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Fig. S1. Calpain-generated natural C-terminal (Ct) fragments of mammalian proteins. 

This list is but a small subset of natural calpain substrates in a mammal. 

(A) Ct-fragments with numbers in green are experimentally characterized and validated 

substrates of the Arg/N-degron pathway (Fig. 2) (1, 2). Ct-fragments with numbers in black are 

predicted Arg/N-degron substrates. Each entry cites a calpain-generated Ct-fragment and the 

fragment’s N-terminal (Nt) residue (in red), using 3-letter abbreviations for amino acids. A 

calpain cleavage site, indicated by an arrowhead, is denoted using single-letter abbreviations for 

amino acids. A P1’ residue (in red and enlarged) becomes Nt-residue upon the cleavage. The 

indicated residue numbers are, respectively, the number of the first shown residue of a full-length 

protein precursor and the number of its last residue. Residue numbers of proteins are counted 

from their initially present Nt-Met residue, irrespective of whether or not Nt-Met is removed by 

Met-aminopeptidases. All entries are mouse proteins, save for #14 and #24, which are human 

proteins. 

(B)Same as in A but examples of calpain-generated Ct-fragments whose Nt-residues are 

not recognized by the Arg/N-degron pathway (Fig. 2).  
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#1. Asp-BclXL. BclXL is a 26 kDa antiapoptotic regulatory protein (3, 4). Under conditions 

that include glucose and oxygen deprivation, BclXL can be cleaved by activated calpain-1, 

resulting in the 21 kDa Asp61-BclXL Ct-fragment. In contrast to full-length BclXL, Asp61-BclXL 

has proapoptotic activity (5), and has been shown to be a short-lived substrate of the Arg/N-

degron pathway (6).  

#2. Asp-Capns1 is the Ct-fragment of the calpain regulatory subunit that is cleaved by 

activated calpains (7, 8). 

#3. Glu-Bak is the proapoptotic Ct-fragment of the apoptotic regulator BAK. Glu-BAK is 

generated by calpain-1 in vitro and is apparently formed in vivo as well (9). 

#4. Glu-IκBα is the Ct-fragment of the IκBα subunit of the NFκB-IκBα complex in which 

the NFκB transcriptional regulator is inhibited by IκBα. The IκBα subunit is targeted for 

degradation either through a conditional phosphodegron or through a calpain-mediated cleavage 

(10). 

#5. Arg-Bid. Bid is a 22 kDa member of the BCL-2 family of apoptosis regulators (3, 11, 

12). Although full-length Bid is a proapoptotic protein, its Ct-fragments, which can be naturally 

produced by activated caspases, calpains or granzyme B, can be even more active than intact Bid 

as proapoptotic protein fragments (13). The cleavage of Bid by calpains produces the 14 kDa 

Arg71-Bid fragment (13-16) that has been shown to be a short-lived substrate of the Arg/N-

degron pathway (6). 

#6. Arg-c-Fos is the Ct-fragment of the c-Fos transcriptional regulator. c-Fos is targeted 

for conditional degradation through several degrons, including the path that involves the 

cleavage by calpains (17). 

#7. Arg-Igfbp2 is the calpain-generated Ct-fragment of the insulin-like growth factor 

binding protein-2 (18). 

#8. Arg-Atp2b2 is the Ct-fragment of the transmembrane Atp2b2 plasma membrane Ca2+ 

pump (PMCA) that ejects Ca2+ from cells. This pump is activated either by the binding of 

Ca2+/calmodulin or by the calpain-mediated truncation of Atp2b2 that generates the Arg-Atp2b2 

fragment and thereby activates the pump (19).  

#9. Arg-Ankrd2. Ankrd2 (Marp2, Arpp), a member of the MARP (muscle ankyrin repeat 

protein) family, functions as a negative regulator of muscle differentiation (20). Calpains can 

produce the 30 kDa Arg103-Ankrd2 Ct-fragment (21). 

#10. Lys-Ica512. Ica512 (Ptprn) is a member of the transmembrane receptor protein 

phosphatase family (22). The 43 kDa calpain-generated mouse Lys609-Ica512 Ct-fragment enters 

the nucleus and acts as a transcriptional regulator (22, 23). 

#11. Tyr-Grm1. Grm1 is the Ct-fragment of the mGluR1α transmembrane metabotropic 

glutamate receptor (24). Receptors containing the calpain-truncated mGluR1α Ct-fragment can 

elevate cytosolic Ca2+ but cannot activate PI3K-Akt signaling pathways, in contrast to uncleaved 

receptors (24, 25). 

#12. Leu-Capn1 is the auto-generated, catalytically active Ct-fragment of calpain-1 (26, 

27). 

#13. Phe-GluN2a. GluN2a (NMDA-R2a) is a subunit of the N-methyl-D-aspartate 

receptor (NMDAR), a glutamate receptor that can function as a ligand-gated Ca2+ channel (28, 

29). The GluN2b subunit of NMDAR can also be cleaved by calpains (30). Ct-fragments of 

NR2A and NR2B contain domains required for the association of these subunits with other 

synaptic proteins. NMDAR receptors lacking a Ct-region of GluN2a could function as 
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glutamate-gated Ca2+ channels but the intracellular traffic of cleaved receptors and their 

electrophysiological properties were altered (31).  

#14. Asn-DSCR1 (Rcan1) is the calpain-generated Ct-fragment of the Down syndrome 

critical region 1 protein Dscr1, which binds to Raf1, inhibits the phosphatase activity of 

calcineurin, and enhances its degradation. The Asn-DSCR1 fragment does not bind to the Raf1 

kinase (32).  

#15. Asn-Cav1.1 is the Ct fragment of the voltage-gated transmembrane Ca2+ channel. 

This (apparently) calpain-generated fragment is noncovalently associated with the rest of the 

channel and can inhibit its activity. Upon dissociation from the channel, the Asn-Cav1.1 fragment 

enters the nucleus and acts as a transcriptional regulator (33-36). 

#16. Asn-Bfl-1. Bfl-1 is antiapoptotic regulatory protein whose cleavage by calpain-1 

generates the Asn72-Bfl-1 proapoptotic Ct-fragment (37). 

#17. Gln-Ryr1 is the Ct-fragment of the Ryr1 ryanodine receptor, a Ca2+ channel in the 

ER (38) that mediates the efflux of Ca2+ from the ER into the cytosol. Calpain-mediated cleavage 

of Ryr1 increases Ca2+ efflux (39). 

#18. Gln-talin is the calpain-generated Ct-fragment of talin, an adaptor protein that 

interacts with the integrin family of cell adhesion transmembrane proteins (19, 40, 41). 

#19. Gln-Egfr is one of calpain-generated Ct-fragments of the transmembrane epidermal 

growth factor (EGF) receptor protein kinase (42). Remarkably, all 7 calpain cleavage sites in the 

cytosol-exposed domain of the 170-kDa EGFR contain P1’ residues that are recognized as 

destabilizing by the Arg/N-degron pathway (42). 

#20. Gln-PrkCβ is the Ct-fragment of PrkCβ, a Ser/Thr PKC kinase (43). 

#21. Arg-dystrophin is the calpain-generated Ct-fragment of a major cytoskeletal protein 

in the skeletal muscle (44). 

#22. Arg-Mef2d is the Ct-fragment of the Mef2d myocyte enhancer factor 2d, a 

transcriptional regulator that contributes to neuronal survival, development, and synaptic 

plasticity (45). 

#23. Arg-p39 is the calpain-generated Ct-fragment of the p39 activator of the Cdk5 

protein kinase (46). The indicated cleavage site is located immediately downstream of two other 

closely spaced (and strongly conserved) calpain cleavage sites in p39. A cleavage at any one of 

these sites yields a predicted Arg/N-degron substrate. 

#24. Arg-caspase-9 is the Ct-fragment of caspase-9, which can be inactivated by calpains 

(47), followed by the (predicted) degradation of the Arg-caspase-9 Ct-fragment by the 

Arg/N-degron pathway. 

#25. Arg-Glyt1a is the Ct-fragment of the transmembrane Glyt1a glycine transporter (48). 

Another Gly transporter, Glyt1b, is also cleaved by calpains, yielding the Arg-Glyt1b fragment 

(48). These Ct fragments are still active as transporters but are impaired in their ability to remove 

Gly (an inhibitory neurotransmitter) from synaptic clefts (48). 

#26. Lys-Ppp3ca is the calpain-generated Ct-fragment if the Ser/Thr protein phosphatase 

2B (catalytic subunit, alpha isoform) (49, 50). 

#27. Lys-PkCα is the calpain-generated Ct-fragment of PkCα, a broadly expressed 

Ser/Thr kinase of the PKC family (51). Being catalytically active but no longer controlled by the 

regulatory Nt-domain of the full-length PkCα, the Lys-PkCα fragment can be toxic, for example, 

upon its formation in an ischemic heart (52). 

#28. Lys-cortactin is the Ct-fragment of cortactin, an actin-binding protein that regulates 

actin polymerization (53). 
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#29. Leu-Nf2 is the calpain-generated Ct-fragment of NF2 (merlin), a tumor suppressor 

and cytoskeletal protein. Loss of function NF2 mutants result in autosomal-dominant 

neurofibromatosis, a predisposition to specific kinds of brain tumors (54). 

#30. Leu-troponin T2 is the Ct-fragment of the cardiac troponin T that is produced by 

calpain-1 in the troponin-containing cardiac myofibril complex (55). 

#31. Leu-Rad21 is the calpain-generated Ct-fragment of the Scc1/Rad21 subunit of the 

chromosome-associated cohesin complex (56). The calpain-mediated generation of Leu-Rad21 

contributes to the control  of chromosome cohesion/segregation, together with processes that 

include the separase-mediated cleavage of the same Rad21 subunit of cohesin (56-59). 

#32. Leu-STEP33 is the Ct-fragment of the striatal-enriched STEP61 phosphatase, a brain-

specific Tyr-phosphatase whose substrates include the MAPK-family kinases Erk1/2 and p38. 

The calpain-generated Leu-STEP33 fragment lacks phosphatase activity (60). 

#33. Leu-vimentin is the calpain-generated Ct-fragment of vimentin, a component of 

intermediate filaments (61). 

#34. Leu-β-catenin (Ctnnb)is the calpain-generated Ct-fragment of β-catenin, a 

conditionally short-lived cytoskeletal protein and transcriptional regulator. The Leu-β-catenin 

fragment is a nuclear protein that activates specific genes in conjunction with other transcription 

factors (62). 

#35. Leu-Camk4 is the calpain-generated Ct-fragment of the Ca2+/calmodulin-dependent 

kinase-IV. This fragment lacks kinase activity (63). 

#36. Phe-PrkCγ is the calpain-generated Ct-fragment of PkCγ, a Ser/Thr kinase of the 

PKC family (51). The Phe-PrkCγ fragment is constitutively active as a kinase, because it lacks 

the regulatory Nt-domain of the full-length PrkCγ kinase (51). 

#37. Ala-Pde1a2 is the calpain-generated Ct-fragment of Pde1a2, an isoform of 

calmodulin-dependent cyclic nucleotide phosphodiesterase (64). 

#38. Ser-Copb1 is the is the calpain-generated Ct-fragment of the Copb1 coatomer, a 

component of the cytosolic protein complex that binds to dilysine motifs and reversibly 

associates with Golgi non-clathrin-coated vesicles. 

#39. Ala-p35 is the calpain-generated Ct-fragment of p35, a neuron-specific activator 

Cdk5, a cyclin-dependent kinase (65). 

#40. Thr-GlnRS is the calpain-generated Ct-fragment of GlnRS, a Thr-tRNA synthetase 

(66). 

#41. Ser-Gap43 is the calpain-generated Ct-fragment of Gap43, a protein with functions 

in axon guidance, synaptic plasticity and regulation of neuronal death and survival (67, 68). 

#42. Ser-p43 is the calpain-generated Ct-fragment of p43, a component of specific 

complex containing several aminoacyl-tRNA synthetases (66). 

#43. Gly-Fak is the calpain-generated Ct-fragment of the focal adhesion kinase Fak, 

which regulates adhesive properties of cells (69, 70). 

#44. Ser-TH is the calpain-generated Ct-fragment of tyrosine hydroxylase (71, 72). 

#45. Gly-Anxa1 is the calpain-generated Ct-fragment of annexin-1, a member of the 

annexin family of Ca2+-binding/phospholipid binding proteins. Annexin-1 acts, in particular, as a 

mediator of glucocorticoid action in inflammation and in the control of anterior pituitary 

hormone release (73, 74). 
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Fig. S2. Caspase-generated natural C-terminal (Ct) fragments of intracellular proteins 

that are either experimentally confirmed (marked in green) or predicted (marked in black) 

substrates of the Arg/N-degron pathway. As indicated in the diagram, some of these 

Ct-fragments have proapoptotic activities (6). This list of confirmed or putative Arg/N-degron 

substrates of caspases is but a small subset of known putative Arg/N-degron substrates of this 

kind, most of which remain to be analyzed. The list contains both human and mouse proteins; all 

of them are denoted by all-capital notations for human proteins. 
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Caspase recognition sites are underlined. Each entry cites a caspase-generated 

Ct-fragment of a protein and the fragment’s N-terminal (Nt) residue (in red), using 3-letter 

abbreviations for amino acids. A caspase cleavage site, indicated by an arrowhead, is denoted 

using single-letter abbreviations for amino acids. A P1’ residue (in red and enlarged) becomes 

Nt-residue upon a cleavage by a caspase. Residue numbers are, respectively, the number of the 

first shown residue of a full-length protein precursor and the number of its last residue. Residue 

numbers are counted from their initially present Nt-Met, irrespective of whether or not Nt-Met is 

removed by Met-aminopeptidases.  

The first section of this diagram describes 8 previously identified natural proapoptotic Ct-

fragments, specifically Cys-Ripk1, Cys-TRAF1, Asp-BRCA1, Leu-LIMK1, Tyr-NEDD9, Arg-

BIMEL, Asp-EPHA4, and Tyr-MET. They were found to be short-lived substrates of the Arg/N-

degron pathway (6).  

The diagram’s second section describes six other previously identified proapoptotic Ct-

fragments (all of them are produced by caspases) bearing destabilizing Nt-residues that can be 

recognized by the Arg/N-degron pathway. These fragments remain to be verified as Arg/N-

degron substrates. 

#9. Asn-PkCδ is the Ct-fragment of the protein kinase Cδ (PkCδ) that can be generated by 

(in particular) caspase-3. This fragment bears Nt-Asn and is proapoptotic, in contrast to the full-

length PkCδ kinase (75-79).  

#10. Lys-PkCθ is the Ct-fragment of the protein kinase Cθ (PkCθ). This fragment can be 

generated by (in particular) caspase-3, bears Nt-Lys, and is proapoptotic, in contrast to the full-

length PkCθ kinase (80).  

#11. Trp-Etk is the Ct-fragment of the Etk/Bmc tyrosine kinase, a member of the Btk/Tek 

family of kinases, at least some of which regulate apoptosis. The Trp-Etk fragment can be 

generated by (in particular) caspase-3, bears Nt-Trp, and is proapoptotic, in contrast to the full-

length Etk kinase (81).  

#12. Gln-Slk is the Ct-fragment of Slk, a Ste20-related protein kinase that plays a role in 

regulation of actin fibers. The Gln-Slk fragment can be generated by (in particular) caspase-3, 

bears Nt-Gln, and is proapoptotic. The concomitantly produced Nt-fragment of Slk is also 

proapoptotic (82).  

#13. Ile-Hhp1 is the Ct-fragment of the hematopoietic progenitor kinase 1 (Hpk1), a 

Ste20-related protein kinase whose functions include stimulation of the stress-activated protein 

kinases SAPKs/JNKs and the NF-κB transcriptional regulon. The Ile-Hpk1 fragment can be 

generated by (in particular) caspase-3, bears Nt-Ile, and is proapoptotic, in contrast to the full-

length Hk1 kinase (83).  

#14. Ile-Mlh1 is the Ct-fragment of the mismatch repair Mhl1 protein that can be 

generated by (in particular) caspase-3, bears Nt-Ile, resides in the cytosol (in contrast to the 

full-length nuclear MLH1) and is proapoptotic, unlike full-length MLH1 (84). 

The next 16 caspase-generated Ct-fragments and predicted substrates of the 

Arg/N-degron pathway that are not necessarily proapoptotic. 

#15. Tyr-CYLD is the Ct-fragment of a deubiquitylase that regulates apoptosis and 

necroptosis (85). 

#16. Leu-p21Cip1/Waf1 is the Ct-fragment of p21, an inhibitor of cell division (86). 

#17. Arg-IP3R is the Ct-fragment of the inositol 1,4,5-triphosphate receptor (87). 

#18. Asn-LMN1 is the Ct-fragment of lamin-A, a subunit of nuclear lamina (88). 

#19. Arg-ETS-1 is the Ct-fragment of a transcription factor (89). 
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#20. Tyr-TOP1 is the Ct-fragment of a type I DNA topoisomerase (90). 

#21. Leu-MEFD2 is the Ct-fragment of a transcription factor (91). 

#22. Asn-DNA-PK is the Ct-fragment of the DNA-dependent protein kinase (92). 

#23. Asn-CAD1 is the Ct-fragment of E-cadherin, an adhesion receptor (93). 

#24. Gln-Synphilin-1 is the Ct-fragment of synphilin-1, a ligand of α-synuclein (94). 

#25. Tyr-ACINUS is the Ct-fragment of a mediator of apoptotic chromatin condensation 

(95). 

#26. Lys-PLECTIN is the Ct-fragment of a cytoskeletal protein (96). 

#27. Cys-CCNE1 is the Ct-fragment of a specific G1/S cyclin (97). 

#28. His-PMCA4b is the Ct-fragment of a Ca2+ extrusion pump (98). 

#29. Asp-CDC42 is the Ct fragment of CDC42, a RAS superfamily member (99). 

#30. Tyr-iPLA2 is the Ct-fragment of the phospholipase A2 (100). 
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Fig. S3. Retention of destabilizing activity (but not necessarily the identity) of P1’ 

residues in calpain cleavage sites during evolution of vertebrates.  

Arrowheads indicate calpain cleavage sites. P1’ residues, which become N-terminal upon 

the cleavage, are larger and colored. The diagrams and indicated residue numbers are of mouse 

[Mus musculus (Mm)] caspase substrates, some of which are cited in Fig. S1. 

(A) Bak. The P1’ residue (future Nt-residue) is Glu in mouse, human, chimpanzee, and 

bat, is Lys in bonobo (a close relative of chimpanzee) and armadillo; and is Asp in hamster, 
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elephant, and manatee. All of these Nt-residues are destabilizing in the Arg/N-degron pathway 

(see the main text and Fig. 2). 

(B) Grm1. The P1’ residue (future Nt-residue) is Tyr in all cited species save for jaculus 

(a rodent) and armadillo, in which P1’ residues are, respectively, His and Phe. All of these Nt-

residues are destabilizing in the Arg/N-degron pathway (see the main text and Fig. 2). 

(C) IκBα. The P1’ residue (future Nt-residue) is Glu in all cited species except chicken 

and frog, in which P1’ residues are, respectively, Asp and Asn. All of these Nt-residues are 

destabilizing in the Arg/N-degron pathway (see the main text and Fig. 2). 

(D) GluN2a. The P1’ residue (future Nt-residue), is Phe in mouse, dog, and frog, is Leu 

in human, cow, and platypus, is Tyr in chicken, and is His in turtle. All of these Nt-residues are 

destabilizing in the Arg/N-degron pathway (see the main text and Fig. 2). 

(E) Ankrd2. The P1’ residue (future Nt-residue) is Arg in all cited species except frog, in 

which P1’ is Lys. All of these Nt-residues are destabilizing in the Arg/N-degron pathway (see the 

main text and Fig. 2). 

(F) Capsn1. The P1’ residue (future Nt-residue) is Asp in all cited species except 

zebrafish and pufferfish, in which P1’ is Glu. All of these Nt-residues are destabilizing in the 

Arg/N-degron pathway (see the main text and Fig. 2). 
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Fig. S4. Retention of destabilizing activity (but not necessarily the identity) of P1’ 

residues in caspase cleavage sites during animal evolution.  
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Arrowheads indicate caspase cleavage sites, which are highlighted by grey rectangles. 

P1’ residues, which become N-terminal upon cleavage by a caspase, are larger and colored. The 

diagrams and indicated residue numbers are of human caspase substrates, which are cited in Fig. 

S2. 

(A) RIPK1. The P1’ residue (future Nt-residue) is Cys in all cited species. Nt-Cys is 

destabilizing in the Arg/N-degron pathway (see the main text and Fig. 2). 

(B) BRCA1. The P1’ residue (future Nt-residue) is Asp in human, chimpanzee and 

mouse, is Ile in western mouse (an Australian rodent), is Glu in rabbit, and is Asn in bat. All of 

these Nt-residues are destabilizing in the Arg/N-degron pathway (see the main text and Fig. 2). 

(C) Synphilin1. The P1’ residue (future Nt-residue) is Gln in human and dog, is Arg in 

mouse, is Lys in frog, is Asn in a tick and fruit fly (Drosophila), is Asp in a tunicate (a marine 

invertebrate), and is His in sea squirt. All of these Nt-residues are destabilizing in the Arg/N-

degron pathway (see the main text and Fig. 2). 

(D) GluN2a. The P1’ residue (future Nt-residue) is Tyr in human, macaca, dog and cow, 

and is Phe in mouse, rat and hamster. All of these Nt-residues are destabilizing in the Arg/N-

degron pathway (see the main text and Fig. 2). 
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Fig. S5. N-degron pathways. N-terminal (Nt) residues are indicated by single-letter 

abbreviations. A yellow oval denotes the rest of a protein substrate.  

(A) Twenty amino acids of the genetic code are arranged to delineate specific N-degrons. 

Nt-Met is cited thrice, since it can be recognized by the Ac/N-degron pathway (as Nt-acetylated 

Ac-Met), by the Arg/N-degron pathway (as unacetylated Nt-Met), and by the fMet/N-degron 

pathway (as Nt-formylated fMet). Nt-Cys is cited twice, since it can be recognized by the Ac/N-

degron pathway (as Nt-acetylated Cys) and by the Arg/N-degron pathway (as an oxidized, 

arginylatable Nt-Cys sulfinate or sulfonate, formed in multicellular eukaryotes but apparently not 

in unstressed S. cerevisiae).  

(B) The eukaryotic (S. cerevisiae) fMet/N-degron pathway (101). 10-fTHF, 

10-formyltetrahydrofolate.  

(C) The bacterial (E. coli) fMet/N-degron pathway (102).  

(D) The bacterial (V. vulnificus) Leu/N-end rule pathway (103). 

(E) The eukaryotic (S. cerevisiae) Pro/N-degron pathway (104-106).  

(F) The eukaryotic (S. cerevisiae) Ac/N-degron pathway (107-110).  

(G) The eukaryotic (S. cerevisiae) Arg/N-degron pathway (2, 111, 112). Modified with 

permission from ref. (2). 

 

https://en.wikipedia.org/wiki/10-formyltetrahydrofolate
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Fig. S6. C-degrons and C-degron pathways in human cells. This diagram is a simplified 

summary of the 2018 discovery, by the laboratories of Elledge and Yen, of a large set of C-

degrons in human proteins (113-115). Amino acid residues are denoted by single-letter 

abbreviations. A yellow oval denotes a protein substrate upstream of its C-terminus. The 

indicated C-terminal (Ct) sequences and individual Ct-residues, referred to as C-degrons, are 

targeted, in conjunction with internal Lys residues (ubiquitylation sites) of individual C-degron 

substrates, by a broad range of Ub ligases, largely but not solely of the CRL class (113-115). See 

the main text for a brief discussion of C-degron pathways. 
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