

Supplementary Material

Indoleamine 2,3-Dioxygenase Activity During Acute Toxoplasmosis and the Suppressed T Cell Proliferation in Mice

Christoph-Martin Ufermann^{1†}, Andreas Domröse^{1†}, Timo Babel¹, Anne Tersteegen¹, Sevgi Can Cengiz², Silvia Kathrin Eller¹, Katrin Spekker-Bosker¹, Ursula Regina Sorg¹, Irmgard Förster², Walter Däubener^{1*}

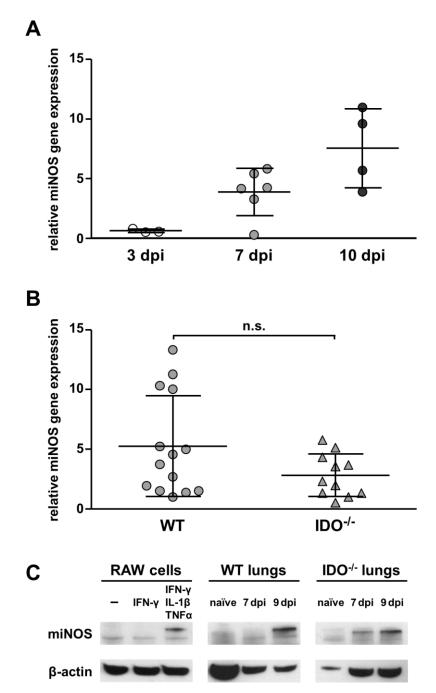
*Correspondence:

Prof. Dr. Walter Däubener Institute of Medical Microbiology and Hospital Hygiene Heinrich-Heine-University Düsseldorf Universitätsstr. 1, Bldg. 22.21 40225 Düsseldorf, Germany

Phone: +49 (0) 211-81-12464 Fax: +49 (0) 211-81-15906

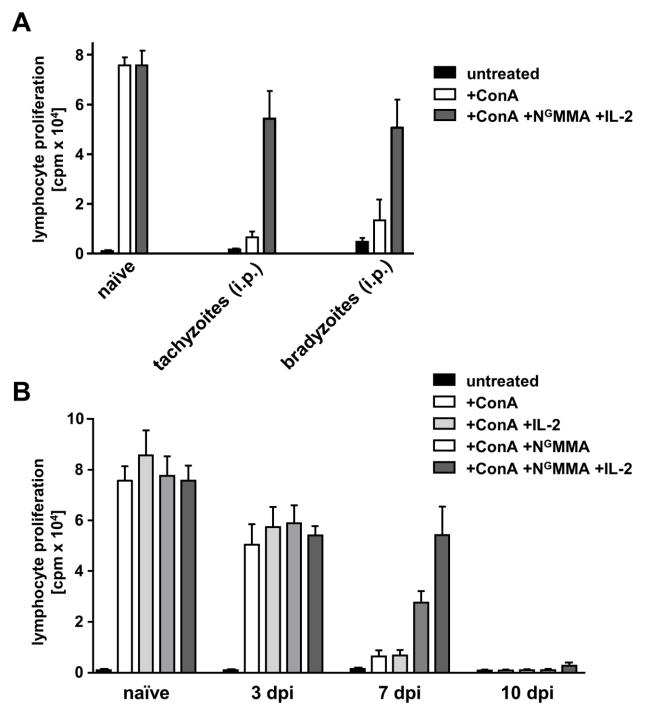
e-mail: daeubene@uni-duesseldorf.de

Content	
Supplementary Table S1 Oligonucleotides used in this study	S-2
Supplementary Figure S1 Expression of miNOS in murine lung tissue during <i>Toxoplasma gondii</i> infection	S-3
Supplementary Figure S2 Mitogen induced lymphocytes proliferation responses in murine splenocytes	S-5


¹ Institute of Medical Microbiology and Hospital Hygiene, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany

² Immunology and Environment, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany.

[†]These authors have contributed equally to this work


Supplementary Table S1 Oligonucleotides used in this study.

Gene expression			
Primer Name	Primer Sequence [5'->3']	Roche Probe ID	
mβ-actin-fw	TGACAGGATGCAGAAGGAGA	106	
mβ-actin-rv	CGCTCAGGAGGAGCAATG		
mGBP2-fw	TGAGTACCTGGAACATTCACTGAC	17	
mGBP2-rv	AGTCGCGGCTCATTAAAGC		
mIDO1-fw	GGGCTTCTTCCTCGTCTCTC	2	
mIDO1-rv	TGGATACAGTGGGGATTGCT		
mIDO2-fw	GTCCTTGGGGAGATACCACA	12	
mIDO2-rv	CCAAGGCTTGTAATGATCTGG		
miNOS-fw	CTTTGCCACGGACGAGAC	13	
miNOS-rv	TGTACTCTGAGGGCTGACACA		
Parasite load			
Primer Name	Primer Sequence [5'->3']		
TgB1-fw	TgB1-fw GCTAAAGGCGTCATTGCTGTT		
TgB1-rv	GGCGGAACCAACGGAAAT		
TgB1-probe	TgB1-probe FAM-ATCGCAACGGAGTTCTTCCCAGACGT-BHQ1		

Supplementary Figure S1 Expression of miNOS in murine lung tissue during *Toxoplasma gondii* **infection.** Gene and protein expression of murine inducible nitric oxide synthase (miNOS) in tissues from naïve or *T. gondii* ME49 infected wild-type (WT) and indoleamine 2,3-dioxygenase 1-deficient (IDO $^{-/-}$) mice at different time points post infection. Expression of miNOS in lung tissue homogenates of infected mice relative to their expression in naïve control samples on 3, 7 and 10 days post infection (dpi) (**A**). Expression of miNOS in lung tissue homogenates of infected WT and IDO $^{-/-}$ mice relative to their expression in naïve control samples at day 7 post infection (dpi) (**B**). Western blot analysis shows miNOS and β-actin protein in lung tissue of naïve and infected WT and IDO $^{-/-}$ mice as well as untreated (-) and stimulated (IFN-γ 100 U/mL or IFN-γ 100 U/mL + IL-1β 100 U/mL + TNFα 100 U/mL) RAW 264.7 cells as negative and positive controls respectively (**C**). IFN-γ, IL-1β, TNFα

were purchased from R&D Systems (Minneapolis, USA). qPCR data were normalized to the housekeeping gene β -actin and were represented as $2^{-\Delta\Delta CT}$ (naïve vs. infected) in scattered dot plots and means \pm standard deviation. The Student's *t*-test (unpaired, two-tailed) was used to determine statistical differences marked with asterisks (n.s. = not significant).

Supplementary Figure S2 Mitogen induced lymphocytes proliferation responses in murine splenocytes. Splenocytes were isolated from uninfected (naïve; n = 3) or T. gondii ME49 tachyzoite (intraperitoneal (i.p.) dose: 10^5 tachyzoites; n = 3) or bradyzoite (i.p. dose: 20 lysed cysts; n = 3) infected C57BL/6 wild-type (WT) mice at 7 days post infection (dpi) (A). Splenocytes were isolated from uninfected (naïve; n = 3) or T. gondii ME49 tachyzoite infected (i.p. dose: 10^5 tachyzoites) WT mice at 3 dpi (n = 3), 7 dpi (n = 3) and 10 dpi (n = 3) (B). Splenic T cell cultures were stimulated with the mitogen concanavalin A (ConA, $1 \mu g/mL$) ex vivo. Additional supplementation of recombinant interleukin-2 (IL-2, 5 ng/mL) and the nitric oxide synthase (NOS) inhibitor

 N^G -monomethyl-L-arginine (N^GMMA , 100 μ g/mL) was done as indicated. Lymphocyte proliferation was determined with the 3H -thymidine method. Data were represented as means of triplicate measurements + standard error of the mean of one experiment.