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Supplementary Notes 

Note S1. ​We note that using genetic colocalization to distinguish model 1 can be              
unreliable if: 1) the LD patterns between the FUSION study and the GWAS differ, 2)               
there are multiple conditionally independent causal variants within the same locus, or            
3) the LD between two causal variants for the exposure and the outcome is              
extremely high (r ​2 close to 1). Only experimental work can truly pinpoint the causal              
SNV(s). 
 
Note S2. Biological knowledge of the instrument SNV can be used to guard against              
the possibility of reverse causation in an MR analysis. For instance, in cases where a               
molecular trait (e.g., gene expression or DNAme) is modelled as an exposure and a              
disease/quantitative trait (e.g., BMI) as the outcome, it is reasonable to assume a             
low probability that a SNV with a strong molecular trait association primarily affects             
the disease/quantitative trait and subsequently the molecular trait, especially given a           
polygenic disease/quantitative trait composed of many small genetic effects. The          
genetic effect on the disease/quantitative trait and molecular trait could be           
independent (horizontal pleiotropy), but the SNV is unlikely to affect the molecular            
trait ​through​ the disease/quantitative trait.  

By contrast, when considering two molecular traits and a SNV whose           
biological effect is not well understood, one cannot assume the criteria of MR are              
met. Indeed, studies have reported instances where DNAme drives expression (an           
active model) as well as the reverse (a passive model) ​(1, 2)​. Triangulating between              
different methods in this scenario is important. By comparing the variance explained            
by the SNV through a statistical test, the MR Steiger test infers the causal direction               
between molecular traits when the biological effect of the SNV (instrument variable)            
is not fully understood. However, the MR Steiger test cannot distinguish between a             
causal and independent model (horizontal pleiotropy). The CIT can distinguish          
between a causal and independent model (Fig. S19) but is less reliable in the              
presence of measurement error (which could be technical or biological) compared to            
MR ​(3)​. In particular, measurement error in the mediating variable is likely to bias CIT               
results towards declaring two molecular traits as causally independent. 
  



 

 

Supplementary Materials and Methods 

Participant recruitment, muscle biopsy procedures, physiological trait       
phenotyping are described in Scott et al. ​(4)​. 

Genotyping and quality control 

We extracted DNA from blood. DNA samples were genotyped at the Genetic            
Resources Core Facility of the Johns Hopkins Institute of Genetic Medicine. 327            
samples were genotyped on the HumanOmni2.5-4v1_H BeadChip array and four on           
the InfiniumOmni2-5Exome-8v1-3 BeadChip array (Illumina, San Diego, CA, USA).         
We mapped the Illumina array probe sequences to the hg19 genome assembly            
using the Burrows-Wheeler Aligner ​(5)​. We excluded SNVs not present on both            
arrays, SNVs with probe alignment problems (e.g., multi-mapping probes), and          
probes with known SNVs in the 3’ end. We excluded SNVs with call rates <95%,               
minor allele count (MAC) <1, or Hardy–Weinberg equilibrium (HWE) p-value<10​-4​,          
leaving 1,571,557 SNVs. Alleles were oriented relative to the reference genome. 

We assessed sample relatedness using KING ​(6) and identified two pairs           
(normal glucose tolerant-impaired glucose tolerance) of first-degree relatives. For         
each pair, we excluded the normal glucose tolerant participant. To assess Finnish            
ancestry, we ​estimated genetic principal components (PCs) using weights produced          
using the Population Reference Sample (POPRES) European reference panel ​(7) in           
LASER ​(8)​. We compared PCs from our samples to those of the reference             
populations. We removed one non-Finnish participant (Table S5). To control for           
population stratification in the QTL analyses, we performed principal component          
analysis (PCA) ​(9) using 437,182 genotyped, autosomal SNVs that remained after           
pruning SNVs to a pairwise r ​2 threshold of 0.5, excluding SNVs with minor allele              
frequency (MAF) ≤1%, and regions of high LD ​(10, 11)​. 

Genotype imputation 

Prior to genotype imputation we removed a) SNVs with a difference in            
alternate allele frequency between FUSION and phase 3 1000G European samples           
>20%, b) palindromic SNVs with MAF >40%, or c) SNVs with genotype missingness             
>2.5%, leaving 1,543,123 SNVs. We performed pre-phasing and imputation on          
autosomal SNVs using the Michigan Imputation Server ​(12)​. We used Eagle v2.3            
(13) for SNV pre-phasing. We imputed SNV genotype dosages using minimac3 ​(12)            
and the Haplotype Reference Consortium (hrc.r1.1.2016, build GRCh37/hg19) panel         
(14)​. We included ​7,128,878 autosomal​, biallelic SNVs with imputation quality r ​2 ​hat            
>0.3 and MAC ≥10 in the 318 samples used for QTL analysis (see ​Proximal eQTL               
and mQTL analysis​ below).  



 

RNA isolation and sequencing 

The RNA sequencing design of this study is described in Scott et al. ​(4)​.              
Briefly, we visually dissected 30-50 mg of each frozen muscle biopsy sample (n=323             
including seven replicates), avoiding adipose tissue. Total RNA was extracted and           
purified with Trizol (Invitrogen, Carlsbad, CA). RNA integrity numbers (RINs), an           
estimate of RNA degradation ​(15)​, ranged from 6.6 to 9.4 (median 8.4). We mean              
imputed the RIN value of one sample missing a RIN value due to a technical error                
(mean value 8.37). After poly(A) selection, each sample was sequenced to >80            
million 100bp paired-end reads. We assessed the uniformity of read depth coverage            
by calculating the mean transcript integrity number (TIN) ​(16) for each sample using             
RSeQC v2.6.4 ​(17)​. 

RNA-seq processing and quality control 

We followed the same read mapping and quality control (QC) procedures as            
in our previous muscle RNA-seq data freeze ​(4)​. Using the basic GENCODE v19             
annotations ​(18)​, we counted fragments mapping to each gene using htseq-count           
v0.5.4 ​(19)​ and quantified gene expression as transcripts per million (TPM) ​(20, 21)​.  

We performed QC on 323 samples: 279 samples + 7 replicates from Scott et              
al. ​(4) and 30 additional samples with sequencing completed after that paper. As in              
Scott et al. ​(4)​, we ran QoRTs v1.1.18 ​(22)​. We excluded three samples, in addition               
to the one excluded by Scott et al. ​(4)​, that were extreme outliers based on their read                 
coverage at the 3' end of gene bodies. We reinstated one sample previously             
excluded in Scott et al. ​(4) that was no longer an outlier based on insert size in                 
context of the full dataset.  

We analyzed the cumulative gene diversity—the cumulative fraction of reads          
as a function of genes sorted by read-count—across samples. For each gene, we             
calculated the median counts across samples and used the cumulative distribution of            
median read counts as the reference distribution. We compared the cumulative read            
count distribution of each sample to this reference using the Kolmogorov-Smirnov           
test (ks.test function in R) and removed seven additional outlier samples           
(p-value<0.01). 

To identify sample swaps and contaminated samples we compared the allelic           
RNA-seq read count distribution to known sample genotypes using verifyBamID          
v1.1.1 ​(23)​. We identified the two pairs of sample swaps and one contaminated             
sample previously described in Scott et al. ​(4)​. We verified the reported sex of the               
remaining samples using ​XIST gene expression and the mean Y chromosome gene            
expression.  

As a final QC step, we sought to remove outlier samples based on PCA. For               
each gene, we performed linear regression of gene expression (TPM) as a function             
of age, sex, batch, and RIN. We performed PCA on the gene expression residuals.              
We selected the minimum number of PCs to explain 20% of the variance in gene               



 

expression (2 PCs) and transformed the PCs to z-scores. We found no sample             
outliers, defined as |z-score| >5, for either PC. 

After removing the genotype-based sample exclusions, the gene expression         
analysis set comprised 301 unique samples (Table S6) and 20,953 autosomal genes            
with ≥5 counts in >25% of samples. For each subsequent analysis with a different              
sample set (e.g., dichotomous physiological trait association, continuous        
physiological trait association, eQTM, eQTL), we performed inverse normalization of          
the TPMs (randomly breaking ties) for each gene (inverse normalized gene           
expression) for the samples used in that analysis. 

DNA isolation and methylation quantification 

We measured DNA methylation (DNAme) in 303 skeletal muscle samples with           
a remaining piece of tissue after performing RNA-seq. Both gene expression and            
DNAme data come from separate pieces of tissue from the same biopsy site. We              
visually dissected ~25 mg of each frozen muscle sample, avoiding adipose tissue.            
We extracted 200 ng of genomic DNA per sample using the DNeasy Blood & Tissue               
Kits (QIAGEN) according to the manufacturer’s recommendations. We        
bisulfite-converted genomic DNA using EZ DNA methylation Kits (ZYMO research),          
as part of the TruSeq DNA Methylation protocol (Illumina). We measured DNAme            
using the Illumina Infinium HD Methylation Assay with Infinium MethylationEPIC          
BeadChips, according to manufacturer’s instructions, at the Center for Inherited          
Disease Research (Johns Hopkins University). Muscle samples were processed         
within a larger study including 333 adipose, EndoC-βH1 (pancreatic beta cell line),            
41 islets, and 24 whole blood samples. 

Methylation blacklist probes identification and exclusion 

Prior to sample QC we identified a set of MethylationEPIC BeadChip probes            
with sequences that may cause problems in subsequent analyses, commonly termed           
blacklist probes.  

Illumina probes can map to more than one genomic location ​(24–27)​. To            
identify cross-reactive, non-uniquely mapping probes, we mapped probes (excluding         
control and genotype probes) to the bisulfite-converted genome (GRCh37/hg19)         
using Novoalign (‘-b4 -R120’ options). We excluded 49,495 probes that did not map             
to a unique location.  

Illumina DNAme probe sequences may contain SNVs which lead to biases in            
inter-individual studies ​(24, 25)​. We identified variants to use for probe exclusions            
(rules below) from the union of the following sources: 1) common (MAF≥1%) SNVs,             
indels, or structural variation in the phase 3 1000G European dataset, 2) common             
SNVs in the HRC reference panel r1.1, and 3) imputed SNVs with a cumulative total               
of >1 allele in our own samples. We excluded type I and II probes with a variant                 
within 10 bp of the 3’ end of the probe ​(25) or within the target CpG itself. We also                   
excluded type I probes with a variant within the single base extension site. In all we                
removed 63,840 probes that overlapped an SNV. In addition, we removed all probes             



 

on a previously published blacklist from McCartney et al. ​(26)​. In total, we removed              
120,627 blacklist probes. 

Initial methylation sample quality control  

We processed raw signal idat files using minfi v1.20.2 ​(28) and calculated            
beta-values and M-values using the Illumina normalization method implemented in          
minifi (default parameters). We excluded five samples for which >1% of probes had             
low quality signal, defined as a probe detection p-value >0.05—which compares the            
combined raw methylated (Meth) and un-methylated (Unmeth) signal to the          
background noise ​(28, 29)​. For each sample, we calculated the median signal            
intensity of the Meth and Unmeth signals ​(28)​; we removed any sample with Meth              
and/or Unmeth <10 (n=1). We analyzed signals from sets of control probes designed             
to capture different technical aspects (e.g., hybridization efficiency, staining) using          
the returnControlStat function from shinyMethyl v1.10.0 ​(30)​. For each control probe           
type, we calculated the mean signal of each sample. To identify samples with             
evidence of multiple outlying probe signals we transformed the mean sample signal            
for each control probe type to z-scores and removed three muscle samples with             
|z-score| >3 for ≥1 type of control probes.  

We assessed the 59 probes designed to detect common SNVs on the EPIC             
array (SNV probes) to verify sample identity. From these 59 SNV ​probes, we             
dropped: 1) two probes with an SNV from the Haplotype Reference Consortium            
within the last 10bp of the probe, 2) six that failed HWE (p-value<10​-6​), ​3) ​one with                
many beta-values in-between genotype clusters, 4) one that was tri-allelic in the            
HRC reference panel, and 5) two with >10 mismatches across samples. In total, we              
compared 47 SNVs to imputed genotypes. For each of the 47 SNV probes, we              
converted the beta-values for the proportion of a given allele (0, 0.5, 1) to the 0, 1, 2                  
scale of genotype dosages oriented to the alternate allele. For each sample, we             
calculated the total allelic difference of the EPIC array genotype dosages and the             
imputation dosages as the sum of the absolute difference (|genotype​EPIC -           
genotype​dosage​|) over all 47 SNV probes. We dropped four muscle samples with total             
allelic difference >3 and corrected one sample swap. 

We verified the reported sex of the remaining samples using X chromosome            
DNAme (getSex function in minfi). 

Final methylation probe and sample quality control 

We removed 733 probes with a probe detection p-value >0.05 in ≥5% of             
muscle samples that passed initial QC filters, leaving 727,141 autosomal probes. 

We identified samples with outlying M-value DNAme distributions by a)          
calculating per sample M-value percentiles separately for type I and II probes and b)              
comparing each sample to the median M-value distribution using the          
Kolmogorov–Smirnov test (ks.test function in R). We identified and removed one           
muscle sample with p-value <0.01. 



 

We performed PCA of the M-values across the complete dataset (including           
muscle, adipose, EndoC-βH1, islet, and whole blood samples). The first two PCs            
visually separated the tissue types. We removed three putative muscle samples that            
did not cluster with the other muscle samples. 

We removed additional outliers based on PCA within muscle samples only.           
First, we performed linear regression of M-values as a function of plate, sentrix             
position, plate position, age, and sex. Second, we performed PCA on the residual             
M-values. We selected the minimum number of PCs to explain 20% of the variance              
(6 PCs) and transformed the PCs to z-scores. We excluded one sample with a              
|z-score| >5 for PC2. We repeated PCA and found no further outliers. 

After removing the genotype-based exclusions, the total DNAme analysis set           
comprised 282 unique samples (Table S7) and 727,141 autosomal probes. For each            
subsequent analysis with a different sample set (e.g., dichotomous physiological trait           
association, continuous physiological trait association, eQTM, mQTL), we performed         
inverse normalization of the M-values (randomly breaking ties) for each probe           
(inverse normalized DNAme) for the samples used in that analysis. 

Tissue type proportion estimates 

We estimated tissue type proportions in the FUSION muscle samples using           
five GTEx tissues (phs000424.v7.p2) as a reference: “skin not sun exposed           
suprapubic”, “whole blood”, “adipose subcutaneous”, “muscle skeletal”, and “EBV         
transformed lymphocytes” (as a proxy for inflammatory processes). We refer to these            
tissue/cell types as “tissues”. For each gene present in the FUSION muscle samples,             
we computed the mean TPM per GTEx tissue and estimated tissue type proportions             
in FUSION muscle samples using the unmix function from DESeq2 v1.18.1 ​(31)​. We             
estimated 0% skin across all samples and subsequently excluded this tissue           
estimate. We calculated the Pearson correlation coefficient between tissue estimates          
and inverse normalized expression PCs (see ​RNA-seq processing and quality          
control​). We used the estimated tissue type proportions (obtained from expression           
data) for analysis of both gene expression and of DNAme. The DNAme data were              
obtained from a separate piece of tissue from the same biopsy. As shown in the               
Results section and Fig. S2B, the estimated tissue proportions from RNA-seq of a             
second pieces of tissue for six samples are highly correlated (r>0.88) and thus             
should provide good estimates for the DNAme data analysis.  

Muscle fiber type proportion estimates 

In humans, MYH1 (Type 2X) and MYH2 (Type 2A) are the major fast twitch              
muscle components, and MYH7 (Type 1) is the primary slow twitch muscle            
component ​(32)​. We assume that the TPM count of each gene is proportional to the               
amount of each fiber type. To estimate muscle fiber type proportions, we divided the              
expression (TPMs) of each of these genes by the sum of the expression of the three                
genes. We calculated the Pearson correlation coefficient between fiber estimates          
and inverse normalized expression PCs (see ​RNA-seq processing and quality          



 

control​). In addition, as shown in the ​Results section and Fig. S3B, the estimated              
fiber type proportions from RNA-seq of a second pieces of tissue for six samples are               
highly correlated (r>0.98) and thus should provide good estimates for the DNAme            
data analysis. To further verify that our estimates reflect fiber type differences in             
muscle, we used expression of Ca ​2+ ATPase A2 and Ca ​2+ ATPase A1, which are              
markers for oxidative (slow twitch) or glycolytic (fast twitch) fiber, respectively. Ca ​2+            
ATPase A2 showed strong correlation with our type 1 (slow twitch) estimate (r=0.71)             
and Ca ​2+ ATPase A1 with our type 2X (fast twitch) estimate (r=0.59), confirming our              
estimates reflect fiber type differences in muscle. 

Molecular trait association with muscle fiber and tissue types 

We tested for association of inverse normalized gene expression (n=301) and           
DNAme (n=265; of 282 DNAme samples, 265 had RNA-seq data and therefore            
estimated tissue and fiber type proportions) with estimated tissue and/or fiber type            
proportions using linear regression. We used an F-test to calculate p-values (lm and             
anova functions in R).  

We describe analysis for gene expression and use the same analysis            
strategy for DNAme. ​For individual ​i and gene ​j ​, let denote the inverse          Eij     
normalized gene expression and be the vector of covariates.    Z , , .., }Zi = { 1 Z2 . Zc T     c   
We tested for association using the linear model: 

 
       (1)E  F δ F δ  Z γ  ε     ij = αj +   i2A 2Aj +   i2X 2Xj +  i j

T +  ij  
 
where is the intercept, and are the 2A and 2X estimated fiber type αj    F i2A   F i2X         
proportions, and the corresponding ​regression coefficients, is the vector δ2Aj  δ2Xj     γ j    
of the regression coefficients for the covariates, and ​a normally distributed error        εij     
term with mean 0 and variance 1. ​We included as covariates sex, age,       σ2 =         
smoking status, collection site, RNA sequencing batch, RIN, and mean TIN. We            
corrected for the number of tests using the Benjamini-Hochberg procedure ​(33)​. 

We replaced the estimated fiber type proportion with estimated tissue type           
proportion and repeated the analysis. We replaced the inverse normalized gene           
expression with inverse normalized DNAme and repeated these analyses using as           
covariates sex, age, smoking status, collection site, plate, position of slide on plate,             
and position of array on slide.  

 Physiological trait association with tissue and fiber type  

We tested for association in 301 participants between eight physiological traits           
(fasting serum insulin, fasting plasma glucose, BMI, WHR, waist, weight, height, and            
T2D status) with estimated tissue type or muscle fiber type proportions using linear             
regression for quantitative traits and logistic regression for T2D. We used an F-test             
to calculate p-values (lm and anova functions in R). We inverse normalized            
(randomly breaking ties) the quantitative physiological traits denoted as for         Y ip  



 

physiological trait ​p ​. We tested for ​association of with estimated fiber type        Y ip      
proportion using the linear regression model: 

 
  (2)Y  F δ  F δ  Z γ  ε     ip = αp +  i2A 2Ap +  i2X 2Xp +  i p

T +   ip  
 
where terms are as defined in equation (1) with covariates: sex, age, smoking status,              
and collection site. 

We tested for association of T2D status with estimated fiber type proportion            
using logistic regression: 

 
 T  F δ δ Z γ  i = α +  i2A 2A + F i2X 2X +  i  

T (3) 
 
where terms and covariates are as defined in equation (2).  

We repeated these analyses replacing estimated fiber type proportions with          
estimated tissue type proportions as well as both tissue and fiber type proportions. 

Molecular trait association with physiological traits 

We tested for association of inverse normalized continuous physiological traits          
or T2D status with inverse normalized gene expression (n=301) or DNAme (n=265).            
We describe analysis for gene expression and use the same analysis strategy for             
DNAme. We tested for association using the linear regression model: 

 
  (4)Y  E ζ  Z γ      ip = αp +   ij jp +  i p

T + ε ip  
 

where is the regression coefficient for and other terms are defined in ζ jp     E  ij        
equation (1). We included three different sets of variables as covariates: 1) a “base”              
set: sex, age, smoking status, sample collection site, and batch variables (defined            
below), 2) a “base” + estimated tissue/cell proportions (“tissue”), and 3) a “base” +              
“tissue” + estimated muscle fiber type proportions (“fiber”). For gene expression,           
batch variables correspond to sequencing batch, RIN, and mean TIN. We tested for             
association of T2D with inverse normalized expression using logistic regression:  
 

T + E ζ Z γ  i = α  ij j +  i  
T (5) 

 
For each physiological trait, we corrected for the number of molecular traits tested             
using the Benjamini-Hochberg procedure. 

We repeated the analysis replacing inverse normalized gene expression with          
inverse normalized DNAme including as batch variables: plate, position of slide on            
plate, and position of array on slide. 



 

GO term enrichment analysis 

We performed GO enrichment analysis as described previously ​(4)​. Briefly,          
we used RNA-Enrich ​(34)​ and the following logistic regression model: 
 

logit(π ) β L γ     j = α + P j +  j
 
  (6) 

   
where is the probability of GO term membership for gene j, is the intercept, is πj           α    β   
the regression coefficient for association of GO term membership, P​j is the signed             
-log ​10​(p-value) of the association between the physiological trait and gene expression           
with inclusion of tissue type (equation 1) or with inclusion of tissue and fiber type as                
covariates, and is the regression coefficient for the GO term membership with L ​j ​,  γ 

            
the log ​10​(gene j length). We include L ​j in the model to account for the potential               
confounding effect of gene length on the enrichment test, as longer genes tend to              
have higher power for expression-trait association and many GO terms contain sets            
of genes that are substantially longer or shorter than average. 

Adjustment for tissue and fiber type typically resulted in stronger GO term            
category enrichment (Fig. S5-12). However, for WHR, we saw much weaker           
enrichment of genes related to cellular respiration after adjustment for tissue and            
fiber type (cellular respiration genes are enriched in type 1 fibers and the estimated              
proportion of type 1 fibers is lower in people with higher WHR), suggesting that              
tissue/fiber composition differences by trait levels can explain some of observed           
gene set enrichment. 

 eQTM association 

We tested for association between inverse normalized gene expression and          
inverse normalized DNAme using linear regression in 265 samples with LIMIX           
v1.0.17 ​(35)​. We consider the linear model: 
 

   E  η  + Z γ    ij = αj +Min nj  i j
T + εij (7) 

 
where ​is the inverse normalized DNAme for probe , the corresponding Min         n  ηnj   
regression coefficient, and ​other terms are defined as in equation (1). We controlled             
for the number of tests ​using the Benjamini-Hochberg procedure. ​Because ​previous           
eQTM studies use a wide range of window sizes from 50kb to 1Mb ​(1, 36–38)​, we                
initially performed analysis of DNAme sites ​≤​10Mb of the gene TSS to evaluate the              
effect of covariate inclusion on shorter ( ​≤​1Mb from TSS to probe site) and longer              
range (>1Mb & ​≤​10Mb) associations.  

We evaluated models with the following sets of covariates: no covariates,           
known covariates, and PEER factor covariates. For known covariates we used the            
three covariate sets described in the ​Molecular trait association with          
physiological traits se ​ction with batch covariates for gene expression and DNAme.           



 

For the PEER factor-based covariates, we used subsets of the 50 and 30 PEER              
factors used in eQTL and mQTL analysis respectively (see ​Proximal eQTL and            
mQTL analysis below). In each PEER factor-based analysis, we included equal           
numbers (x) of gene expression and DNAme PEER factors and label the analysis as              
“x PEER factors” (e.g., 2 PEER factors means we included 2 gene expression PEER              
factors and 2 DNAme PEER factors in the analysis). We performed analysis using x              
PEER factors (where x = {1-10, 15, 20, 25 or 30}). In our final analysis, we used 5                  
expression/DNAme PEER factors as covariates since the 1-10Mb eQTM discovery          
rate changed little when correcting for >5 expression/DNAme PEER factors (Fig.           
S13-14) and to reduce the potential of inducing collider bias, where adjustment for a              
variable that is correlated with two otherwise uncorrelated variables induces a           
correlation ​(39)​. We also selected a 1Mb window from the TSS, as the eQTM              
discovery rate was minimal >1Mb (Fig. S13-14) and to be consistent with our QTL              
mapping window size. 

Proximal eQTL and mQTL analysis  

We performed QTL analysis using SNVs within 1Mb of the gene body for             
gene expression or probe locus for DNAme using QTLtools v1.1 ​(40)​. A total of 318               
samples had gene expression (n=301) and/or DNAme (n=282) data. We included in            
our analysis 7,128,878 autosomal SNVs that passed QC and had MAC>10 in the             
318 samples. We describe the QTL analysis for gene expression; we used the same              
analysis strategy for DNAme.  

To account for unknown biological and technical factors that may add noise to             
the measured gene expression, we performed factor analysis of the inverse           
normalized gene expression via PEER v1.0 ​(41)​. ​We used the linear regression            
model with an additive genetic effect for gene expression: 

 
 E  G β Z γ    ij = αj +   is sj +   i j

T + εij (8) 
 

where is the imputed allele count for SNV ​s for individuals ​i ​, is the regression Gis             βsj     
coefficient of the imputed allele count for SNV ​s, and other terms are as in equation                
(1). We included as covariates the first 4 genotype PCs ​(Eigenstrat p-value <0.1) and              
increments ​from 0 ​-100 PE​ER factors. 

We calculated p-values of the regression coefficients accounting for the all           
tests for a given gene using a beta distribution fit with 100 permutations (for              
exploratory PEER factor analysis) and 10,000 permutations (for the final analysis),           
as described in Delaneau et al. ​(40)​. We used ​Storey-Tibshirani ​FDR ​(42) to account              
for the number of genes tested with a threshold of FDR≤1%. 

We present eQTL results based on 50 PEER factors as including these            
factors as covariates maximized the number of genes with an eQTL (FDR≤1%; ​Fig.             
S17). 



 

We repeated the analysis replacing inverse normalized gene expression with          
inverse normalized DNAme (n=282). We present results based on including 30           
PEER factors as including these covariates maximized the number of DNAme sites            
with an mQTL ​(FDR≤1%; Fig.​ ​S17 ​). 

M ​olecular trait Mendelian randomization and causal inference test 

Using MR and mediation techniques, we sought to identify DNAme sites           
whose methylation level may causally influence gene expression (M→E) or vice           
versa (E→M; analysis diagram in Fig. S18). Starting with 37,464 eQTM           
gene-DNAme site pairs (FDR≤1%), we retained 31,578 pairs in which at least one             
molecular trait (gene expression or DNAme) had a QTL (FDR≤1%). 

For a single instrument MR test, we defined instrument variable as the top             
QTL SNV for the molecular trait used as the exposure; thus, when the top eQTL and                
mQTL SNVs are different, the instrument will be different for the MR test, depending              
on which molecular trait is used as the exposure. We therefore analyzed each             
gene-DNAme pair twice, defining the exposure as either gene expression—using the           
top eQTL SNV (eSNV) as an instrument (eSNV​instrument​)—or DNAme—using the top           
mQTL SNV (mSNV) as an instrument (mSNV​instrument​).  

We performed MR and tested for colocalization using the Summary          
data-based Mendelian Randomization (SMR; v0.706) software ​(43) in molecular trait          
association mode ​(44) with the FUSION muscle eQTL and mQTL summary statistics.            
We used 2,737 Europeans (which includes 979 Finns) from the Genetics of Type 2              
Diabetes (GoT2D) project ​(45) to estimate LD. We controlled for the number of tests              
performed within each exposure model using the Benjamini-Hochberg procedure.         
We retained 16,122 gene-DNAme site pairs for which eSNV​instrument and/or          
mSNV​instrument had both an MR association (FDR≤1%) and evidence of colocalization           
of gene expression and DNAme genetic signals (i.e., there was not evidence of             
instrument heterogeneity; p​HEIDI​>0.05). 

We used two tests to identify potentially causal relationships where DNAme           
drives changes in gene expression (M→E) or vice versa (E→M) for each of the              
16,122 gene-DNAme site pairs.  

First, we used the MR Steiger test (TwoSampleMR R package v0.4.7) ​(3)​,            
which tests for a difference between variance explained by the SNV on the outcome              
and the exposure using QTL summary statistics. We retained 7,952 gene-DNAme           
pairs for which eSNV​instrument and/or mSNV​instrument had a predicted causal direction           
from the MR Steiger test (FDR≤1%). 

Next, we used the CIT v2.2 ​(46, 47)​, which performs a series of conditional              
regression tests. We compared the CIT p-values of a causal model (exposure drives             
outcome; p ​CausalCIT​) to a reverse causal model (outcome drives exposure; p ​RevCausalCIT​)           
using covariates from the eQTM analysis. We ran the CIT twice for each             
gene-DNAme site-top QTL SNV trio: a) with the defined exposure molecular trait as             
the exposure (p ​CausalCIT​) and b) with the non-exposure molecular trait defined as the             



 

exposure (p ​RevCausalCIT​). When gene expression is the exposure (eSNV​instrument​), our CIT           
models correspond to: a) eSNV​instrument​→gene expression→DNAme (p ​CausalCIT​) and b)         
eSNV​instrument​→DNAme→gene expression (p ​RevCausalCIT​). In the case where DNAme is         
the exposure (mSNV​instrument​), our CIT models correspond to: a)         
mSNV​instrument​→DNAme→gene expression (p ​CausalCIT​) and b) mSNV​instrument​→gene      
expression→DNAme (p ​RevCausalCIT​). We followed procedures from Ng et al. ​(2) and           
applied Bonferroni correction to control for the number of tests, ​m ​, within each             
SNV​instrument model. We predicted the causal direction for 214 gene-DNAme site pairs            
where (p ​CausalCIT ≤0.01/ ​m ​and p ​RevCausalCIT >0.01/​m​) or (p ​CausalCIT >0.01/​m ​and p ​RevCausalCIT           
≤0.01/ ​m ​), removing pairs identified as independent (p ​CausalCIT >0.01/​m ​and p ​RevCausalCIT          
>0.01/​m ​) or unclassified (p ​CausalCIT ≤0.01/ ​m ​and p ​RevCausalCIT ≤0.01/ ​m​). We note that           
gene-DNAme site pairs without a putative causal CIT prediction could be truly            
independent or could have a causal relationship obscured by measurement error ​(3)​. 

We retained 213 gene-DNAme site pairs with a concordant predicted causal           
direction between the MR Steiger test and the CIT for a given SNV​instrument model. 87               
of these 213 gene-DNAme site pairs had a predicted causal direction using both the              
eSNV​instrument and mSNV​instrument models, all of which had a concordant predicted           
causal direction between both SNV​instrument models. Our final dataset consisted of 213            
putative causal predictions. To reduce redundant gene-DNAme site pairs, we report           
the exposure model with the minimum QTL p-value. 

To test for differences between E→M and M→E gene-DNAme site pairs, we            
randomly selected a single gene-DNAme site pair for every gene or DNAme site             
occurring more than once in the data. We used a Wilcoxon rank sum test to test for a                  
difference in the absolute distance between the DNAme site and gene TSS in             
putatively causal E→M and M→E gene-DNAme site pairs. We annotated the           
skeletal muscle chromatin state of the DNAme site for each putatively causal            
gene-DNAme site pair. For each chromatin state, we tested for a difference in the              
proportion of E→M and M→E gene-DNAme site pairs using Fisher’s exact test and             
controlled for the number of tests using Bonferroni correction. 

Gene expression and DNAme-disease/quantitative trait Mendelian      

randomization test 

We sought to identify genes and/or DNAme sites that may causally influence            
disease/quantitative traits. As sources of genetic regulators for disease/quantitative         
traits, we used publicly available summary statistics from GWAS meta-analyses for           
T2D and 11 T2D-related traits, as well as GWAS results for 522 disease/quantitative             
traits from the UK Biobank (Table S3). For the UK Biobank summary statistics, we              
selected 522 diseases/quantitative traits from 2,418 total traits ​(48)​. Of the 2,418            
traits, we excluded: a) 48 traits unlikely to have a genetic basis (Table S4) and b)                
1,848 binary traits with <1,250 participants in either the case and control group to              
avoid spurious results with variants of MAF <1% ​(49) given the lowest MAF variant              
from our QTL study is 1.57%.  



 

We performed MR using SMR for each gene and a 1Mb proximal window             
across all 534 disease/quantitative traits using FUSION eQTLs, FUSION mQTLs,          
and GTEx eQTLs spanning 48 tissues (v7;       
http://cnsgenomics.com/software/smr/#DataResource​). For each study, tissue, and      
molecular trait, we used the top eQTL or mQTL SNV as the instrument variable. We               
used 2,737 Europeans from the GoT2D project to estimate LD. The MR test             
assumes the instrument is associated with the exposure ​(50)​, and therefore is not             
valid for SNVs weakly (or not at all) associated with a molecular trait. However, to               
provide a complete reference dataset to publicly share, we ran SMR for all genes              
and DNAme sites for each tissue, study, and molecular trait regardless of the top              
QTL p-value (i.e., the QTL may not be strongly associated with the molecular trait;              
SMR parameters: ‘--peqtl-smr 1’). For each study, tissue, and molecular trait, we            
controlled the false positive rate for the number of valid MR tests (lead QTL              
p-value≤5x10​-8​, the SMR default) across all disease/quantitative traits using the          
Benjamini-Hochberg procedure. We performed the HEIDI test and retained variants          
without evidence of instrument heterogeneity (p ​HEIDI​>0.05). Finally, to directly         
compare FUSION and GTEx eQTL results, we ran SMR analysis for gene            
expression each GTEx tissue using the top FUSION muscle eQTL SNV for each             
gene and calculated FDR per tissue as above. 

RXRA ​ power analysis 

We estimated the power to detect an ​RXRA MR association for predicted            
trunk mass in each GTEx tissue in two steps. First, for each GTEx tissue, we               
simulated 1,000 replicates of an ​RXRA​-eQTL using the observed rs6583658          
RXRA​-eQTL effect size in GTEx skeletal muscle (beta ​GTEX muscle​) and the estimated            
GTEx tissue standard error of the effect size (se ​GTEx tissue​). For a given GTEx tissue,               
we estimated the rs6583658 se ​GTEx tissue as se ​GTEX muscle x sqrt(n ​GTEX muscle ​/n ​GTEX tissue​),              
assuming the allele frequency of rs6583658 had little variability across tissues. We            
approximated the two-sided eQTL p-value from the beta​GTEX muscle​/se ​GTEx tissue ​using a t             
distribution with degrees of freedom = n ​GTEx muscle​-2. We performed MR for each tissue              
eQTL with p≤5x10 ​-8 (as in ​Gene expression and DNAme-disease/quantitative         
trait Mendelian randomization test​). For each GTEx tissue, we estimated power as            
number of tests with an MR association (FDR≤1% GTEx tissue cut point estimated in              
Gene expression and DNAme-disease/quantitative trait Mendelian      
randomization test​) divided by 1,000. For FUSION skeletal muscle we estimated           
the power detect an ​RXRA MR association for predicted trunk mass as described             
above using the eQTL effect size and standard error observed in FUSION skeletal             
muscle.  

Gene expression tissue specificity index 

We previously developed an expression specificity index (ESI) to measure the           
cell/tissue type specificity of gene expression ​(4, 51)​. Genes with a high ESI are              
highly and specifically expressed in a single cell/tissue type based on the reference             



 

panel used to generate the index. We previously used this method to identify genes              
with muscle specific expression patterns based on a muscle expression specificity           
index (mESI) we generated using 16 tissues from Illumina Human Body Map 2.0 ​(4)​.  

To calculate mESI values over a more comprehensive reference panel, we           
applied this method to 48 tissues from GTEx, removing tissues with <25 samples             
(bladder, ectocervix, endocervix, and fallopian tube). For each gene in each tissue            
type, we calculated the average expression across samples to build a reference            
transcriptome panel. With this reference transcriptome panel, we calculated muscle          
specificity as previously described ​(4, 51)​. 

Chromatin states and ATAC-seq data 

We used publicly available chromatin states ​(51) and ATAC-seq data ​(4, 52,            
53)​. 

Data availability 

We deposited individual-level genotype, RNA-seq, and DNAme data from this          
study into the database of Genotypes and Phenotypes (dbGaP) with the accession            
number phs001048.v2.p1; data are available via the repository’s standard data          
access request procedures. EPIC methylation array blacklist probes and summary          
statistics of physiological trait associations, eQTMs, eQTLs, mQTLs, and         
disease/quantitative trait MR associations are publicly available at        
https://fusion.sph.umich.edu/public/tissue_biopsy/share/2018_muscle​. 
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Fig. S1. Schematic overview of the SNV, molecular, and disease/quantitative trait
associations and causal relationships assessed in this study. Terms used in figure:
single nucleotide variant (SNV), expression quantitative trait locus (eQTL; association
between SNV and gene expression), methylation quantitative trait locus (mQTL; association
between SNV and DNA methylation), locus from a genome wide association study for a
physiological trait (GWAS; association between SNV and a physiological trait), expression
quantitative trait methylation (eQTM; association between gene expression and DNA
methylation). Solid black lines represent associations where the causal direction is known
(could have potential intermediate causal states). Dashed black lines indicate potential
causal relationships assessed in this study, where the causal relationship could go in either
direction or have an independent source.



(A) Tissue type proportions
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Fig. S2. Estimated tissue type proportions. (A) Tissue fraction estimates using GTEx
tissues as a reference. Across the FUSION skeletal muscle samples that passed QC,
we estimated 0-12.6% adipose, 0% skin, 0-0.4% lymphocytes, 0-1.8% whole blood, and
87.4-100% skeletal muscle tissue. (B) Comparison of each estimated tissue fraction
proportion across six replicate samples with replicates labeled A and B (sample A, x-axis;
sample B, y-axis).



(A) Fiber type proportion estimates
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Fig. S3. Estimated fiber type proportions. (A) Estimated fiber type proportions (based
on MYH1, MYH2, and MYH7 expression). Across the FUSION skeletal muscle samples
that passed QC, we estimated 5.9-79.4% type 1, 0.3-65.2% type 2X, and 3.8-76.6%
type 2A. (B) Comparison of each estimated tissue fraction proportion across six replicate
samples with replicates labeled A and B (sample A, x-axis; sample B, y-axis).



(A) Effect of controlling for tissue and/or fiber type proportions
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(B) Comparison across molecular traits:
base vs base+tissue
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(C) Comparison across molecular traits:
base vs base+tissue+fiber
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Fig. S4. Association of FUSION physiological traits with skeletal muscle gene ex-
pression and DNAme controlling for estimated tissue and/or fiber type proportions.
Analysis performed with base covariates (sex, age, sample collection site, smoking status
and molecular trait specific technical covariates; “base”, red bar and dots), base plus esti-
mated fiber type proportion covariates (“base+fiber”, blue bar), base plus estimated tissue
type proportion covariates (“base+tissue”, green bar and dots) and base plus estimated
tissue type proportion and estimated fiber type covariates (“base+tissue+fiber”, purple bar
and dots). (A) Percent of genes or DNAme sites (y-axis) associated with each physiological
trait (x-axis; FDR 1%). (B) Scatter plot of the number of genes (x-axis) and DNAme
sites (y-axis) associated with each physiological trait adjusting for base or for base+tissue
covariates (results for a given trait connected with black line). (C) Scatter plot of the
number of genes (x-axis) and DNAme sites (y-axis) associated with each physiological trait
adjusting for base or for base+tissue+fiber covariates (results for a given trait connected
with black line).
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Fig. S5. Effect of including fiber type on physiological trait-gene expression
analysis based GO terms: type 2 diabetes status. Scatter plots of �log10(p) for GO
term analysis of the results of association analysis between physiological traits (by page,
fasting insulin, BMI, waist, weight, WHR, height, T2D) with gene expression adjusting for
base+tissue covariates (x-axis) or base+tissue+fiber covariates (y-axis; covariates as
defined in Fig. 1). Identity line in black.
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Fig. S6. Effect of including fiber type on physiological trait-gene expression
analysis based GO terms: fasting insulin. Scatter plots of �log10(p) for GO term
analysis of the results of association analysis between physiological traits (by page, fasting
insulin, BMI, waist, weight, WHR, height, T2D) with gene expression adjusting for
base+tissue covariates (x-axis) or base+tissue+fiber covariates (y-axis; covariates as
defined in Fig. 1). Identity line in black.
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Fig. S7. Effect of including fiber type on physiological trait-gene expression
analysis based GO terms: body mass index. Scatter plots of �log10(p) for GO term
analysis of the results of association analysis between physiological traits (by page, fasting
insulin, BMI, waist, weight, WHR, height, T2D) with gene expression adjusting for
base+tissue covariates (x-axis) or base+tissue+fiber covariates (y-axis; covariates as
defined in Fig. 1). Identity line in black.
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Fig. S8. Effect of including fiber type on physiological trait-gene expression
analysis based GO terms: waist hip ratio. Scatter plots of �log10(p) for GO term
analysis of the results of association analysis between physiological traits (by page, fasting
insulin, BMI, waist, weight, WHR, height, T2D) with gene expression adjusting for
base+tissue covariates (x-axis) or base+tissue+fiber covariates (y-axis; covariates as
defined in Fig. 1). Identity line in black.
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Fig. S9. Effect of including fiber type on physiological trait-gene expression
analysis based GO terms: fasting glucose. Scatter plots of �log10(p) for GO term
analysis of the results of association analysis between physiological traits (by page, fasting
insulin, BMI, waist, weight, WHR, height, T2D) with gene expression adjusting for
base+tissue covariates (x-axis) or base+tissue+fiber covariates (y-axis; covariates as
defined in Fig. 1). Identity line in black.
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Fig. S10. Effect of including fiber type on physiological trait-gene expression
analysis based GO terms: waist. Scatter plots of �log10(p) for GO term analysis of the
results of association analysis between physiological traits (by page, fasting insulin, BMI,
waist, weight, WHR, height, T2D) with gene expression adjusting for base+tissue
covariates (x-axis) or base+tissue+fiber covariates (y-axis; covariates as defined in Fig. 1).
Identity line in black.
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Fig. S11. Effect of including fiber type on physiological trait-gene expression
analysis based GO terms: weight. Scatter plots of �log10(p) for GO term analysis of
the results of association analysis between physiological traits (by page, fasting insulin,
BMI, waist, weight, WHR, height, T2D) with gene expression adjusting for base+tissue
covariates (x-axis) or base+tissue+fiber covariates (y-axis; covariates as defined in Fig. 1).
Identity line in black.
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Fig. S12. Effect of including fiber type on physiological trait-gene expression
analysis based GO terms: height. Scatter plots of �log10(p) for GO term analysis of the
results of association analysis between physiological traits (by page, fasting insulin, BMI,
waist, weight, WHR, height, T2D) with gene expression adjusting for base+tissue
covariates (x-axis) or base+tissue+fiber covariates (y-axis; covariates as defined in Fig. 1).
Identity line in black.
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Fig. S13. eQTMs discovered by TSS to DNAme site distance and by method of
adjustment for latent factors. Rate of eQTM discovery (y-axis; overall FDR 1%) by
distance from eQTM DNAme site to gene TSS distance (x-axis values are the mean
distance per bin; Methods). Results adjusted for known covariates (Known covariates
panel) or stated number of expression/DNAme PEER factors (PEER covariates panel). We
find similar rates of eQTM discovery at DNAme site-TSS distance > 1Mb with adjustments
for 5 expression/DNAme PEER factors as for estimated tissue and fiber type (compare
blue lines in Known covariates and PEER covariates panels).
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Fig. S14. eQTMs discovered by TSS to DNAme site distance and by method of ad-
justment for latent factors. (A) Rate of eQTM discovery (y-axis; overall FDR 1%) by
DNAme site-TSS distance bin (x-axis). Results adjusted for known covariates (Known
covariates panel) or stated number of expression/DNAme PEER factors (PEER covari-
ates panel). Dashed lines at 0.5 to 1 Mb bin. (B) As in panel A, but with additional
expression/DNAme PEER factors. Dashed lines at 0.5 to 1 Mb bin.
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Fig. S15. PEER factor correlation with biological variables. Heatmap of Spearman’s
rank correlation coefficient (rho) between gene expression PEER factors, DNAme PEER
factors, and biological variables. Biological variables include physiological traits, estimated
tissue proportion (using GTEx tissues as reference), and estimated muscle fiber type
proportions (based on MYH1, MYH2, and MYH7 expression).
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Fig. S16. PEER factor correlation with technical variables. Heatmap of Spearman’s
rank correlation coefficient (rho) between gene expression PEER factors, DNAme PEER
factors, and technical variables. Variables labeled batch* correspond to RNA-sequencing.
Variables labeled plate* or pos* correspond to DNAme.
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Fig. S17. Comparison of the number of genes and DNAme sites with a QTL and the
number of gene expression- and DNAme-based PEER factors included as covari-
ates. (A) Number of genes with an eQTL (y-axis) at FDR 5%(orange line) or FDR 1%
(green line) by the number of expression-based PEER factors included in analysis (x-axis).
(B) Number of DNAme sites with an mQTL (y-axis) at FDR 5% (orange line) or FDR 1%
(green line) by the number of DNAme-based PEER factors included in analysis (x-axis).
We selected the number of molecular trait PEER factors that maximized the number genes
with an eQTL (50 factors) and DNAme sites with an mQTL (30 factors).
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Fig. S19. Examples of molecular mediation. Types of molecular mediation. (A)
DNAme!Expression scenario where SNV affects DNAme which changes expression. (B)
Expression!DNAme scenario where SNV affects expression which changes DNAme. (C)
Independent scenario where the SNV effect on DNAme and expression is independent.
For A, B, and C rows: M$E facet: Scatter plot of residual gene expression (adjusted for
PEER factors used in eQTM mapping; y-axis) and residual DNAme (adjusted for PEER
factors; x-axis). Linear regression line for eQTM association, overall (black) and colored
by the SNV genotype (homozygous genotype, green; heterozygous genotype, orange;
other homozygous genotype, purple). SNV!M facet: Box plots and linear regression line
(additive model) of residual DNAme by SNV genotype (facet M). Box plot and regression
line as for panel M, except with adjustment of residual SNV DNAme by residual gene
expression (facet M|E). SNV!E facet: Box plots and linear regression line (additive model)
of residual gene expression by SNV genotype (facet E). Box plot and regression line as
for panel E except with adjustment of residual gene expression by residual DNAme (facet
E|M).
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Fig. S20. Comparison of DNAme sites for predicted E!M and M!E causal relation-
ships. We randomly selected a single gene-DNAme site pair for every gene or DNAme
site occurring more than once in the data. (A) Box plots of the absolute distance of DNAme
site to gene TSS (y-axis) by predicted causal relationship (green E!M, orange M!E).
(B) Count of gene-DNAme site pairs (y-axis) by DNAme site skeletal muscle chromatin
state annotation and predicted causal relationship (x-axis; green E!M, orange M!E). (C)
Percent of gene-DNAme site pairs (y-axis) by DNAme site skeletal muscle chromatin state
annotation and predicted causal relationship (x-axis; green E!M, orange M!E).
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Fig. S23. Number of FUSION gene expression MR associations per dis-
ease/quantitative trait. Number of gene-trait pairs (FDR 1%, pHEIDI > 0.05) for each
disease/quantitative trait with (green) and without (orange) requiring the top eQTL SNV to
have a disease/quantitative trait pGWAS  5 ⇤ 10�8. Top 25 disease/quantitative traits shown,
full results in Table S7.
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Fig. S24. Number of FUSION DNAme MR associations per disease/quantitative trait.
Number of DNAme site-trait pairs (FDR 1%, pHEIDI > 0.05) for each disease/quantitative
trait with (green) and without (orange) requiring the top mQTL SNV to have a dis-
ease/quantitative trait pGWAS  5 ⇤ 10�8. Top 25 disease/quantitative traits shown, full
results in Table S8.
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Fig. S25. Comparison of the number of FUSION gene expression and FUSION
DNAme MR associations per disease/quantitative trait. Scatter plot of the number
of genes (x-axis) and DNAme site (y-axis) MR associations (FDR 1%, pHEIDI > 0.05, top
QTL SNV has pGWAS  5 ⇤ 10�8) for a disease/quantitative trait.



Fig. S26. Comparison of gene-DNAme site pairs from MR associations. Comparison
of eQTM p-values of all gene-DNAme site pairs tested for eQTM (green) to 171 gene-
DNAme site pairs identified through MR associations for the same disease/quantitative
trait (orange). The solid black line is the identity line, and the dotted line corresponds to
an eQTM FDR of 1%. 85 gene-DNAme site pairs without an eQTM are the orange points
below the dashed line.



(A) Top eQTL SNV per tissue/study used as instru-
ment.
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(B) Top FUSION eQTL SNV used as instrument.
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Fig. S27. Number of gene-disease/quantitative trait MR associations for FUSION
skeletal muscle and GTEx tissues. Bar plots of number of genes with MR associations
(FDR 1%, pHEIDI > 0.05) for FUSION skeletal muscle and GTEx tissues, with (green)
and without (orange) requiring top eQTL SNV to have a disease/quantitative trait pGWAS 
5 ⇤ 10�8. Number of samples used for eQTL mapping are given after each tissue name.
(A) Top eQTL SNV per tissue/study used as instrument. (B) Top FUSION eQTL SNV used
as instrument for FUSION skeletal muscle and GTEx tissues.
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Non−cancer illness code, self−reported: hypertension

Peak expiratory flow (PEF)

Pulse rate, automated reading

Qualifications: College or University degree

Sitting height

Standing height

Systolic blood pressure, automated reading

Trunk fat−free mass

Trunk fat massTrunk fat percentage

Trunk predicted mass

Vascular/heart problems diagnosed by doctor: High blood pressure

Vascular/heart problems diagnosed by doctor: None of the above

Waist circumference

Weight

Whole body fat−free mass

Whole body fat mass

Whole body water mass
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(B) GTEx skin (sun exposed lower leg)
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Body fat percentage

Body mass index (BMI)
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Medication for pain relief, constipation, heartburn: Paracetamol

Non−cancer illness code, self−reported: hypertension

Non−cancer illness code, self−reported: hypothyroidism/myxoedema

Peak expiratory flow (PEF)Pulse rate, automated reading

Qualifications: College or University degree

Sitting height

Standing height

Systolic blood pressure, automated readingTreatment/medication code: paracetamol

Trunk fat−free mass

Trunk fat mass

Trunk fat percentage

Trunk predicted mass

Vascular/heart problems diagnosed by doctor: High blood pressure

Vascular/heart problems diagnosed by doctor: None of the above
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(C) GTEx thyroid
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Forced vital capacity (FVC)
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Medication for pain relief, constipation, heartburn: None of the above

Mouth/teeth dental problems: Mouth ulcers

Nervous feelings

Non−cancer illness code, self−reported: diabetes

Non−cancer illness code, self−reported: hypertension

Non−cancer illness code, self−reported: hypothyroidism/myxoedema

Peak expiratory flow (PEF)

Pulse rate, automated reading
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Treatment/medication code: levothyroxine sodium
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(D) GTEx brain substantia nigra
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Forced vital capacity (FVC), Best measure

Hair/balding pattern: Pattern 4
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Non−cancer illness code, self−reported: hypertension
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Qualifications: College or University degree
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Fig. S28. Comparison of the number gene-disease/quantitative trait MR associa-
tions for FUSION skeletal muscle and selected GTEx tissues. Scatter plots of the
number of FUSION skeletal muscle genes (x-axis) and number of GTEx tissue genes
(y-axis) MR associations (FDR 1%, pHEIDI > 0.05, top eQTL SNV has pGWAS  5 ⇤ 10�8)
for a disease/quantitative trait (point). Plots of FUSION skeletal muscle vs the following
tissues: (A) GTEx skeletal muscle. (B) GTEx skin (sun exposed lower leg). (C) GTEx
thyroid. (D) GTEx brain substantia nigra (least correlated with FUSION results).



(A) MR associations with top eQTL SNV pGWAS 
5 ⇤ 10�8

Pulse rate, automated reading

Mood swings

Miserableness

Irritability

Fed−up feelings

Nervous feelings

Worrier / anxious feelings

Non−cancer illness code, self−reported: hypertension

Non−cancer illness code, self−reported: asthma

Non−cancer illness code, self−reported: hyperthyroidism/thyrotoxicosis

Non−cancer illness code, self−reported: hypothyroidism/myxoedema

Non−cancer illness code, self−reported: psoriasis

Non−cancer illness code, self−reported: malabsorption/coeliac disease

Non−cancer illness code, self−reported: high cholesterol

Treatment/medication code: insulin product

Treatment/medication code: levothyroxine sodium

Sitting height

Birth weight

Forced expiratory volume in 1−second (FEV1), Best measure

Forced vital capacity (FVC), Best measure

Forced expiratory volume in 1−second (FEV1), predicted
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Arm fat percentage (left) Arm fat mass (left)
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Arm predicted mass (left)

Trunk fat percentage

Trunk fat mass
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Trunk predicted mass

Hair/balding pattern: Pattern 3

Hair/balding pattern: Pattern 4

Diabetes diagnosed by doctor

Started insulin within one year diagnosis of diabetes

Forced vital capacity (FVC)

Forced expiratory volume in 1−second (FEV1)

Peak expiratory flow (PEF)

Diastolic blood pressure, automated reading

Systolic blood pressure, automated reading

Heel bone mineral density (BMD) T−score, automated (left)Heel bone mineral density (BMD) T−score, automated (right)

Pulse rate

Hand grip strength (left)

Hand grip strength (right)

Waist circumference

Hip circumference

Standing height

Qualifications: College or University degree

Qualifications: None of the above

Mouth/teeth dental problems: Mouth ulcers

Vascular/heart problems diagnosed by doctor: None of the above

Vascular/heart problems diagnosed by doctor: High blood pressureBlood clot, DVT, bronchitis, emphysema, asthma, rhinitis, eczema, allergy diagnosed by doctor: None of the above

Blood clot, DVT, bronchitis, emphysema, asthma, rhinitis, eczema, allergy diagnosed by doctor: Asthma

Blood clot, DVT, bronchitis, emphysema, asthma, rhinitis, eczema, allergy diagnosed by doctor: Hayfever, allergic rhinitis or eczema

Medication for cholesterol, blood pressure, diabetes, or take exogenous hormones: Insulin

Medication for pain relief, constipation, heartburn: None of the above
Medication for pain relief, constipation, heartburn: Paracetamol

Pain type(s) experienced in last month: Headache

Medication for cholesterol, blood pressure or diabetes: Insulin

Heel bone mineral density (BMD) T−score, automated
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(B) MR associations without top eQTL SNV pGWAS 
5 ⇤ 10�8

Pulse rate, automated reading
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Mood swingsMiserableness Irritability

Fed−up feelings
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Worrier / anxious feelingsNon−cancer illness code, self−reported: hypertension

Non−cancer illness code, self−reported: asthma

Non−cancer illness code, self−reported: hyperthyroidism/thyrotoxicosis

Non−cancer illness code, self−reported: hypothyroidism/myxoedema

Non−cancer illness code, self−reported: psoriasis

Non−cancer illness code, self−reported: malabsorption/coeliac disease

Non−cancer illness code, self−reported: high cholesterol

Treatment/medication code: insulin product

Treatment/medication code: levothyroxine sodium

Treatment/medication code: paracetamol

Sitting height

Birth weight
Mean time to correctly identify matches

Forced expiratory volume in 1−second (FEV1), Best measure

Forced vital capacity (FVC), Best measure

Forced expiratory volume in 1−second (FEV1), predictedForced expiratory volume in 1−second (FEV1), predicted percentage

Body mass index (BMI)

Weight

Doctor diagnosed asthma
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Whole body fat mass
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Impedance of whole body
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Impedance of leg (left)
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Leg predicted mass (right)

Leg fat percentage (left)
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Arm predicted mass (right)
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Trunk fat−free mass

Trunk predicted mass

Hair/balding pattern: Pattern 3
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Diabetes diagnosed by doctor

Started insulin within one year diagnosis of diabetes

Forced vital capacity (FVC)

Forced expiratory volume in 1−second (FEV1)

Peak expiratory flow (PEF)

Diastolic blood pressure, automated reading

Systolic blood pressure, automated reading

Heel bone mineral density (BMD) T−score, automated (left)

Heel bone mineral density (BMD) T−score, automated (right)

Pulse rate

Hand grip strength (left)

Hand grip strength (right) Waist circumference

Hip circumference

Standing height

Qualifications: College or University degree

Qualifications: None of the above

Mouth/teeth dental problems: Mouth ulcers

Vascular/heart problems diagnosed by doctor: None of the above

Vascular/heart problems diagnosed by doctor: High blood pressure

Blood clot, DVT, bronchitis, emphysema, asthma, rhinitis, eczema, allergy diagnosed by doctor: None of the above

Blood clot, DVT, bronchitis, emphysema, asthma, rhinitis, eczema, allergy diagnosed by doctor: AsthmaBlood clot, DVT, bronchitis, emphysema, asthma, rhinitis, eczema, allergy diagnosed by doctor: Hayfever, allergic rhinitis or eczema

Medication for cholesterol, blood pressure, diabetes, or take exogenous hormones: Blood pressure medication

Medication for cholesterol, blood pressure, diabetes, or take exogenous hormones: Insulin

Medication for pain relief, constipation, heartburn: None of the above

Medication for pain relief, constipation, heartburn: ParacetamolPain type(s) experienced in last month: Headache

Medication for cholesterol, blood pressure or diabetes: Insulin

Heel bone mineral density (BMD) T−score, automated
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Fig. S29. Comparison of the number of MR associations per disease/quantitative
trait and the number of disease/quantitative trait SNVs where pGWAS  5 ⇤ 10�8. Com-
parison of the number of MR associations per disease/quantitative trait (y-axis) to the
number of disease/quantitative trait SNVs with pGWAS  5 ⇤ 10�8 (x-axis). (A) Top eQTL
SNV required to have a disease/quantitative trait pGWAS  5 ⇤ 10�8. (B) Top eQTL SNV not
required to have a disease/quantitative trait pGWAS  5 ⇤ 10�8.



(A) GTEx skeletal muscle
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(B) GTEx skin (sun exposed lower leg)
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(C) GTEx thyroid
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(D) GTEx brain substantia nigra
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Fig. S30. Comparison of the strength and direction of gene expression-trunk pre-
dicted mass GWAS MR associations for FUSION skeletal muscle and selected GTEx
tissues. Scatter plots of the signed (by MR effect) �log10(gene expression-trunk predicted
mass GWAS MR p-value) for selected GTEx tissues (y-axis) and FUSION skeletal mus-
cle (x-axis). Each point represents a gene, and for each gene the top eQTL SNV per
tissue/study was used as an instrument. Pearson’s r is reported in subtitle. Plots of
the following tissues vs FUSION skeletal muscle: (A) GTEx skeletal muscle. (B) GTEx
skin (sun exposed lower leg). (C) GTEx thyroid. (D) GTEx brain substantia nigra (least
correlated with FUSION results).



FUSION Muscle Skeletal (N=301)
Muscle Skeletal (N=491)

Skin Sun Exposed Lower leg (N=414)
Thyroid (N=399)

Artery Tibial (N=388)
Adipose Subcutaneous (N=385)
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Colon Transverse (N=246)

Stomach (N=237)
Testis (N=225)

Pancreas (N=220)
Esophagus Gastroesophageal Junction (N=213)
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Adrenal Gland (N=175)
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Brain Nucleus accumbens basal ganglia (N=130)
Brain Cerebellar Hemisphere (N=125)

Small Intestine Terminal Ileum (N=122)
Ovary (N=122)

Brain Frontal Cortex BA9 (N=118)
Cells EBV−transformed lymphocytes (N=117)

Brain Putamen basal ganglia (N=111)
Brain Hippocampus (N=111)

Brain Anterior cingulate cortex BA24 (N=109)
Brain Hypothalamus (N=108)

Vagina (N=106)
Uterus (N=101)

Brain Amygdala (N=88)
Minor Salivary Gland (N=85)

Brain Spinal cord cervical c−1 (N=83)
Brain Substantia nigra (N=80)
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Number of gene−GWAS trait pairs

Fig. S31. Comparison of gene expression MR associations for T2D across for FU-
SION and GTEx. Bar plot depicting the number of gene expression MR associations
(FDR 1%, pHEIDI > 0.05, top eQTL SNV has pGWAS  5 ⇤ 10�8) for T2D (x-axis) across
GTEx tissues and FUSION skeletal muscle (y-axis). Number of samples used for eQTL
mapping are given after each tissue name.



(A) Median expression
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(B) Expression specificity
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Fig. S32. Expression characteristics of genes with disease/quantitative trait MR
association in FUSION that occur in GTEx skeletal muscle. Box plot of expression
characteristics of genes where GTEx skeletal muscle is the strongest MR association
across all GTEx tissues (green) and is not (orange). (A) The fold difference in expression
of GTEx skeletal muscle and the GTEx tissue with the strongest MR association that is not
GTEx skeletal muscle. (B) The skeletal muscle expression specificity index (mESI).
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Fig. S33. RXRA MR associations for selected traits. Strength of MR association (y-
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Supplementary Tables 

 
Table S1.​ Characterization of participants in the FUSION tissue biopsy study. 
 

 
DNAme 
samples 

RNA-seq 
samples 

Common 
RNA-seq & 

DNAme 
samples 

Union RNA-seq & 
DNAme samples 

N 282 301 265 318 

Sex = M (%) 159 (56.4%) 174 (57.8%) 152 (57.4%) 181 (56.9%) 

Age (mean ± sd) 59.98 ± 7.92 59.91 ± 7.66 59.87 ± 7.72 60.01 ± 7.84 

BMI (kg/m2; mean ± sd) 27.61 ± 4.27 27.45 ± 4.13 27.45 ± 4.14 27.59 ± 4.25 

Fasting Serum Insulin  
(mU/l; mean ± sd) 8.83 ± 5.43 8.59 ± 5.20 8.66 ± 5.31 8.74 ± 5.32 

Fasting Plasma Glucose 
(mmol/l; mean ± sd) 6.26 ± 0.78 6.27 ± 0.78 6.27 ± 0.79 6.26 ± 0.78 

Ever Smoker = Y (%) 40 (14.2%) 43 (14.3%) 39 (14.7%) 44 (13.8%) 

Oral Glucose Tolerance Test Status (%) 

      Normal Glucose  
      Tolerance (NGT) 98 (34.8%) 108 (35.9%) 90 (34.0%) 116 (36.5%) 

      Impaired Fasting  
      Glucose (IFG) 39 (13.8%) 43 (14.3%) 38 (14.3%) 44 (13.8%) 

      Impaired Glucose  
      Tolerance (IGT) 73 (25.9%) 73 (24.3%) 71 (26.8%) 75 (23.6) 

      Type 2 Diabetes (T2D) 72 (25.5%) 77 (25.6%) 66 (24.9%) 83 (26.1%) 

 

  



 

Table S2A. Physiological trait associations with tissue type proportions. Linear          
regression analysis of inverse normalized trait with indicator variables for estimated           
tissue composition proportion adjusted for base covariates ( ​Methods ​) and fiber type.           
The reference tissue is skeletal muscle.  

 

Physiological 
trait 

Tissue type coefficient Tissue type p-value 
F test for 

tissue Adipose Lympho
cytes 

Whole 
blood Adipose Lymphoc

ytes 
Whole 
blood 

Waist 3.53 -96.1 34.81 0.13 0.33 0.074 0.070 

BMI 4.41 -118.0 48.1 0.081 0.26 0.022 0.014 

Fasting insulin -0.46 190.0 47.7 0.86 0.075 0.024 0.0069 

Weight 3.55 -23.5 35.3 0.094 0.79 0.045 0.028 

WHR 1.73 -57.4 29.1 0.38 0.49 0.076 0.18 

Fasting 
glucose -0.79 -74.7 59.6 0.74 0.45 0.0026 0.025 

T2D -1.94 -87.8 99.7 0.78 0.77 0.11 0.42 

Height -0.36 69.5 -4.90 0.84 0.34 0.74 0.81 

 
  



 

 

Table S2B. ​Physiological trait associations with fiber type proportions. Linear          
regression analysis of the inverse normalized trait with indicator variables for           
estimated fiber type proportion adjusted for base covariates ( ​Methods ​) and tissue           
type. The reference fiber type is type 1. 
 

 
Physiological 

trait 

Fiber type coefficient Fiber type p-value  
F test for fiber 

type  Type 2A Type 2X Type 2A Type 2X 

Waist -0.33 2.06 0.49 2.0x10 ​-6 5.1x10 ​-7 

BMI -0.72 2.00 0.17 1.9x10 ​-5 1.1x10 ​-6 

Fasting insulin -0.47 2.14 0.38 6.5x10 ​-6 1.2x10 ​-6 

Weight -0.57 1.40 0.20 4.1x10 ​-4 5.1x10 ​-5 

WHR 0.0094 1.45 0.98 8.4x10 ​-5 1.4x10 ​-4 

Fasting 
glucose -0.73 0.32 0.16 0.48 0.16 

T2D -1.65 1.80 0.31 0.23 0.13 

Height -0.12 -0.42 0.74 0.20 0.44 

  



 

Table S3. Sources of summary statistics for genetic effects on          

disease/quantitative traits. 
 
Trait Reference 

T2D  (54) 

Fasting glucose (55) 

Fasting insulin (55) 

HOMA (55) 

HOMA-B (55) 

Proinsulin (56) 

Proinsulin adjusted for BMI (56) 

BMI (57) 

Waist (58) 

Waist adjusted for BMI (58) 

Weight (men) (59) 

Weight (women) (59) 

UK Biobank traits 
Manifest 20170915 (downloaded Feb. 26, 2018) 

(48) 
https://docs.google.com/spreadsheets/d/1b3oGI2l
Ut57BcuHttWaZotQcI0-mBRPyZihz87Ms_No 

 
 

  



 

Table S4. Dropped UK Biobank traits. ​UK Biobank traits that were not considered             
in analysis. 
 

Trait code Trait description 

2473 Other serious medical condition/disability diagnosed by doctor 

2492 Taking other prescription medications 

2844 Had other major operations 

4825 Noisy workplace 

20161 Pack years of smoking PREVIEW ONLY 

20162 Pack years adult smoking as proportion of life span exposed to smoking PREVIEW ONLY 

20002_99999 Non-cancer illness code, self-reported: unclassifiable 

20107_100 Illnesses of father: None of the above (group 1) 

20107_101 Illnesses of father: None of the above (group 2) 

20110_100 Illnesses of mother: None of the above (group 1) 

20110_101 Illnesses of mother: None of the above (group 2) 

20111_100 Illnesses of siblings: None of the above (group 1) 

20111_101 Illnesses of siblings: None of the above (group 2) 

20118_11 Home area population density - urban or rural: Scotland - Large Urban Area 

20118_12 Home area population density - urban or rural: Scotland - Other Urban Area 

20118_13 Home area population density - urban or rural: Scotland - Accessible Small Town 

20118_16 Home area population density - urban or rural: Scotland - Accessible Rural 

20118_17 Home area population density - urban or rural: Scotland - Remote Rural 

20118_3 Home area population density - urban or rural: England/Wales - Village - sparse 

20118_6 Home area population density - urban or rural: England/Wales - Town and Fringe - less sparse 

20118_7 Home area population density - urban or rural: England/Wales - Village - less sparse 

20118_8 Home area population density - urban or rural: England/Wales - Hamlet and Isolated Dwelling - 
less sparse 

20118_9 Home area population density - urban or rural: Postcode not linkable 

2664_1 Reason for reducing amount of alcohol drunk: Illness or ill health 

2664_2 Reason for reducing amount of alcohol drunk: Doctor's advice 

2664_3 Reason for reducing amount of alcohol drunk: Health precaution 

2664_4 Reason for reducing amount of alcohol drunk: Financial reasons 

3859_1 Reason former drinker stopped drinking alcohol: Illness or ill health 

3859_3 Reason former drinker stopped drinking alcohol: Health precaution 

6155_100 Vitamin and mineral supplements: None of the above 

6157_1 Why stopped smoking: Illness or ill health 

6157_100 Why stopped smoking: None of the above 

6157_2 Why stopped smoking: Doctor's advice 

6157_3 Why stopped smoking: Health precaution 



 

6157_4 Why stopped smoking: Financial reasons 

6158_1 Why reduced smoking: Illness or ill health 

6158_100 Why reduced smoking: None of the above 

6158_2 Why reduced smoking: Doctor's advice 

6158_3 Why reduced smoking: Health precaution 

6158_4 Why reduced smoking: Financial reasons 

6179_100 Mineral and other dietary supplements: None of the above 

A63 Diagnoses - main ICD10: A63 Other predominantly sexually transmitted diseases, not elsewhere 
classified 

R68 Diagnoses - main ICD10: R68 Other general symptoms and signs 

Z51 Diagnoses - main ICD10: Z51 Other medical care 

Z53 Diagnoses - main ICD10: Z53 Persons encountering health services for specific procedures, not 
carried out 

Z71 Diagnoses - main ICD10: Z71 Persons encountering health services for other counselling and 
medical advice, not elsewhere classified 

Z76 Diagnoses - main ICD10: Z76 Persons encountering health services in other circumstances 

6142_100 Current employment status: None of the above 

  



 

 
Table S5. Genotype QC summary. Genotype QC summary of all FUSION biopsy            
samples. 
 

Samples 
Removed 

Description 

2 One sample from each of 2 first degree relative pairs (drop NGT and keep IGT in 
both cases). Identified in Scott et al. ​(4)​. 

1 Non-Finnish participant.  

328 / 331 Total samples passed / total samples submitted 

 
  



 

 
Table S6. RNA-seq QC summary. RNA-seq QC summary on skeletal muscle           
samples. 
 

Samples 
Removed 

Description 

1 Contaminated with a different sample based on genotype comparison. Identified in 
Scott et al. ​(4)​. 

4 Extreme 3’ bias in gene body coverage. One sample identified in Scott et al. ​(4)​.  

7 Outlier in transcriptional diversity. 

2 Drop one of 2 pairs of first degree relatives (genotype QC; Table S5). 

1 Drop non-Finnish participant (genotype QC; Table S5). 

7 Select one sample from 6 intentional replicates and one unintentional replicate. 

301 / 323 Total samples passed / total samples submitted 

 
  



 

 
Table S7. DNAme QC summary. DNAme QC summary on skeletal muscle           
samples. 
 

Samples 
Removed 

Description 

5 Failed low quality probe filter. 

1 Outlier in median raw methylated and un-methylated signals across probes. 

3 Outlier in control probes. 

4 Contaminated with a different sample based on genotype comparison. 

1 Outlier in DNAme distribution. 

3 Clustered outside expected tissue in PCA. 

1 Failed residual PCA filter. 

2 Drop one of 2 pairs of first degree relatives (genotype QC; Table S5). 

1 Drop non-Finnish participant (genotype QC; Table S5). 

282 / 303 Total samples passed / total samples submitted 

 

  



 

Captions for Supplementary Datasets 

 
Dataset S1A. Top 50 genes associated with skeletal muscle fiber type           

proportions. (separate file). ​P-values adjusted using the Benjamini-Hochberg        
procedure. Type1 fiber used as reference.  
 
 
Dataset S1B. Top 50 DNAme sites associated with skeletal muscle fiber type            

proportions. (separate file). ​P-values adjusted using the Benjamini-Hochberg        
procedure. Type1 fiber used as reference.  
 
 
Dataset S2. Predicted causal direction for gene-DNAme site pairs. (separate          

file). 
 
 
Dataset S3. Number of FUSION gene expression MR associations per dis-           

ease/quantitative trait. (separate file). ​Number of gene-trait pairs (FDR≤1%,         
p ​HEIDI​>0.05) for each disease/quantitative trait with and without requiring the top           
eQTL SNV to have a disease/quantitative trait p​GWAS​≤5x10 ​-8​.  
 

 

Dataset S4. Number of FUSION DNAme MR associations per         

disease/quantitative trait. (separate file). ​Number of DNAme site-trait pairs         
(FDR≤1%, p ​HEIDI​>0.05) for each disease/quantitative trait with and without requiring          
the top mQTL SNV to have a disease/quantitative trait p​GWAS​≤5x10 ​-8​. 
 
 

Dataset S5. FUSION and GTEx muscle MR associations. (separate file).          

Overlapping FUSION muscle and GTEx muscle MR associations where the GTEx           
muscle MR association was the smallest among all other GTEx tissues. 
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