community members (see, e.g., Vayena 
et al.26, Pereira et al.27, Ram et al.28,29, Clayton et al.11, Wang et al.9,30, Bloss et al.31, Greenbaum 
et al.32, Goodman et al.33, Lemke et al.34, Prictor et al.35, Borry et al.36, Fisher and Layman37, Gabel 
Cino38, Carrero et al.39). Again, others might advocate against expanding open access to and 
circulation of genetic information. No consensus solution to these and other complex issues has 
yet arisen from ELSI-research on policymakers. 

Legal scholars have written extensively on some of the constitutional concerns related to 
increasing law enforcement use of DNA, facial recognition, and other emerging technologies 
(including the general use of Big Data, machine learning, and artificial intelligence) [See, e.g., 
Koops and Schellekens40,  Maclean41, Wagner42, Gabel Cino38,43, Gusella44, Hodge45, Hirose46, 
Pearlman and Lee47, Nakar and Greenbaum48, Simmons49, Joh50, Berman51, Ferguson52, Brown53, 
Kohne54, Reamay55, Monajemi56, Pope57, Carrero39, Cuador58, Sklansky59, Murphy60, Kaye61, 
Dedrickson62, Ram29,63, Guest64, Logan65, Strutin66, Garrett67, Ferguson52,68, Froomkin69]. 
Biometric identifiers have been described as “one of the most unprotected areas of our personal 
identity”57, and scholars have lamented the many ways in which the public is being 
“desensitized”56 to “privacy-sacrificing technologies”70 or “privacy piercing technology.”71. 
Some50 have underscored the importance in recognizing the public’s acts of resistance to 
governmental surveillance in order to make sense of privacy in modern society. While some52 
argue that a “big data-infused reasonable suspicion standard” is possible, others55 urge us to 
abandon a quest for a bright-line rule when setting the boundaries for governmental searches and 
seizures involving specific technological tools and instead focus on core principles of the Fourth 
Amendment as an “expression of shared values” that can be ascertained by courts using empiricism 
and social science to determine what those shared values are. Yet other scholars72, with regard to 
facial recognition technology, have focused on a distinction between the right to be seen in public 
and the right to be recognized. Particularly relevant to this proof of concept, if it were to be applied 
by law enforcement, is the concern that some legal scholars have voiced regarding the need for 
oversight because privacy concerns will actually increase as the technology’s accuracy improves43. 
Scholars have been divided60–62 about whether universal databases could be preferable and even 
increase privacy62 relative to known, current approaches. One66 has even remarked that “the 
registry of human blueprints will be the never-ending battleground of privacy.” 

Efforts to strengthen privacy assurances continue, including shields to resist Freedom of 
Information Act (FOIA) requests for research data and NIH Certificates of Confidentiality as 
shields provided to all federally-funded researchers to resist compelled disclosures of research data 
in legal proceedings, both of which became law as part of the 21st Century Cures Act [21st Century 
Cures Act, Pub. L. No. 114-255 (2016)]. Notably, however, identifiability continues to lack 
consistent definition in federal policy or practice and remains an area in desperate need of 
harmonization73. Furthermore, medical biobanks and forensic databases continue to be treated 
distinctly in ELSI scholarship74, despite early recognition that erosions of public trust in genomics 
in one social arena will influence trust in others and calls for ELSI researchers to anticipate also 
more on non-medical applications (such as forensics) of genome sciences and technologies75. 
Much ELSI research on privacy challenges in genomic research is focused on medical 
applications, which is also reflected by much of the citations using throughout this Supplementary 
Note. With regard to forensic contexts, there have been calls to protect privacy as well as enhance 
oversight of crime labs67. One particular target of concern has been the potential exemption of 
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forensic databases from the Privacy Act of 1974 (such as the concerns legal scholars have raised 
regarding the FBI’s Next Generation Identification System), which would make it difficult not 
only to know if a specific individual’s data is contained therein but also to control the agencies and 
parties with whom the data are shared without consent39,57. 

Forensically, in 2018 the use of non-law enforcement databases (namely, recreational 
genealogy platforms wherein users may upload their direct-to-consumer genomic profiles and 
compare their profiles with those of other users to identify potential genetic relatives) by law 
enforcement to solve cold cases also prompted renewed discussions about the adequacy of current 
privacy protections in the United States and questions regarding whether the sector-specific 
approach should be replaced with a uniform data privacy approach more similar to the European 
Union’s General Data Protection Regulation 2016/679 (GDPR) or China’s Cybersecurity Law and 
Information Security Technology – Personal Information Security Specification. While no 
consensus of opinions has yet emerged, the Golden Serial Killer, East Bay Rapist, and Visalia 
Ransacker investigation (that relied upon use of GEDmatch comparisons to generate new leads to 
be followed with traditional investigation techniques and resulted, ultimately, in an arrest) has 
sparked considerable discussion in the public, academia, and forensic community. Some have 
proposed legislative or regulatory solutions63 while others have proposed technological solutions76 
to prevent over-reliance or abuse of these resources. Meanwhile, companies have begun dedicating 
services to this endeavor, and the number of cold cases investigations able to be solved in this way 
continues to grow77,78. Researchers will need to follow policy developments with these 
applications closely as well as the development of state-specific legislation on biometric data 
protections54 [see also state statutes such as, e.g., California Consumer Privacy Act of 2018; 
Vermont’s An Act Relating to Data Brokers and Consumer Protection, H.764, 2018 Sess. (VT 
2018), Act 171 of 2018, 9 VSA §§ 2430, 2433, 2446 and 2447 (May 22, 2018); Colorado Act 
Concerning Strengthening Protections for Consumer Data Privacy HB18-1128 (May 29, 2018); 
Ohio’s Data Protection Act, SB 220, Ohio Rev. Code §1354.01 et seq.; Illinois’ Biometric 
Information Privacy Act (or BIPA), codified as 740 ILCS/14 and Public Act 095-994 (October 3, 
2008)] in order to be able to inform prospective research participants adequately about risks and 
benefits of genomic research and potential uses of the information. 
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