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Supplementary Notes

Note S1. We note that using genetic colocalization to distinguish model 1 can be
unreliable if: 1) the LD patterns between the FUSION study and the GWAS differ, 2)
there are multiple conditionally independent causal variants within the same locus, or
3) the LD between two causal variants for the exposure and the outcome is
extremely high (r? close to 1). Only experimental work can truly pinpoint the causal
SNV(s).

Note S2. Biological knowledge of the instrument SNV can be used to guard against
the possibility of reverse causation in an MR analysis. For instance, in cases where a
molecular trait (e.g., gene expression or DNAme) is modelled as an exposure and a
disease/quantitative trait (e.g., BMI) as the outcome, it is reasonable to assume a
low probability that a SNV with a strong molecular trait association primarily affects
the disease/quantitative trait and subsequently the molecular trait, especially given a
polygenic disease/quantitative trait composed of many small genetic effects. The
genetic effect on the disease/quantitative trait and molecular trait could be
independent (horizontal pleiotropy), but the SNV is unlikely to affect the molecular
trait through the disease/quantitative trait.

By contrast, when considering two molecular traits and a SNV whose
biological effect is not well understood, one cannot assume the criteria of MR are
met. Indeed, studies have reported instances where DNAme drives expression (an
active model) as well as the reverse (a passive model) (1, 2). Triangulating between
different methods in this scenario is important. By comparing the variance explained
by the SNV through a statistical test, the MR Steiger test infers the causal direction
between molecular traits when the biological effect of the SNV (instrument variable)
is not fully understood. However, the MR Steiger test cannot distinguish between a
causal and independent model (horizontal pleiotropy). The CIT can distinguish
between a causal and independent model (Fig. S19) but is less reliable in the
presence of measurement error (which could be technical or biological) compared to
MR (3). In particular, measurement error in the mediating variable is likely to bias CIT
results towards declaring two molecular traits as causally independent.



Supplementary Materials and Methods
Participant recruitment, muscle biopsy procedures, physiological trait
phenotyping are described in Scott et al. (4).

Genotyping and quality control

We extracted DNA from blood. DNA samples were genotyped at the Genetic
Resources Core Facility of the Johns Hopkins Institute of Genetic Medicine. 327
samples were genotyped on the HumanOmni2.5-4v1_H BeadChip array and four on
the InfiniumOmni2-5Exome-8v1-3 BeadChip array (lllumina, San Diego, CA, USA).
We mapped the lllumina array probe sequences to the hg19 genome assembly
using the Burrows-Wheeler Aligner (5). We excluded SNVs not present on both
arrays, SNVs with probe alignment problems (e.g., multi-mapping probes), and
probes with known SNVs in the 3’ end. We excluded SNVs with call rates <95%,
minor allele count (MAC) <1, or Hardy—Weinberg equilibrium (HWE) p-value<10*,
leaving 1,571,557 SNVs. Alleles were oriented relative to the reference genome.

We assessed sample relatedness using KING (6) and identified two pairs
(normal glucose tolerant-impaired glucose tolerance) of first-degree relatives. For
each pair, we excluded the normal glucose tolerant participant. To assess Finnish
ancestry, we estimated genetic principal components (PCs) using weights produced
using the Population Reference Sample (POPRES) European reference panel (7) in
LASER (8). We compared PCs from our samples to those of the reference
populations. We removed one non-Finnish participant (Table S5). To control for
population stratification in the QTL analyses, we performed principal component
analysis (PCA) (9) using 437,182 genotyped, autosomal SNVs that remained after
pruning SNVs to a pairwise r? threshold of 0.5, excluding SNVs with minor allele
frequency (MAF) £1%, and regions of high LD (10, 11).

Genotype imputation

Prior to genotype imputation we removed a) SNVs with a difference in
alternate allele frequency between FUSION and phase 3 1000G European samples
>20%, b) palindromic SNVs with MAF >40%, or c) SNVs with genotype missingness
>2.5%, leaving 1,543,123 SNVs. We performed pre-phasing and imputation on
autosomal SNVs using the Michigan Imputation Server (12). We used Eagle v2.3
(13) for SNV pre-phasing. We imputed SNV genotype dosages using minimac3 (12)
and the Haplotype Reference Consortium (hrc.r1.1.2016, build GRCh37/hg19) panel
(14). We included 7,128,878 autosomal, biallelic SNVs with imputation quality r? hat
>0.3 and MAC 210 in the 318 samples used for QTL analysis (see Proximal eQTL
and mQTL analysis below).




RNA isolation and sequencing

The RNA sequencing design of this study is described in Scott et al. (4).
Briefly, we visually dissected 30-50 mg of each frozen muscle biopsy sample (n=323
including seven replicates), avoiding adipose tissue. Total RNA was extracted and
purified with Trizol (Invitrogen, Carlsbad, CA). RNA integrity nhumbers (RINs), an
estimate of RNA degradation (15), ranged from 6.6 to 9.4 (median 8.4). We mean
imputed the RIN value of one sample missing a RIN value due to a technical error
(mean value 8.37). After poly(A) selection, each sample was sequenced to >80
million 100bp paired-end reads. We assessed the uniformity of read depth coverage
by calculating the mean transcript integrity number (TIN) (16) for each sample using
RSeQC v2.6.4 (17).

RNA-seq processing and quality control

We followed the same read mapping and quality control (QC) procedures as
in our previous muscle RNA-seq data freeze (4). Using the basic GENCODE v19
annotations (18), we counted fragments mapping to each gene using htseg-count
v0.5.4 (19) and quantified gene expression as transcripts per million (TPM) (20, 21).

We performed QC on 323 samples: 279 samples + 7 replicates from Scott et
al. (4) and 30 additional samples with sequencing completed after that paper. As in
Scott et al. (4), we ran QoRTs v1.1.18 (22). We excluded three samples, in addition
to the one excluded by Scott et al. (4), that were extreme outliers based on their read
coverage at the 3' end of gene bodies. We reinstated one sample previously
excluded in Scott et al. (4) that was no longer an outlier based on insert size in
context of the full dataset.

We analyzed the cumulative gene diversity—the cumulative fraction of reads
as a function of genes sorted by read-count—across samples. For each gene, we
calculated the median counts across samples and used the cumulative distribution of
median read counts as the reference distribution. We compared the cumulative read
count distribution of each sample to this reference using the Kolmogorov-Smirnov
test (ks.test function in R) and removed seven additional outlier samples
(p-value<0.01).

To identify sample swaps and contaminated samples we compared the allelic
RNA-seq read count distribution to known sample genotypes using verifyBamID
v1.1.1 (23). We identified the two pairs of sample swaps and one contaminated
sample previously described in Scott et al. (4). We verified the reported sex of the
remaining samples using XIST gene expression and the mean Y chromosome gene
expression.

As a final QC step, we sought to remove outlier samples based on PCA. For
each gene, we performed linear regression of gene expression (TPM) as a function
of age, sex, batch, and RIN. We performed PCA on the gene expression residuals.
We selected the minimum number of PCs to explain 20% of the variance in gene



expression (2 PCs) and transformed the PCs to z-scores. We found no sample
outliers, defined as |z-score| >5, for either PC.

After removing the genotype-based sample exclusions, the gene expression
analysis set comprised 301 unique samples (Table S6) and 20,953 autosomal genes
with =25 counts in >25% of samples. For each subsequent analysis with a different
sample set (e.g., dichotomous physiological trait association, continuous
physiological trait association, eQTM, eQTL), we performed inverse normalization of
the TPMs (randomly breaking ties) for each gene (inverse normalized gene
expression) for the samples used in that analysis.

DNA isolation and methylation quantification

We measured DNA methylation (DNAme) in 303 skeletal muscle samples with
a remaining piece of tissue after performing RNA-seq. Both gene expression and
DNAme data come from separate pieces of tissue from the same biopsy site. We
visually dissected ~25 mg of each frozen muscle sample, avoiding adipose tissue.
We extracted 200 ng of genomic DNA per sample using the DNeasy Blood & Tissue
Kits (QIAGEN) according to the manufacturers recommendations. We
bisulfite-converted genomic DNA using EZ DNA methylation Kits (ZYMO research),
as part of the TruSeq DNA Methylation protocol (lllumina). We measured DNAme
using the lllumina Infinium HD Methylation Assay with Infinium MethylationEPIC
BeadChips, according to manufacturer’s instructions, at the Center for Inherited
Disease Research (Johns Hopkins University). Muscle samples were processed
within a larger study including 333 adipose, EndoC-BH1 (pancreatic beta cell line),
41 islets, and 24 whole blood samples.

Methylation blacklist probes identification and exclusion

Prior to sample QC we identified a set of MethylationEPIC BeadChip probes
with sequences that may cause problems in subsequent analyses, commonly termed
blacklist probes.

lllumina probes can map to more than one genomic location (24-27). To
identify cross-reactive, non-uniquely mapping probes, we mapped probes (excluding
control and genotype probes) to the bisulfite-converted genome (GRCh37/hg19)
using Novoalign (-b4 -R120’ options). We excluded 49,495 probes that did not map
to a unique location.

lllumina DNAme probe sequences may contain SNVs which lead to biases in
inter-individual studies (24, 25). We identified variants to use for probe exclusions
(rules below) from the union of the following sources: 1) common (MAF=1%) SNVs,
indels, or structural variation in the phase 3 1000G European dataset, 2) common
SNVs in the HRC reference panel r1.1, and 3) imputed SNVs with a cumulative total
of >1 allele in our own samples. We excluded type | and Il probes with a variant
within 10 bp of the 3’ end of the probe (25) or within the target CpG itself. We also
excluded type | probes with a variant within the single base extension site. In all we
removed 63,840 probes that overlapped an SNV. In addition, we removed all probes



on a previously published blacklist from McCartney et al. (26). In total, we removed
120,627 blacklist probes.

Initial methylation sample quality control

We processed raw signal idat files using minfi v1.20.2 (28) and calculated
beta-values and M-values using the lllumina normalization method implemented in
minifi (default parameters). We excluded five samples for which >1% of probes had
low quality signal, defined as a probe detection p-value >0.05—which compares the
combined raw methylated (Meth) and un-methylated (Unmeth) signal to the
background noise (28, 29). For each sample, we calculated the median signal
intensity of the Meth and Unmeth signals (28); we removed any sample with Meth
and/or Unmeth <10 (n=1). We analyzed signals from sets of control probes designed
to capture different technical aspects (e.g., hybridization efficiency, staining) using
the returnControlStat function from shinyMethyl v1.10.0 (30). For each control probe
type, we calculated the mean signal of each sample. To identify samples with
evidence of multiple outlying probe signals we transformed the mean sample signal
for each control probe type to z-scores and removed three muscle samples with
|z-score| >3 for 21 type of control probes.

We assessed the 59 probes designed to detect common SNVs on the EPIC
array (SNV probes) to verify sample identity. From these 59 SNV probes, we
dropped: 1) two probes with an SNV from the Haplotype Reference Consortium
within the last 10bp of the probe, 2) six that failed HWE (p-value<107?), 3) one with
many beta-values in-between genotype clusters, 4) one that was tri-allelic in the
HRC reference panel, and 5) two with >10 mismatches across samples. In total, we
compared 47 SNVs to imputed genotypes. For each of the 47 SNV probes, we
converted the beta-values for the proportion of a given allele (0, 0.5, 1) to the 0, 1, 2
scale of genotype dosages oriented to the alternate allele. For each sample, we
calculated the total allelic difference of the EPIC array genotype dosages and the
imputation dosages as the sum of the absolute difference (|genotypegp. -
genotype...q|) over all 47 SNV probes. We dropped four muscle samples with total
allelic difference >3 and corrected one sample swap.

We verified the reported sex of the remaining samples using X chromosome
DNAme (getSex function in minfi).

Final methylation probe and sample quality control

We removed 733 probes with a probe detection p-value >0.05 in 25% of
muscle samples that passed initial QC filters, leaving 727,141 autosomal probes.

We identified samples with outlying M-value DNAme distributions by a)
calculating per sample M-value percentiles separately for type | and Il probes and b)
comparing each sample to the median M-value distribution using the
Kolmogorov—Smirnov test (ks.test function in R). We identified and removed one
muscle sample with p-value <0.01.



We performed PCA of the M-values across the complete dataset (including
muscle, adipose, EndoC-BH1, islet, and whole blood samples). The first two PCs
visually separated the tissue types. We removed three putative muscle samples that
did not cluster with the other muscle samples.

We removed additional outliers based on PCA within muscle samples only.
First, we performed linear regression of M-values as a function of plate, sentrix
position, plate position, age, and sex. Second, we performed PCA on the residual
M-values. We selected the minimum number of PCs to explain 20% of the variance
(6 PCs) and transformed the PCs to z-scores. We excluded one sample with a
|z-score| >5 for PC2. We repeated PCA and found no further outliers.

After removing the genotype-based exclusions, the total DNAme analysis set
comprised 282 unique samples (Table S7) and 727,141 autosomal probes. For each
subsequent analysis with a different sample set (e.g., dichotomous physiological trait
association, continuous physiological trait association, eQTM, mQTL), we performed
inverse normalization of the M-values (randomly breaking ties) for each probe
(inverse normalized DNAme) for the samples used in that analysis.

Tissue type proportion estimates

We estimated tissue type proportions in the FUSION muscle samples using
five GTEx tissues (phs000424.v7.p2) as a reference: “skin not sun exposed
suprapubic”, “whole blood”, “adipose subcutaneous”, “muscle skeletal”’, and “EBV
transformed lymphocytes” (as a proxy for inflammatory processes). We refer to these
tissue/cell types as “tissues”. For each gene present in the FUSION muscle samples,
we computed the mean TPM per GTEX tissue and estimated tissue type proportions
in FUSION muscle samples using the unmix function from DESeqg2 v1.18.1 (31). We
estimated 0% skin across all samples and subsequently excluded this tissue
estimate. We calculated the Pearson correlation coefficient between tissue estimates
and inverse normalized expression PCs (see RNA-seq processing and quality
control). We used the estimated tissue type proportions (obtained from expression
data) for analysis of both gene expression and of DNAme. The DNAme data were
obtained from a separate piece of tissue from the same biopsy. As shown in the
Results section and Fig. S2B, the estimated tissue proportions from RNA-seq of a
second pieces of tissue for six samples are highly correlated (r>0.88) and thus
should provide good estimates for the DNAme data analysis.

Muscle fiber type proportion estimates

In humans, MYH1 (Type 2X) and MYH2 (Type 2A) are the major fast twitch
muscle components, and MYH7 (Type 1) is the primary slow twitch muscle
component (32). We assume that the TPM count of each gene is proportional to the
amount of each fiber type. To estimate muscle fiber type proportions, we divided the
expression (TPMs) of each of these genes by the sum of the expression of the three
genes. We calculated the Pearson correlation coefficient between fiber estimates
and inverse normalized expression PCs (see RNA-seq processing and quality




control). In addition, as shown in the Results section and Fig. S3B, the estimated
fiber type proportions from RNA-seq of a second pieces of tissue for six samples are
highly correlated (r>0.98) and thus should provide good estimates for the DNAme
data analysis. To further verify that our estimates reflect fiber type differences in
muscle, we used expression of Ca?* ATPase A2 and Ca* ATPase A1, which are
markers for oxidative (slow twitch) or glycolytic (fast twitch) fiber, respectively. Ca*
ATPase A2 showed strong correlation with our type 1 (slow twitch) estimate (r=0.71)
and Ca?" ATPase A1 with our type 2X (fast twitch) estimate (r=0.59), confirming our
estimates reflect fiber type differences in muscle.

Molecular trait association with muscle fiber and tissue types

We tested for association of inverse normalized gene expression (n=301) and
DNAme (n=265; of 282 DNAme samples, 265 had RNA-seq data and therefore
estimated tissue and fiber type proportions) with estimated tissue and/or fiber type
proportions using linear regression. We used an F-test to calculate p-values (Im and
anova functions in R).

We describe analysis for gene expression and use the same analysis
strategy for DNAme. For individual / and gene j, let E; denote the inverse
normalized gene expression and Z; = {Zl,Zz,...,ZC}Tbe the vector of ¢ covariates.
We tested for association using the linear model:

Ej=a, + Fp8,,+ Foydyy + Zﬁf +e, (1)

where o;is the intercept, F',,, and F,are the 2A and 2X estimated fiber type
proportions, SZA]. and 62Xj the corresponding regression coefficients, ' is the vector
of the regression coefficients for the covariates, and ¢, a normally distributed error

term with mean 0 and variance ¢?> = 1. We included as covariates sex, age,
smoking status, collection site, RNA sequencing batch, RIN, and mean TIN. We
corrected for the number of tests using the Benjamini-Hochberg procedure (33).

We replaced the estimated fiber type proportion with estimated tissue type
proportion and repeated the analysis. We replaced the inverse normalized gene
expression with inverse normalized DNAme and repeated these analyses using as
covariates sex, age, smoking status, collection site, plate, position of slide on plate,
and position of array on slide.

Physiological trait association with tissue and fiber type

We tested for association in 301 participants between eight physiological traits
(fasting serum insulin, fasting plasma glucose, BMI, WHR, waist, weight, height, and
T2D status) with estimated tissue type or muscle fiber type proportions using linear
regression for quantitative traits and logistic regression for T2D. We used an F-test
to calculate p-values (Im and anova functions in R). We inverse normalized
(randomly breaking ties) the quantitative physiological traits denoted as Y, for



physiological trait p. We tested for association of Y i with estimated fiber type
proportion using the linear regression model:

Y, =a, + Fi2A82Ap + Fi2X82Xp + ZinaT Te, (2)

where terms are as defined in equation (1) with covariates: sex, age, smoking status,
and collection site.

We tested for association of T2D status with estimated fiber type proportion
using logistic regression:

T,=o + F,8, +F 8, + Zy" (3)

where terms and covariates are as defined in equation (2).
We repeated these analyses replacing estimated fiber type proportions with
estimated tissue type proportions as well as both tissue and fiber type proportions.

Molecular trait association with physiological traits

We tested for association of inverse normalized continuous physiological traits
or T2D status with inverse normalized gene expression (n=301) or DNAme (n=265).
We describe analysis for gene expression and use the same analysis strategy for
DNAme. We tested for association using the linear regression model:

Y=o, + EL + Zy, +te, (4)

where Cip is the regression coefficient for E; and other terms are defined in

equation (1). We included three different sets of variables as covariates: 1) a “base”
set: sex, age, smoking status, sample collection site, and batch variables (defined
below), 2) a “base” + estimated tissue/cell proportions (“tissue”), and 3) a “base” +
“tissue” + estimated muscle fiber type proportions (“fiber”). For gene expression,
batch variables correspond to sequencing batch, RIN, and mean TIN. We tested for
association of T2D with inverse normalized expression using logistic regression:

Ti:a+El']'Cj+ zZy" (5)

For each physiological trait, we corrected for the number of molecular traits tested
using the Benjamini-Hochberg procedure.

We repeated the analysis replacing inverse normalized gene expression with
inverse normalized DNAme including as batch variables: plate, position of slide on
plate, and position of array on slide.



GO term enrichment analysis
We performed GO enrichment analysis as described previously (4). Briefly,
we used RNA-Enrich (34) and the following logistic regression model:

logit(n;) = o +P B + Ly (6)

where m; is the probability of GO term membership for gene j, o is the intercept, B is

the regression coefficient for association of GO term membership, P, is the signed
-log,,(p-value) of the association between the physiological trait and gene expression
with inclusion of tissue type (equation 1) or with inclusion of tissue and fiber type as
covariates, and v is the regression coefficient for the GO term membership with L,
the log,,(gene j length). We include L; in the model to account for the potential
confounding effect of gene length on the enrichment test, as longer genes tend to
have higher power for expression-trait association and many GO terms contain sets
of genes that are substantially longer or shorter than average.

Adjustment for tissue and fiber type typically resulted in stronger GO term
category enrichment (Fig. S5-12). However, for WHR, we saw much weaker
enrichment of genes related to cellular respiration after adjustment for tissue and
fiber type (cellular respiration genes are enriched in type 1 fibers and the estimated
proportion of type 1 fibers is lower in people with higher WHR), suggesting that
tissue/fiber composition differences by trait levels can explain some of observed
gene set enrichment.

eQTM association

We tested for association between inverse normalized gene expression and
inverse normalized DNAme using linear regression in 265 samples with LIMIX
v1.0.17 (35). We consider the linear model:

= T
Ey=o + M, + Zy| +e; (7)

where M. is the inverse normalized DNAme for probe n, Ny the corresponding

regression coefficient, and other terms are defined as in equation (1). We controlled
for the number of tests using the Benjamini-Hochberg procedure. Because previous
eQTM studies use a wide range of window sizes from 50kb to 1Mb (1, 36-38), we
initially performed analysis of DNAme sites <10Mb of the gene TSS to evaluate the
effect of covariate inclusion on shorter (<1Mb from TSS to probe site) and longer
range (>1Mb & <10Mb) associations.

We evaluated models with the following sets of covariates: no covariates,
known covariates, and PEER factor covariates. For known covariates we used the
three covariate sets described in the Molecular trait association with
physiological traits section with batch covariates for gene expression and DNAme.




For the PEER factor-based covariates, we used subsets of the 50 and 30 PEER
factors used in eQTL and mQTL analysis respectively (see Proximal eQTL and
mQTL analysis below). In each PEER factor-based analysis, we included equal
numbers (x) of gene expression and DNAme PEER factors and label the analysis as
“x PEER factors” (e.g., 2 PEER factors means we included 2 gene expression PEER
factors and 2 DNAme PEER factors in the analysis). We performed analysis using x
PEER factors (where x = {1-10, 15, 20, 25 or 30}). In our final analysis, we used 5
expression/DNAme PEER factors as covariates since the 1-10Mb eQTM discovery
rate changed little when correcting for >5 expression/DNAme PEER factors (Fig.
S13-14) and to reduce the potential of inducing collider bias, where adjustment for a
variable that is correlated with two otherwise uncorrelated variables induces a
correlation (39). We also selected a 1Mb window from the TSS, as the eQTM
discovery rate was minimal >1Mb (Fig. S13-14) and to be consistent with our QTL
mapping window size.

Proximal eQTL and mQTL analysis

We performed QTL analysis using SNVs within 1Mb of the gene body for
gene expression or probe locus for DNAme using QTLtools v1.1 (40). A total of 318
samples had gene expression (n=301) and/or DNAme (n=282) data. We included in
our analysis 7,128,878 autosomal SNVs that passed QC and had MAC>10 in the
318 samples. We describe the QTL analysis for gene expression; we used the same
analysis strategy for DNAme.

To account for unknown biological and technical factors that may add noise to
the measured gene expression, we performed factor analysis of the inverse
normalized gene expression via PEER v1.0 (41). We used the linear regression
model with an additive genetic effect for gene expression:

E;=o, + GB;+ ZinT +g; (8)

where G, is the imputed allele count for SNV s for individuals /, st is the regression

coefficient of the imputed allele count for SNV s, and other terms are as in equation
(1). We included as covariates the first 4 genotype PCs (Eigenstrat p-value <0.1) and
increments from 0-100 PEER factors.

We calculated p-values of the regression coefficients accounting for the all
tests for a given gene using a beta distribution fit with 100 permutations (for
exploratory PEER factor analysis) and 10,000 permutations (for the final analysis),
as described in Delaneau et al. (40). We used Storey-Tibshirani FDR (42) to account
for the number of genes tested with a threshold of FDR<1%.

We present eQTL results based on 50 PEER factors as including these
factors as covariates maximized the number of genes with an eQTL (FDR<1%; Fig.
S17).



We repeated the analysis replacing inverse normalized gene expression with
inverse normalized DNAme (n=282). We present results based on including 30
PEER factors as including these covariates maximized the number of DNAme sites
with an mQTL (FDR<1%; Fig. S17).

Molecular trait Mendelian randomization and causal inference test

Using MR and mediation techniques, we sought to identify DNAme sites
whose methylation level may causally influence gene expression (M—E) or vice
versa (E—M; analysis diagram in Fig. S18). Starting with 37,464 eQTM
gene-DNAme site pairs (FDR<1%), we retained 31,578 pairs in which at least one
molecular trait (gene expression or DNAme) had a QTL (FDR<1%).

For a single instrument MR test, we defined instrument variable as the top
QTL SNV for the molecular trait used as the exposure; thus, when the top eQTL and
mQTL SNVs are different, the instrument will be different for the MR test, depending
on which molecular trait is used as the exposure. We therefore analyzed each
gene-DNAme pair twice, defining the exposure as either gene expression—using the
top eQTL SNV (eSNV) as an instrument (eSNV, i ,ment)—0" DNAmMe—using the top
mQTL SNV (mSNV) as an instrument (MSNV,ument)-

We performed MR and tested for colocalization using the Summary
data-based Mendelian Randomization (SMR; v0.706) software (43) in molecular trait
association mode (44) with the FUSION muscle eQTL and mQTL summary statistics.
We used 2,737 Europeans (which includes 979 Finns) from the Genetics of Type 2
Diabetes (GoT2D) project (45) to estimate LD. We controlled for the number of tests
performed within each exposure model using the Benjamini-Hochberg procedure.
We retained 16,122 gene-DNAme site pairs for which eSNV, . men and/or
MSNV, ...ment N@d both an MR association (FDR<1%) and evidence of colocalization
of gene expression and DNAme genetic signals (i.e., there was not evidence of
instrument heterogeneity; p,gp>0.05).

We used two tests to identify potentially causal relationships where DNAme
drives changes in gene expression (M—E) or vice versa (E—M) for each of the
16,122 gene-DNAme site pairs.

First, we used the MR Steiger test (TwoSampleMR R package v0.4.7) (3),
which tests for a difference between variance explained by the SNV on the outcome
and the exposure using QTL summary statistics. We retained 7,952 gene-DNAme
pairs for which eSNV, . .ment @nd/or mSNV had a predicted causal direction
from the MR Steiger test (FDR<1%).

Next, we used the CIT v2.2 (46, 47), which performs a series of conditional
regression tests. We compared the CIT p-values of a causal model (exposure drives
outcome; Pe.usacit) t0 @ reverse causal model (outcome drives exposure; Prevcausaicit)
using covariates from the eQTM analysis. We ran the CIT twice for each
gene-DNAme site-top QTL SNV trio: a) with the defined exposure molecular trait as
the exposure (pPc,usacit) @nd b) with the non-exposure molecular trait defined as the

instrument



exposure (Prevcausaicit)- YVhen gene expression is the exposure (€SNV, ¢ument)> OUr CIT
models correspond to: a) eSNV, . ,men—9€ne expression—DNAmMe (pc, saicir) @nd b)
eSNV, crumen— DNAMe—gene expression (Preycausaict)- N the case where DNAme is
the exposure (MSNV, gumen)s OUr  CIT  models correspond to: a)
MSNV i gumenDNAMe—gene  expression (Peaysacir) @nd b) mMSNV g men—gene
expression—DNAMe (Provcausaicit)- Ve followed procedures from Ng et al. (2) and
applied Bonferroni correction to control for the number of tests, m, within each
SNV, «rument Model. We predicted the causal direction for 214 gene-DNAme site pairs
where (Pgaysacir £0.01/m and Pee,causaicir >0-01/m) or (Peaysacrr >0.01/m and preycausaicir
<0.01/m), removing pairs identified as independent (pc.,sacir >0-01/m and pr.causaicit
>0.01/m) or unclassified (Pcausaicr £0.01/m and pgreycausact <0-01/m). We note that
gene-DNAme site pairs without a putative causal CIT prediction could be truly
independent or could have a causal relationship obscured by measurement error (3).

We retained 213 gene-DNAme site pairs with a concordant predicted causal
direction between the MR Steiger test and the CIT for a given SNV, . ment Model. 87
of these 213 gene-DNAme site pairs had a predicted causal direction using both the
€SNV, grumene @Nd MSNV, . models, all of which had a concordant predicted
causal direction between both SNV, ... models. Our final dataset consisted of 213
putative causal predictions. To reduce redundant gene-DNAme site pairs, we report
the exposure model with the minimum QTL p-value.

To test for differences between E—~M and M—E gene-DNAme site pairs, we
randomly selected a single gene-DNAme site pair for every gene or DNAme site
occurring more than once in the data. We used a Wilcoxon rank sum test to test for a
difference in the absolute distance between the DNAme site and gene TSS in
putatively causal E—-M and M—E gene-DNAme site pairs. We annotated the
skeletal muscle chromatin state of the DNAme site for each putatively causal
gene-DNAme site pair. For each chromatin state, we tested for a difference in the
proportion of E->M and M—E gene-DNAme site pairs using Fisher’s exact test and

controlled for the number of tests using Bonferroni correction.

Gene expression and DNAme-disease/quantitative trait Mendelian
randomization test

We sought to identify genes and/or DNAme sites that may causally influence
disease/quantitative traits. As sources of genetic regulators for disease/quantitative
traits, we used publicly available summary statistics from GWAS meta-analyses for
T2D and 11 T2D-related traits, as well as GWAS results for 522 disease/quantitative
traits from the UK Biobank (Table S3). For the UK Biobank summary statistics, we
selected 522 diseases/quantitative traits from 2,418 total traits (48). Of the 2,418
traits, we excluded: a) 48 traits unlikely to have a genetic basis (Table S4) and b)
1,848 binary traits with <1,250 participants in either the case and control group to
avoid spurious results with variants of MAF <1% (49) given the lowest MAF variant
from our QTL study is 1.57%.



We performed MR using SMR for each gene and a 1Mb proximal window
across all 534 disease/quantitative traits using FUSION eQTLs, FUSION mQTLs,
and GTEX eQTLs spanning 48 tissues (v7;
http://cnsgenomics.com/software/smr/#DataResource). For each study, tissue, and
molecular trait, we used the top eQTL or mQTL SNV as the instrument variable. We
used 2,737 Europeans from the GoT2D project to estimate LD. The MR test
assumes the instrument is associated with the exposure (50), and therefore is not
valid for SNVs weakly (or not at all) associated with a molecular trait. However, to
provide a complete reference dataset to publicly share, we ran SMR for all genes
and DNAme sites for each tissue, study, and molecular trait regardless of the top
QTL p-value (i.e., the QTL may not be strongly associated with the molecular trait;
SMR parameters: ‘--peqtl-smr 1°). For each study, tissue, and molecular trait, we
controlled the false positive rate for the number of valid MR tests (lead QTL
p-values5x108, the SMR default) across all disease/quantitative traits using the
Benjamini-Hochberg procedure. We performed the HEIDI test and retained variants
without evidence of instrument heterogeneity (p,gp>0.05). Finally, to directly
compare FUSION and GTEx eQTL results, we ran SMR analysis for gene
expression each GTEXx tissue using the top FUSION muscle eQTL SNV for each
gene and calculated FDR per tissue as above.

RXRA power analysis

We estimated the power to detect an RXRA MR association for predicted
trunk mass in each GTEXx tissue in two steps. First, for each GTEx tissue, we
simulated 1,000 replicates of an RXRA-eQTL using the observed rs6583658
RXRA-eQTL effect size in GTEx skeletal muscle (betagey musae) @nd the estimated
GTEXx tissue standard error of the effect size (Segg, tissue)- FOr @ given GTEX tissue,
we estimated the rs6583658 Se€gre, fssue @S S€arex musce X SAM(NarEX musde MNaTex tissue):
assuming the allele frequency of rs6583658 had little variability across tissues. We
approximated the two-sided eQTL p-value from the betag ey musce/S€otex tissue USING A t
distribution with degrees of freedom = Ngrg, musae-2- We performed MR for each tissue
eQTL with p<5x10® (as in Gene expression and DNAme-disease/quantitative
trait Mendelian randomization test). For each GTEXx tissue, we estimated power as
number of tests with an MR association (FDR<1% GTEXx tissue cut point estimated in
Gene expression _and DNAme-disease/quantitative _trait Mendelian
randomization test) divided by 1,000. For FUSION skeletal muscle we estimated
the power detect an RXRA MR association for predicted trunk mass as described
above using the eQTL effect size and standard error observed in FUSION skeletal
muscle.

Gene expression tissue specificity index

We previously developed an expression specificity index (ESI) to measure the
celltissue type specificity of gene expression (4, 51). Genes with a high ESI are
highly and specifically expressed in a single cell/tissue type based on the reference



panel used to generate the index. We previously used this method to identify genes
with muscle specific expression patterns based on a muscle expression specificity
index (MESI) we generated using 16 tissues from lllumina Human Body Map 2.0 (4).

To calculate mESI values over a more comprehensive reference panel, we
applied this method to 48 tissues from GTEX, removing tissues with <25 samples
(bladder, ectocervix, endocervix, and fallopian tube). For each gene in each tissue
type, we calculated the average expression across samples to build a reference
transcriptome panel. With this reference transcriptome panel, we calculated muscle
specificity as previously described (4, 51).

Chromatin states and ATAC-seq data
We used publicly available chromatin states (51) and ATAC-seq data (4, 52,
53).

Data availability

We deposited individual-level genotype, RNA-seq, and DNAme data from this
study into the database of Genotypes and Phenotypes (dbGaP) with the accession
number phs001048.v2.p1; data are available via the repository’s standard data
access request procedures. EPIC methylation array blacklist probes and summary
statistics of physiological trait associations, eQTMs, eQTLs, mQTLs, and
disease/quantitative  trait MR  associations are publicly available at
https://fusion.sph.umich.edu/public/tissue_biopsy/share/2018_muscle.




Supplementary Figures
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Fig. S1. Schematic overview of the SNV, molecular, and disease/quantitative trait
associations and causal relationships assessed in this study. Terms used in figure:
single nucleotide variant (SNV), expression quantitative trait locus (eQTL; association
between SNV and gene expression), methylation quantitative trait locus (mQTL; association
between SNV and DNA methylation), locus from a genome wide association study for a
physiological trait (GWAS; association between SNV and a physiological trait), expression
quantitative trait methylation (eQTM; association between gene expression and DNA
methylation). Solid black lines represent associations where the causal direction is known
(could have potential intermediate causal states). Dashed black lines indicate potential
causal relationships assessed in this study, where the causal relationship could go in either
direction or have an independent source.
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Fig. S2. Estimated tissue type proportions. (A) Tissue fraction estimates using GTEx
tissues as a reference. Across the FUSION skeletal muscle samples that passed QC,
we estimated 0-12.6% adipose, 0% skin, 0-0.4% lymphocytes, 0-1.8% whole blood, and
87.4-100% skeletal muscle tissue. (B) Comparison of each estimated tissue fraction
proportion across six replicate samples with replicates labeled A and B (sample A, x-axis;

sample B, y-axis).



(A) Fiber type proportion estimates
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Fig. S3. Estimated fiber type proportions. (A) Estimated fiber type proportions (based
on MYH1, MYH2, and MYH?7 expression). Across the FUSION skeletal muscle samples
that passed QC, we estimated 5.9-79.4% type 1, 0.3-65.2% type 2X, and 3.8-76.6%
type 2A. (B) Comparison of each estimated tissue fraction proportion across six replicate
samples with replicates labeled A and B (sample A, x-axis; sample B, y-axis).



(A) Effect of controlling for tissue and/or fiber type proportions
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Fig. S4. Association of FUSION physiological traits with skeletal muscle gene ex-
pression and DNAme controlling for estimated tissue and/or fiber type proportions.
Analysis performed with base covariates (sex, age, sample collection site, smoking status
and molecular trait specific technical covariates; “base”, red bar and dots), base plus esti-
mated fiber type proportion covariates (“base-+fiber”, blue bar), base plus estimated tissue
type proportion covariates (“base-+tissue”, green bar and dots) and base plus estimated
tissue type proportion and estimated fiber type covariates (“base+tissue-+fiber”, purple bar
and dots). (A) Percent of genes or DNAme sites (y-axis) associated with each physiological
trait (x-axis; FDR< 1%). (B) Scatter plot of the number of genes (x-axis) and DNAme
sites (y-axis) associated with each physiological trait adjusting for base or for base+tissue
covariates (results for a given trait connected with black line). (C) Scatter plot of the
number of genes (x-axis) and DNAme sites (y-axis) associated with each physiological trait

adjusting for base or for base+tissue+fiber covariates (results for a given trait connected
with black line).



T2D

201

-20 A

—-log10 p-value Base + tissue + fiber

—40 1

40 20 0 20
—-log10 p-value Base + tissue

Fig. S5. Effect of including fiber type on physiological trait-gene expression
analysis based GO terms: type 2 diabetes status. Scatter plots of —log,,(p) for GO
term analysis of the results of association analysis between physiological traits (by page,
fasting insulin, BMI, waist, weight, WHR, height, T2D) with gene expression adjusting for
base+tissue covariates (x-axis) or base+tissue+fiber covariates (y-axis; covariates as
defined in Fig. 1). Identity line in black.
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Fig. S6. Effect of including fiber type on physiological trait-gene expression
analysis based GO terms: fasting insulin. Scatter plots of —log,,(p) for GO term
analysis of the results of association analysis between physiological traits (by page, fasting
insulin, BMI, waist, weight, WHR, height, T2D) with gene expression adjusting for
base+tissue covariates (x-axis) or base+tissue+fiber covariates (y-axis; covariates as
defined in Fig. 1). Identity line in black.
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Fig. S7. Effect of including fiber type on physiological trait-gene expression
analysis based GO terms: body mass index. Scatter plots of —log,,(p) for GO term
analysis of the results of association analysis between physiological traits (by page, fasting
insulin, BMI, waist, weight, WHR, height, T2D) with gene expression adjusting for
base+tissue covariates (x-axis) or base+tissue+fiber covariates (y-axis; covariates as
defined in Fig. 1). Identity line in black.
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Fig. S8. Effect of including fiber type on physiological trait-gene expression
analysis based GO terms: waist hip ratio. Scatter plots of —log,,(p) for GO term
analysis of the results of association analysis between physiological traits (by page, fasting
insulin, BMI, waist, weight, WHR, height, T2D) with gene expression adjusting for
base+tissue covariates (x-axis) or base+tissue+fiber covariates (y-axis; covariates as
defined in Fig. 1). Identity line in black.
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Fig. S9. Effect of including fiber type on physiological trait-gene expression
analysis based GO terms: fasting glucose. Scatter plots of —log,,(p) for GO term
analysis of the results of association analysis between physiological traits (by page, fasting
insulin, BMI, waist, weight, WHR, height, T2D) with gene expression adjusting for
base+tissue covariates (x-axis) or base+tissue+fiber covariates (y-axis; covariates as
defined in Fig. 1). Identity line in black.
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Fig. S10. Effect of including fiber type on physiological trait-gene expression
analysis based GO terms: waist. Scatter plots of —log,,(p) for GO term analysis of the
results of association analysis between physiological traits (by page, fasting insulin, BMI,
waist, weight, WHR, height, T2D) with gene expression adjusting for base+tissue
covariates (x-axis) or base+tissue+fiber covariates (y-axis; covariates as defined in Fig. 1).
Identity line in black.
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Fig. S11. Effect of including fiber type on physiological trait-gene expression
analysis based GO terms: weight. Scatter plots of —log,,(p) for GO term analysis of
the results of association analysis between physiological traits (by page, fasting insulin,
BMI, waist, weight, WHR, height, T2D) with gene expression adjusting for base-+tissue
covariates (x-axis) or base+tissue+fiber covariates (y-axis; covariates as defined in Fig. 1).
Identity line in black.
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Fig. S12. Effect of including fiber type on physiological trait-gene expression
analysis based GO terms: height. Scatter plots of —log,,(p) for GO term analysis of the
results of association analysis between physiological traits (by page, fasting insulin, BMI,
waist, weight, WHR, height, T2D) with gene expression adjusting for base+tissue
covariates (x-axis) or base+tissue+fiber covariates (y-axis; covariates as defined in Fig. 1).
Identity line in black.
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Fig. S13. eQTMs discovered by TSS to DNAme site distance and by method of
adjustment for latent factors. Rate of eQTM discovery (y-axis; overall FDR< 1%) by
distance from eQTM DNAme site to gene TSS distance (x-axis values are the mean
distance per bin; Methods). Results adjusted for known covariates (Known covariates
panel) or stated number of expression/DNAme PEER factors (PEER covariates panel). We
find similar rates of eQTM discovery at DNAme site-TSS distance > 1Mb with adjustments
for 5 expression/DNAme PEER factors as for estimated tissue and fiber type (compare
blue lines in Known covariates and PEER covariates panels).
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Fig. S14. eQTMs discovered by TSS to DNAme site distance and by method of ad-
justment for latent factors. (A) Rate of eQTM discovery (y-axis; overall FDR< 1%) by
DNAme site-TSS distance bin (x-axis). Results adjusted for known covariates (Known
covariates panel) or stated number of expression/DNAme PEER factors (PEER covari-
ates panel). Dashed lines at 0.5 to 1 Mb bin. (B) As in panel A, but with additional
expression/DNAme PEER factors. Dashed lines at 0.5 to 1 Mb bin.
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Fig. S15. PEER factor correlation with biological variables. Heatmap of Spearman’s
rank correlation coefficient (rho) between gene expression PEER factors, DNAme PEER
factors, and biological variables. Biological variables include physiological traits, estimated
tissue proportion (using GTEX tissues as reference), and estimated muscle fiber type
proportions (based on MYH1, MYHZ2, and MYH?7 expression).
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Fig. S16. PEER factor correlation with technical variables. Heatmap of Spearman’s
rank correlation coefficient (rho) between gene expression PEER factors, DNAme PEER
factors, and technical variables. Variables labeled batch* correspond to RNA-sequencing.
Variables labeled plate* or pos™* correspond to DNAme.



(A) Total genes with an eQTL across PEER fac-(B) Total DNAme sites with an mQTL across

tors PEER factors

12000

170000 A

= =
a g
© ©
< o - £
< 100004 ¢ - FDR g FDR
2 : — 001 £ 150000 ~ 0.01
o o
= 0.05 = 0.05
K ©
= 3
o [
<@ <2
o o

8000
= = 4300001

6000 110000

0 25 50 75 100 0 20 40 60
PEER factors PEER factors

Fig. S17. Comparison of the number of genes and DNAme sites with a QTL and the
number of gene expression- and DNAme-based PEER factors included as covari-
ates. (A) Number of genes with an eQTL (y-axis) at FDR< 5%(orange line) or FDR< 1%
(green line) by the number of expression-based PEER factors included in analysis (x-axis).
(B) Number of DNAme sites with an mQTL (y-axis) at FDR< 5% (orange line) or FDR< 1%
(green line) by the number of DNAme-based PEER factors included in analysis (x-axis).
We selected the number of molecular trait PEER factors that maximized the number genes
with an eQTL (50 factors) and DNAme sites with an mQTL (30 factors).
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Fig. S19. Examples of molecular mediation. Types of molecular mediation. (A)
DNAme—Expression scenario where SNV affects DNAme which changes expression. (B)
Expression—DNAme scenario where SNV affects expression which changes DNAme. (C)
Independent scenario where the SNV effect on DNAme and expression is independent.
For A, B, and C rows: M«E facet: Scatter plot of residual gene expression (adjusted for
PEER factors used in eQTM mapping; y-axis) and residual DNAme (adjusted for PEER
factors; x-axis). Linear regression line for eQTM association, overall (black) and colored
by the SNV genotype (homozygous genotype, green; heterozygous genotype, orange;
other homozygous genotype, purple). SNV—M facet: Box plots and linear regression line
(additive model) of residual DNAme by SNV genotype (facet M). Box plot and regression
line as for panel M, except with adjustment of residual SNV DNAme by residual gene
expression (facet M|E). SNV—E facet: Box plots and linear regression line (additive model)
of residual gene expression by SNV genotype (facet E). Box plot and regression line as
for panel E except with adjustment of residual gene expression by residual DNAme (facet
E(M).



(A) Distance of DNAme site to TSS
(absolute value)

600,000

400,000

o o

I......

200,000

| —

E—M M—E
Predicted causal direction

(B) DNAme site chromatin state annotations ~ (C) DNAme site chromatin state annotations
(counts) (percent of counts)

T
7

S

DNAme site distance (bp)

10.0 0.20

IIEeM
Bv-e

Number of DNAme sites
Percent of DNAme sites

s /% S L
() 7. 5.
o, 2. % I o Sy
© ©
5% U
O, O,
"% %
Sk muscle chromatin state Sk muscle chromatin state

Fig. S20. Comparison of DNAme sites for predicted E—M and M—E causal relation-
ships. We randomly selected a single gene-DNAme site pair for every gene or DNAme
site occurring more than once in the data. (A) Box plots of the absolute distance of DNAme
site to gene TSS (y-axis) by predicted causal relationship (green E—M, orange M—E).
(B) Count of gene-DNAme site pairs (y-axis) by DNAme site skeletal muscle chromatin
state annotation and predicted causal relationship (x-axis; green E—M, orange M—E). (C)
Percent of gene-DNAme site pairs (y-axis) by DNAme site skeletal muscle chromatin state
annotation and predicted causal relationship (x-axis; green E—M, orange M—E).
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Fig. S21. FAM179A locus. ATAC-seq data for four tissues (top orange tracks); chromatin
states (tracks with tissue/cell type names); average FUSION skeletal muscle RNA-seq
signal (green track); FAM179A gene annotation (purple gene structure with red isoforms);
average FUSION skeletal muscle DNAme signal (purple bars). Black vertical line at
rs1867944. Red vertical line at cg09001591.
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Fig. S23. Number of FUSION gene expression MR associations per dis-
ease/quantitative trait. Number of gene-trait pairs (FDR< 1%, pueipi > 0.05) for each
disease/quantitative trait with (green) and without (orange) requiring the top eQTL SNV to
have a disease/quantitative trait pgwas < 5 * 1075, Top 25 disease/quantitative traits shown,

full results in Table S7.
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Fig. S24. Number of FUSION DNAme MR associations per disease/quantitative trait.
Number of DNAme site-trait pairs (FDR< 1%, pueipi > 0.05) for each disease/quantitative
trait with (green) and without (orange) requiring the top mQTL SNV to have a dis-
ease/quantitative trait pgwas < 5 x 107, Top 25 disease/quantitative traits shown, full

results in Table S8.
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Fig. S25. Comparison of the number of FUSION gene expression and FUSION
DNAme MR associations per disease/quantitative trait. Scatter plot of the number
of genes (x-axis) and DNAme site (y-axis) MR associations (FDR< 1%, pueipi > 0.05, top
QTL SNV has pgwas < 5 * 107%) for a disease/quantitative trait.
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Fig. S26. Comparison of gene-DNAme site pairs from MR associations. Comparison
of eQTM p-values of all gene-DNAme site pairs tested for eQTM (green) to 171 gene-
DNAme site pairs identified through MR associations for the same disease/quantitative
trait (orange). The solid black line is the identity line, and the dotted line corresponds to
an eQTM FDR of 1%. 85 gene-DNAme site pairs without an eQTM are the orange points
below the dashed line.
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Fig. S27. Number of gene-disease/quantitative trait MR associations for FUSION
skeletal muscle and GTEXx tissues. Bar plots of number of genes with MR associations
(FDR< 1%, pueipi > 0.05) for FUSION skeletal muscle and GTEXx tissues, with (green)
and without (orange) requiring top eQTL SNV to have a disease/quantitative trait pgwas <
5 * 10~8. Number of samples used for eQTL mapping are given after each tissue name.
(A) Top eQTL SNV per tissue/study used as instrument. (B) Top FUSION eQTL SNV used
as instrument for FUSION skeletal muscle and GTEXx tissues.
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Fig. S28. Comparison of the humber gene-disease/quantitative trait MR associa-
tions for FUSION skeletal muscle and selected GTEx tissues. Scatter plots of the
number of FUSION skeletal muscle genes (x-axis) and number of GTEXx tissue genes
(y-axis) MR associations (FDR< 1%, pueipi > 0.05, top eQTL SNV has pgwas < 5 * 1078)
for a disease/quantitative trait (point). Plots of FUSION skeletal muscle vs the following
tissues: (A) GTEx skeletal muscle. (B) GTEx skin (sun exposed lower leg). (C) GTEx
thyroid. (D) GTEx brain substantia nigra (least correlated with FUSION results).
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Fig. S29. Comparison of the number of MR associations per disease/quantitative
trait and the number of disease/quantitative trait SNVs where pgwas < 5 * 1078, Com-
MR associations per disease/quantitative trait (y-axis) to the
tative trait SNVs with pgwas < 5 * 1078 (x-axis). (A) Top eQTL
SNV required to have a disease/quantitative trait pgwas < 5 * 1078. (B) Top eQTL SNV not
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Fig. S30. Comparison of the strength and direction of gene expression-trunk pre-
dicted mass GWAS MR associations for FUSION skeletal muscle and selected GTEx
tissues. Scatter plots of the signed (by MR effect) —log,0(gene expression-trunk predicted
mass GWAS MR p-value) for selected GTEXx tissues (y-axis) and FUSION skeletal mus-
cle (x-axis). Each point represents a gene, and for each gene the top eQTL SNV per
tissue/study was used as an instrument. Pearson’s r is reported in subtitle. Plots of
the following tissues vs FUSION skeletal muscle: (A) GTEx skeletal muscle. (B) GTEx
skin (sun exposed lower leg). (C) GTEXx thyroid. (D) GTEx brain substantia nigra (least
correlated with FUSION results).
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Fig. S32. Expression characteristics of genes with disease/quantitative trait MR
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across all GTEx tissues (green) and is not (orange). (A) The fold difference in expression
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Supplementary Tables

Table S1. Characterization of participants in the FUSION tissue biopsy study.

Common
RNA-seq &

DNAme RNA-seq DNAme Union RNA-seq &

samples samples samples DNAme samples
N 282 301 265 318
Sex =M (%) 159 (56.4%) 174 (57.8%) 152 (57.4%) 181 (56.9%)
Age (mean * sd) 59.98 + 7.92 59.91 + 7.66 59.87 £ 7.72 60.01 £ 7.84
BMI (kg/m2; mean % sd) 27.61+4.27 2745+ 4.13 2745+ 4.14 27.59 + 4.25
Fasting Serum Insulin
(mU/l; mean % sd) 8.83+5.43 8.59 £ 5.20 8.66 + 5.31 8.74 £ 5.32
Fasting Plasma Glucose
(mmol/l; mean + sd) 6.26 + 0.78 6.27 £+ 0.78 6.27 £ 0.79 6.26 + 0.78

Ever Smoker =Y (%)

40 (14.2%)

43 (14.3%)

39 (14.7%)

44 (13.8%)

Oral Glucose Tolerance Test Status (%)

Normal Glucose
Tolerance (NGT)

98 (34.8%)

108 (35.9%)

90 (34.0%)

116 (36.5%)

Impaired Fasting
Glucose (IFG)

39 (13.8%)

43 (14.3%)

38 (14.3%)

44 (13.8%)

Impaired Glucose
Tolerance (IGT)

73 (25.9%)

73 (24.3%)

71 (26.8%)

75 (23.6)

Type 2 Diabetes (T2D)

72 (25.5%)

77 (25.6%)

66 (24.9%)

83 (26.1%)




Table S2A. Physiological trait associations with tissue type proportions. Linear
regression analysis of inverse normalized trait with indicator variables for estimated
tissue composition proportion adjusted for base covariates (Methods) and fiber type.
The reference tissue is skeletal muscle.

Tissue type coefficient

Tissue type p-value

Physiological F test for
trait Adipose L)c/:?tz:o \()\128!16 Adipose Lyr&zZoc thllf;c(;lc(je tissue
Waist 3.53 -96.1 34.81 0.13 0.33 0.074 0.070
BMI 4.41 -118.0 48.1 0.081 0.26 0.022 0.014
Fasting insulin | -0.46 190.0 47.7 0.86 0.075 0.024 0.0069
Weight 3.55 -23.5 35.3 0.094 0.79 0.045 0.028
WHR 1.73 -57.4 29.1 0.38 0.49 0.076 0.18
gliiigg 0.79 747 | 596 0.74 045 | 00026 | 0025
T2D -1.94 -87.8 99.7 0.78 0.77 0.11 0.42
Height -0.36 69.5 -4.90 0.84 0.34 0.74 0.81




Table S2B. Physiological trait associations with fiber type proportions. Linear
regression analysis of the inverse normalized trait with indicator variables for
estimated fiber type proportion adjusted for base covariates (Methods) and tissue
type. The reference fiber type is type 1.

Fiber type coefficient Fiber type p-value
Physiological F test for fiber
trait Type 2A Type 2X Type 2A | Type 2X type
Waist -0.33 2.06 0.49 2.0x10® 5.1x107
BMI -0.72 2.00 0.17 1.9x10° 1.1x10®
Fasting insulin -0.47 2.14 0.38 6.5x10® 1.2x10°
Weight -0.57 1.40 0.20 4.1x10* 5.1x10°%
WHR 0.0094 1.45 0.98 8.4x10° 1.4x10*
Fasting 0.73 0.32 0.16 0.48 0.16
glucose
T2D -1.65 1.80 0.31 0.23 0.13
Height -0.12 -0.42 0.74 0.20 0.44




Table S3. Sources of
disease/quantitative traits.

summary statistics for genetic effects on

Trait Reference
T2D (54)
Fasting glucose (55)
Fasting insulin (55)
HOMA (55)
HOMA-B (55)
Proinsulin (56)
Proinsulin adjusted for BMI (56)
BMI (57)
Waist (58)
Waist adjusted for BMI (58)
Weight (men) (59)
Weight (women) (59)
(48)
UK Biobank traits https://docs.google.com/spreadsheets/d/1b30GI2l
Manifest 20170915 (downloaded Feb. 26, 2018) |Ut57BcuHtt\WaZotQcl0-mBRPyZihz87Ms_No




Table S4. Dropped UK Biobank traits. UK Biobank traits that were not considered

in analysis.
Trait code Trait description
2473 Other serious medical condition/disability diagnosed by doctor
2492 Taking other prescription medications
2844 Had other major operations
4825 Noisy workplace
20161 Pack years of smoking PREVIEW ONLY
20162 Pack years adult smoking as proportion of life span exposed to smoking PREVIEW ONLY
20002_99999 Non-cancer illness code, self-reported: unclassifiable
20107_100 llinesses of father: None of the above (group 1)
20107_101 llinesses of father: None of the above (group 2)
20110_100 llinesses of mother: None of the above (group 1)
20110_101 llinesses of mother: None of the above (group 2)
20111_100 llinesses of siblings: None of the above (group 1)
20111_101 llinesses of siblings: None of the above (group 2)
20118_11 Home area population density - urban or rural: Scotland - Large Urban Area
20118_12 Home area population density - urban or rural: Scotland - Other Urban Area
20118_13 Home area population density - urban or rural: Scotland - Accessible Small Town
20118 _16 Home area population density - urban or rural: Scotland - Accessible Rural
20118 _17 Home area population density - urban or rural: Scotland - Remote Rural
20118 3 Home area population density - urban or rural: England/Wales - Village - sparse
20118 6 Home area population density - urban or rural: England/Wales - Town and Fringe - less sparse
20118_7 Home area population density - urban or rural: England/Wales - Village - less sparse
20118_8 Home area population density - urban or rural: England/Wales - Hamlet and Isolated Dwelling -
less sparse
20118_9 Home area population density - urban or rural: Postcode not linkable
2664 _1 Reason for reducing amount of alcohol drunk: lliness or ill health
2664_2 Reason for reducing amount of alcohol drunk: Doctor's advice
2664_3 Reason for reducing amount of alcohol drunk: Health precaution
2664 4 Reason for reducing amount of alcohol drunk: Financial reasons
3859 1 Reason former drinker stopped drinking alcohol: lliness or ill health
3859 3 Reason former drinker stopped drinking alcohol: Health precaution
6155 100 Vitamin and mineral supplements: None of the above
6157_1 Why stopped smoking: lliness or ill health
6157_100 Why stopped smoking: None of the above
6157 2 Why stopped smoking: Doctor's advice
6157_3 Why stopped smoking: Health precaution




6157_4

Why stopped smoking: Financial reasons

6158_1 Why reduced smoking: lliness or ill health

6158_100 Why reduced smoking: None of the above

6158 2 Why reduced smoking: Doctor's advice

6158 3 Why reduced smoking: Health precaution

6158_4 Why reduced smoking: Financial reasons

6179_100 Mineral and other dietary supplements: None of the above

AG3 Diagnoses - main ICD10: A63 Other predominantly sexually transmitted diseases, not elsewhere
classified

R68 Diagnoses - main ICD10: R68 Other general symptoms and signs

Z51 Diagnoses - main ICD10: Z51 Other medical care

Z53 Diagnoses - main ICD10: Z53 Persons encountering health services for specific procedures, not
carried out

Z71 Diagnoses - main ICD10: Z71 Persons encountering health services for other counselling and
medical advice, not elsewhere classified

Z76 Diagnoses - main ICD10: Z76 Persons encountering health services in other circumstances

6142_100 Current employment status: None of the above




Table S5. Genotype QC summary. Genotype QC summary of all FUSION biopsy
samples.

Samples Description
Removed
2 One sample from each of 2 first degree relative pairs (drop NGT and keep IGT in

both cases). Identified in Scott et al. (4).

1 Non-Finnish participant.

328/ 331 Total samples passed / total samples submitted




Table S6. RNA-seq QC summary. RNA-seq QC summary on skeletal muscle
samples.

Samples Description
Removed
1 Contaminated with a different sample based on genotype comparison. Identified in

Scott et al. (4).

4 Extreme 3’ bias in gene body coverage. One sample identified in Scott et al. (4).
7 Outlier in transcriptional diversity.

2 Drop one of 2 pairs of first degree relatives (genotype QC; Table S5).

1 Drop non-Finnish participant (genotype QC; Table S5).

7 Select one sample from 6 intentional replicates and one unintentional replicate.

301/323 Total samples passed / total samples submitted




Table S7. DNAme QC summary. DNAme QC summary on skeletal muscle
samples.

Samples Description

Removed
5 Failed low quality probe filter.
1 Outlier in median raw methylated and un-methylated signals across probes.
3 Outlier in control probes.
4 Contaminated with a different sample based on genotype comparison.
1 Outlier in DNAme distribution.
3 Clustered outside expected tissue in PCA.
1 Failed residual PCA filter.
2 Drop one of 2 pairs of first degree relatives (genotype QC; Table S5).
1 Drop non-Finnish participant (genotype QC; Table S5).

282 /303 | Total samples passed / total samples submitted




Captions for Supplementary Datasets

Dataset S1A. Top 50 genes associated with skeletal muscle fiber type
proportions. (separate file). P-values adjusted using the Benjamini-Hochberg
procedure. Type1 fiber used as reference.

Dataset S1B. Top 50 DNAme sites associated with skeletal muscle fiber type
proportions. (separate file). P-values adjusted using the Benjamini-Hochberg
procedure. Type1 fiber used as reference.

Dataset S2. Predicted causal direction for gene-DNAme site pairs. (separate
file).

Dataset S3. Number of FUSION gene expression MR associations per dis-
ease/quantitative trait. (separate file). Number of gene-trait pairs (FDR<1%,
Puen>0.05) for each disease/quantitative trait with and without requiring the top
eQTL SNV to have a disease/quantitative trait pgy,s<5x107%.

Dataset S4. Number of FUSION DNAme MR associations per
disease/quantitative trait. (separate file). Number of DNAme site-trait pairs
(FDR=1%, puep>0.05) for each disease/quantitative trait with and without requiring
the top mQTL SNV to have a disease/quantitative trait pg,s<5x107°.

Dataset S5. FUSION and GTEx muscle MR associations. (separate file).
Overlapping FUSION muscle and GTEx muscle MR associations where the GTEx
muscle MR association was the smallest among all other GTEX tissues.
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