

Supplementary Information for

Bone resorption and body reorganization during maturation induce maternal transfer of toxic metals in anguillid eels

Marko Freese^{*}, Larissa Yokota Rizzo, Jan-Dag Pohlmann, Lasse Marohn, P. Eckhard Witten, Felix Gremse, Sabrina Michael, Stefan Rütten, Nihan Güvener, Klaus Wysujack, Twan Lammers, Fabian Kiessling, Henner Hollert, Reinhold Hanel, Markus Brinkmann

*To whom correspondence should be addressed. Email : Marko.Freese@thuenen.de

This PDF includes

Supplementary Text Table S1 to S4 Figures S1 and S2

References for SI reference citations

Supplementary Text

Sampling of animals:

A total of 22 live European eels (*Anguilla anguilla*) were originally obtained from German commercial fisheries and eventually divided into six groups according to their sex, life history and maturation stages: Yellow, silver, (hormone treated) maturing female, (hormone treated) fully matured female, silver males and (hormone treated) fully mature male developmental stages. Due to low availability, no male yellow eels were included in the analyses (*See Table S1 for detailed biological data of all used individuals*). In accordance with German animal welfare law (1), eels used for this study were killed by an overdose of 2-phenoxyethanol (ROTH, Karlsruhe, Germany) until final stop of the heart and subsequently stored at -20°C before further data collection.

Hormone treatment:

All hormone-treated groups consisted of silver eels that were artificially matured by regular hormone injections prior to analyses. While the maturing female group consisted of fish that were incompletely stimulated due to shorter hormonal treatment, individuals in the mature female and mature male groups consisted of ready-to-spawn individuals with fully matured gonads. During the time of hormone treatment, these eels were held under a gentle but constant water flow in a round recirculation system equipped with aeration and a trickle filter for mechanical filtration and denitrification.

To induce maturation in female eels, individuals were treated with weekly intramuscular injections of aqueous salmon pituitary extract (SPE; Argent Aquaculture, Redmond, USA; 20 mg/kg). Injections were administered close to the dorsal fin into the dorsal muscle. Full maturation was indicated by a steep increase in weight caused by the hydration of oocytes. To reach this stage, between 26 to 32 weekly SPE injections per individual were required. Individuals in the group of maturing females did not reach the full maturation status and received between 13 and 27 SPE-injections before they died during the maturation process. They were immediately stored at 20°C when death was confirmed. Male eels were treated with weekly intraperitoneal injections of 150 IU human chorionic gonadotropin (hCG; Sigma-Aldrich, Schnelldorf, Germany). These fish were regarded mature when they produced active spermatozoa, which was regularly monitored and visually confirmed using a stereo microscope. It took \geq 8 weeks of hCG-treatment to reach this stage.

Sampling of skeletal elements:

The first spinal, postcranial vertebrae of each individual per group were excised for μ CT scans. The same vertebrae of each, one representative individual per group was then also used for SEM scans and the third to fifth postcranial vertebrae taken from the same individuals were excised for bone histology. For body burden calculations and for inductively coupled plasma mass spectrometry (ICP-MS) measurements, all fish were carefully further dissected and body compartments of interest (muscle, liver,

gonads, selected vertebrae and remaining spinal cord) were separated, weighed and subsequently freezedried and weighed again to record the water contents.

Whole-body computed tomography (CT) imaging:

Non-invasive whole-body scans from eels were performed at a clinical CT system (Somatom Definition Flash, Siemens Medical Solutions, Forchheim, Germany). All animals were scanned within one single CT scan (voltage 120 kV, current 54 mA, exposure time 285 ms, focal spot 1.2, filter type wedge 3) and CT slices were reconstructed using the Syngo software (Syngo CT 2012B, Siemens Medical Solutions) at voxel size 0.77 mm with a medium kernel (B35f). (*For further instrumental settings, see Table S3*) Individual whole-body volumes and skeletal structures were semi-automatically rendered based on contrast thresholding using Imalytics Preclinical Software, as previously described (2,3). Each individual animal was assigned a distinct class and color to facilitate visualization. BMD was estimated by comparing bone density with a hydroxyapatite calibration phantom (Osteo Phantom, Siemens Medical Solutions, Erlangen, Germany) of known BMD (200 mg / cm³) scanned simultaneously with the eels.

Vertebrae imaging (µCT):

Making use of the same individuals from the whole-body CT scans, detailed imaging of the *second* postcranial spinal vertebrae was performed in a preclinical μ CT system (TomoScope DUO 30s, CT-Imaging, Erlangen, Germany). Following the standard scanning protocol HQD-6565-360-90 as described by Gremse et al. (4), the vertebrae from individuals within the same sampling groups were scanned. Volumetric images were reconstructed at voxel size 70 μ m using a Feldkamp-type reconstruction with ring artifact correction. Vertebrae were segmented using a region-growing algorithm based on their increased image intensity, to determine the vertebrae volume per animal.

Calcium maps:

Calcium maps were derived from the clinical-CT (whole-body) and micro-CT (vertebrae) data, making use of proportionality between calcium-content and x-ray density (5). Those were employed to assess the mean and total calcium concentration (values normalized to $g/10^6$ mm³) per animal, and for providing a color-coded volumetric depiction of the calcium distribution within the scanned specimen or body compartment.

Scanning electron microscopy (SEM) of selected vertebrae:

Ex vivo validation of bone demineralization was performed through high-resolution scanning electron microscopy (ESEM XL 30 FEG, FEI, Eindhoven, sputter coater EM SCD500, Leica, Wetzlar, Germany) of harvested vertebrae. Of each group, one representative, of the first three *postcranial* vertebra per developmental stage was scanned for overview, 50x, 500x and 2500x magnifications (BSE scan, 10 kV,

VD: 10, Spot 3.0, Blender 3.0). Energy dispersive X-ray spectroscopy (EDXS) analyses were performed at 50x magnifications (Preset 50, Amp 35 μ s), providing the semi-quantitative assessment of average Ca and P content within each sample Results were compared to the ICP-MS analytical evaluation.

Bone histology:

For histological analyses, frozen abdominal (type II) vertebrae of one representative individual (with median bone density) per group were thawed in 10% neutral-buffered formalin at room temperature and subsequently fixated in formalin for additional three days. After formalin fixation, these samples were rinsed in running tap water overnight and then transferred stepwise into 70% ethanol (storage solution). Then, prior to decalcification, the vertebrae were again transferred stepwise to 100% ethanol to remove tissue fat overnight on a shaker and after this, retransferred stepwise to tap water again. Decalcification was carried out with DecalTM Decalcifier (Statlab Medical, McKinney, USA) twice for 24 h; with each step performed on a shaker at room temperature. After decalcification, samples were rinsed overnight in tap water followed by dehydration in a series of ethanol solutions with increasing concentration (30-100% ethanol in water). In the paraffin embedding process, the bones were treated with HistoChoice (Sigma-Aldrich, St. Louis, USA), two times overnight on a shaker, followed by graded HistoChoice paraffin solutions (30-100% paraffin at 60°C). Serial sections of 5 μ m thickness were prepared in the sagittal plane of the vertebral column, starting at the lateral periphery of vertebral bodies and ending in the mediosagittal plane. Sections were mounted on treated microscope slides (Superfrost Plus Micro, VWR International, Radnor, USA) and stained with Heidenhain's Azan following the protocol of Presnell & Schreibman (6). DPX (Sigma-Aldrich, St. Louis, USA) was used to mount the sections on slides. All sections were analyzed and photographed at magnifications between 40x and 400x with a Leitz Dialux 22EB microscope (Leica, Wetzlar, Germany) equipped with a 5MP color CCD camera.

Analytical validation by ICP-MS & TDA AAS

Before further utilization, muscle, liver, bone and gonad samples were weighed, lyophilized (Lyovac GT 2; GEA Pharma Systems, Wommelgem, Belgium) and then weighed again before being homogenised using a laboratory mill (IKA A11; IKA, Staufen, Germany).

Concentrations of most minerals and metals were determined by means of ICP-MS. Briefly, samples were digested in Polytetrafluoroethylene (PTFE) high-pressure vessels (HPR-1000/10S, MLS GmBH, Leutkirch, Germany) using an MLS Ethos plus microwave oven with temperature and pressure control (MLS GmbH, Leutkirch, Germany). To this end, approx. 50-100 mg was weighed into a microwave vessel containing 5 mL nitric acid (65%, SupraPure, Sigma Aldrich), 7 mL hydrogen peroxide (SupraPure, Sigma Aldrich), and 1 mL internal rhodium standard (1 μ g mL⁻¹). The digestion temperature was ramped from room temperature to 210°C for 45 min, and held for 15 min. After digestion, samples were rehydrated 2- and 10-fold with ultrapure water. Instrumental ICP-MS analyses were performed on

an ELAN DRC II system (PerkinElmer SCIEXTM, PerkinElmer, Waltham, MA, USA). The technical parameters and operating conditions are summarized in supplementary material (S2). Calibration was performed using a commercial multi-element standard (CertiPUR®, Merck, Darmstadt, Germany) with element concentrations ranging from $0.1 - 1000 \text{ mg L}^{-1}$. Limits of detection (LODs) were calculated by applying the dilution factor to LODs based on the signal obtained from the analysis of 10 replicates of a solution containing a digested unexposed filter using the three standard deviation criteria.

Mercury concentrations in the body compartments of interest were determined using thermal decomposition, amalgamation, and atomic absorption spectrometry (TDA AAS) (Direct Mercury Analyzer, Milestone Inc, Shelton, USA) with integrated autosampler, control system lab-terminal 1024 and laboratory weighing scale (Precisa XT220, Milestone, Leutkirch, Germany). Dry samples were weighed to approximately 1,5 - 60 mg and quadruplicate measurements were conducted for each sample. If values varied more than 20 %, another 4-fold measurement was performed.

Analytically derived dry weight-based concentrations of metals and minerals in homogenized samples from individual organs were multiplied with the total dry-weight of the respective organ, which was estimated based on life-history stage-dependent percentages of the body wet-weight of each fish. For this, a reference database consisting of whole-body dry-weight distribution data from 120 European eels of different stages was used (*SI Table S4*). Results were expressed as relative percentages in the individual compartments, and as soft tissue to bone mass ratios.

Statistical Analyses

Statistical testing was carried out using GraphPad Prism 6.0h (GraphPad software Inc, California, USA). Analysis of variances (ANOVA) followed by Tukey's or Dunnett's post hoc test was used to test for differences in volume and calcium map- derived calcium content of whole-body and single vertebrae sampling groups of female eels. For the two groups of male eels, student's t-test was used to test for differences in volume and calcium content of whole bodies and single vertebrae sampling groups. A significance level of P < 0.05 was used for all tests. (*Details on test results available in Table S2*)

Table S1.

Detailed biological parameters of eels used in this study

ID	System / Origin	Sex	Stage (Durif)	Length (cm)	Mass (g)	Liver mass (g)	Gonad mass (g)	Muscle sample (g)	Stomach & Gut (g)	Total muscle lipid (fatmeter device)	Swim- bladder (g)	Skeletal bone volume (mm ³)	Bone mineral density in whole skeleton (apatite / mm3)	Vertebral bone volume (mm ³)	Bone mineral density in Vertebrae (apatite / mm3)
yf1	Warnow / Peene	f	2	51	177	1.25	0.28	17.39	6.12	14.5	1.13	11444.30	37.62	37.16	457.29
yf2	Warnow / Peene	f	1	45	118	1.41	0.1	10.25	3.73	12.9	0.18	8675.78	40.09	17.99	491.39
yf4	Warnow / Peene	f	3	55	302	4.0	3.04	21.53	7.44	33.1	0.77	11556.70	19.43	23.66	469.92
sf1	Warnow / Peene	f	5	66	632	7.8	11.34	38.4	12.48	26.3	2.98	23699.70	24.36	85.03	411.02
sf2	Warnow / Peene	f	5	73	818	8.4	11.45	41.45	19.05	30.2	2.96	27983.50	28.68	114.36	374.80
sf3	Warnow / Peene	f	5	73	782	0.94	10.58	36.92	18.38	29.5	2.24	24316.50	23.76	74.28	450.60
sf4	Warnow / Peene	f	5	76	877	10.53	12.59	34.52	21.48	38.2	4.89	34374.70	29.77	91.07	503.94
gf1	Ems	f	5	71	528	4.8	74.07	18.95	2.84	20.9	1.35	19986.00	17.66	82.82	305.01
gf2	Arresö (Dk)	f	5	73	709	10.64	10.9	33.58	6.95	31.5	3.72	30512.10	23.92	113.07	380.54
gf4	Ems	f	5	73	675	8.52	124.1	29	4.78	20.7	1.47	20626.70	20.25	58.34	320.64
mf1	Weser	f	5	69	634	4.66	155	13.39	1.66	NA	3.8	11152.30	13.04	38.06	244.46
mf2	Weser	f	5	66	532	5.14	152	15.5	4.1	NA	0.5	9757.93	15.49	38.89	258.49
mf3	Weser	f	5	77	826	14.21	295.6	12.46	1.92	NA	1.05	17118.30	1534	49.47	258.69
mf4	Weser	f	4	81	1219	17.08	471.87	25.6	9.1	NA	2.81	21026.90	16.31	66.08	238.66
sm1	Warnow / Peene	m	6	44	125	1.25	0.1	14.44	2.24	29.6	0.58	4071.39	10.50	14.49	348.71
sm2	Warnow / Peene	m	6	39	107	1.38	<loq< td=""><td>10.82</td><td>2.6</td><td>27.3</td><td>1.09</td><td>3390.63</td><td>10.19</td><td>10.92</td><td>334.14</td></loq<>	10.82	2.6	27.3	1.09	3390.63	10.19	10.92	334.14
sm3	Warnow / Peene	m	6	42	122	1.39	<loq< td=""><td>14.69</td><td>1.87</td><td>37.4</td><td>0.69</td><td>4799.40</td><td>9.95</td><td>12.00</td><td>388.27</td></loq<>	14.69	1.87	37.4	0.69	4799.40	9.95	12.00	388.27
sm4	Warnow / Peene	m	6	43	141	1.25	<loq< td=""><td>10.39</td><td>1.53</td><td>33.4</td><td>0.58</td><td>4750.95</td><td>14.62</td><td>10.20</td><td>432.65</td></loq<>	10.39	1.53	33.4	0.58	4750.95	14.62	10.20	432.65
mm1	Raised in farm	m	6	43	136	1.63	8.77	8.82	1.33	32.8	0.21	3926.61	7.41	8.70	330.84
mm2	Raised in farm	m	6	41	155	1.96	14.94	9.68	0.94	34.2	0.11	3357.13	7.81	5.19	300.31
mm3	Raised in farm	m	6	39	106	1.1	10.65	9.7	1.69	36.3	0.05	2929.22	8.30	6.75	323.04
mm4	Raised in farm	m	6	43	88	0.85	2.32	8.65	0.78	37.6	0.05	4398.01	6.75	7.43	316.86

Table S2.

Details of statistical tests between tested groups. Bold letters indicate significant results

Skeletal Bone	Skeletal Bone Volume												
FEMALES (one-way ANOVA and Tukey's multiple comparisons test)													
	Mean 1	Mean 2	Mean Diff.	Summary	95.00% CI of diff.	Adjusted P	value						
Yellow vs. Silver	10559	27594	-17035	**	-28238 to -5832	0.0042							
Yellow vs. Maturing	10559	23708	-13149	*	-25126 to -1173	0.0310							
Yellow vs. Mature	10559	14764	-4205	ns	-15408 to 6998	0.6701							
Silver vs. Maturing	27594	23708	3885	ns	-7318 to 15088	0.7194							
Silver vs. Mature	27594	14764	12830	*	-2458 to 23202	0.0158							
Maturing vs. Mature	23708	14764	8944	ns	-2259 to 20147	0.1312							
Males (unpaired t-test)													
	Mean 1	Mean 2	Mean Diff	Summary	95.00% CI of diff.	P value	R ²						
Silver vs. Mature	4253	3653	-600	ns	-1732 to 532	0.2423	0.2189						

Skeletal Bone	Skeletal Bone Mineral Density											
FEMALES (one-way ANOVA and Tukey's multiple comparisons test)												
	Mean 1	Mean 2	Mean Diff.	Summary	95.00% CI of diff.	Adjusted 1	P value					
Yellow vs. Silver	32.4	26.64	5.757	ns	-7.215 to 18.73	0.5504						
Yellow vs. Maturing	32.4	20.61	11.79	ns	-2.082 to 25.66	0.1030						
Yellow vs. Mature	32.4	15.04	17.35	**	4.382 to 30.33	0.0098						
Silver vs. Maturing	26.64	20.61	6.029	ns	-6.943 to 19	0.5147						
Silver vs. Mature	26.64	15.04	11.6	ns	-0.4131 to 23.61	0.0591						
Maturing vs. Mature	20.61	15.04	5.568	ns	-7.405 to 18.54	0.575						
Males (unpair	ed t-test)			·	·	·						
	Mean 1	Mean 2	Mean Diff	Summary	95.00% CI of diff.	P value	R ²					
Silver vs. Mature	11.31	7.564	-3.75	ns	-6.577 to -0.9225	0.0176	0.6371					

FEMALES (one-way ANOVA and Tukey's multiple comparisons test)											
	Mean 1	Mean 2	Mean Diff.	Summary	95.00% CI of diff.	Adjusted	P value				
Yellow vs. Silver	26.27	91.19	-64.92	**	-105.9 to -23.98	0.0031					
Yellow vs. Maturing	26.27	84.74	-58.47	**	-102.2 to -14.71	0.0099					
Yellow vs. Mature	26.27	48.2	-21.93	ns	-62.87 to 19.01	0.4017					
Silver vs. Maturing	91.19	84.74	6.442	ns	-34.50 to 47.38	0.9615					
Silver vs. Mature	91.19	48.2	42.99	*	5.083 to 80.89	0.0260					
Maturing vs. Mature	84.74	48.2	36.54	ns	-4.395 to 77.48	0.0840					
Males (unpaire	d t-test)										
	Mean 1	Mean 2	Mean Diff	Summary	95.00% CI of diff.	P value	\mathbb{R}^2				
Silver vs. Mature	11.9	7.018	-4.89	**	-7.796 to -1.974	0.0063	0.7376				

Vertebral Bone Mineral Density										
FEMALES (one-way ANOVA and Tukey's multiple comparisons test)										
	Mean 1	Mean 2	Mean Diff.	Summary	95.00% CI of diff.	Adjusted P value				
Yellow vs. Silver	0.04442	0.04351	0.0009096	ns	-0.008852 to 0.01067	0.9919				
Yellow vs. Maturing	0.04442	0.03354	0.01088	*	0.0003348 to 0.02142	0.0426				

Yellow vs. Mature	0.04442	0.02501	0.01941	***	0.009649 to 0.02917	0.0005					
Silver vs. Maturing	0.04351	0.03354	0.009969	ns	-0.0005748 to 0.02826	0.0656					
Silver vs. Mature	0.04351	0.02501	0.0185	***	0.008739 to 0.02826	0.0007					
Maturing vs. Mature	0.03354	0.02501	0.008532	ns	0.0002012 to 0.02908	0.1273					
Males (unpaired t-test)											
	Mean 1	Mean 2	Mean Diff	Summary	95.00% CI of diff.	P value	R ²				
Silver vs. Mature	0.03759	0.03178	-0.005818	*	-0.01145 to -0.0001844	0.0449	0.5156				

Concentration in Bones From ADULT FEMALES

(one-way ANOVA with Dunnett's multiple comparisons test)

	Mean 1	Mean 2	Mean Diff.	Summary	95.00% CI of diff.	Adjusted P value				
Cadmium										
Silver vs. Maturing	43.75	40	3.75	ns	-4.116 to 11.62	0.3810				
Silver vs. Mature	43.75	40	3.75	ns	-3.532 to 11.03	0.3337				
Copper										
Silver vs. Maturing	397.5	543	-145.5	ns	-451.1 to 160.1	0.3819				
Silver vs. Mature	397.5	534	-136.5	ns	-419.4 to 146.4	0.3737				
Manganese										
Silver vs. Maturing	29625	26033	3592	ns	-13428 to 20611	0.8013				
Silver vs. Mature	29625	21025	8600	ns	-7157 to 24357	0.2989				
Mercury										
Silver vs. Maturing	56	43.33	12.67	ns	-85.56 to 110.9	0.9181				
Silver vs. Mature	56	157.8	-101.8	*	-192 to -10.81	0.0310				

Concentration In Gonads From Adult Females

(one-way ANOVA with Dunnett's multiple comparisons test)

	Mean 1	Mean 2	Mean Diff.	Summary	95.00% CI of diff.	Adjusted P value					
Cadmium											
Silver vs. Maturing	45	96	-51	ns	-160.2 to 58.25	0.3941					
Silver vs. Mature	45	168.4	-123.3	*	-224.4 to -22.11	0.0208					
Copper											
Silver vs. Maturing	3481	1261	2220	**	789.1 to 3651	0.0059					
Silver vs. Mature	3481	1690	1791	*	465.9 to 3115	0.0124					
Manganese				•							
Silver vs. Maturing	612.8	2845	-2233	*	-4324 to -141.4	0.0381					
Silver vs. Mature	612.8	1765	-1153	ns	-3089 to 783.6	0.2492					
Mercury											
Silver vs. Maturing	139	186	-47	ns	-408 to 314	0.9166					
Silver vs. Mature	139	520.3	-381.3	*	-715.5 to -47.01	0.0284					

Concentration In Livers From Adult Females

(one-way ANOVA with Dunnett's multiple comparisons test)

	Mean 1	Mean 2	Mean Diff.	Summary	95.00% CI of diff.	Adjusted P value				
Cadmium										
Silver vs. Maturing	58.75		-400.3	ns	-1077 to 276.8	0.2530				
Silver vs. Mature	58.75		-1024	**	-1651 to -397.2	0.0044				
Copper										

Silver vs. Maturing	32700	5510	27190	ns	-1457 to 55838	0.0619				
Silver vs. Mature	32700	22617	10083	ns	-18565 to 38730	0.5760				
Manganese										
Silver vs. Maturing	4711	7795	-3083	ns	-8471 to 2304	0.2713				
Silver vs. Mature	4711	9956	-5245	*	-10233 to -257.1	0.0406				
Mercury										
Silver vs. Maturing	629.3	300.7	328.6	ns	-1098 to 1755	0.7700				
Silver vs. Mature	629.3	2123	-1494	*	-2815 to -172.8	0.0295				

Concentration In Muscle From Adult Females

(one-way ANOVA with Dunnett's multiple comparisons test)

` •			*	. ,		
	Mean 1	Mean 2	Mean Diff.	Summary	95.00% CI of diff.	Adjusted P value
Cadmium						
Silver vs. Maturing	1532	584.5	947.5	ns	-751.2 to 2646	0.2764
Silver vs. Mature	1532	1352	180	ns	-1207 to 1567	0.9126
Copper						
Silver vs. Maturing	58.75	45	13.75	ns	-20.63 to 48.13	0.4897
Silver vs. Mature	58.75	45	13.75	ns	-18.08 to 45.58	0.4423
Manganese						
Silver vs. Maturing	414.3	450.3	-36.08	ns	-890.4 to 818.3	0.9907
Silver vs. Mature	414.3	1049	-635	ns	-1426 to 156	0.1110
Mercury						
Silver vs. Maturing	767	383.3	383.7	ns	-479.8 to 1247	0.4248
Silver vs. Mature	767	1922	-1155	**	-1954 to 355.3	0.0088

Table S3.

Instrumental parameters for the analysis with ICP-MS

ICP-MS Operating Conditions and Paramet	ers.
ICP-MS	Elan-DRCII (Perkin-Elmer)
Nebulizer	Meinhard Type A quartz Part No.: WE02-4372
Spray Chamber	Quartz Cyclonic Part No.: WE02-5222
RF Power	1100 Watt
Plasma Ar Flow	15 L/min
Nebulizer Ar Flow	0.93 L/min
Aux. Ar Flow	1.1 L/min
Injector	2.0 mm i.d. Quartz Part No.: WE02-3916
CeO+/Ce+	<3%

Table S4.

Reference dataset with biological values for mass balance calculations

			Channe	Longth	14/-1-64	Fatmet	Fat	Kidaa	Kida a	1	1	Canada	Canada	Cut	Cut	Total	Mussla	Chin.	Chin	C	6	6.0	6.0	Cill.	Cill.	Calas	Calas	Duralia	Durain
Origin	Yellow /Silver	Sex	Stage (Durif)	Length (cm)	(g)	er % in Filet	(%ww) (analyt.)	y (g)	Kidne y (%)	(g)	Liver (%)	Gonads (g)	Gonads (%)	(g)	Gut (%)	(g)	Muscle (%)	(g)	(%)	(g)	Carcass (%)	SB (g)	SB (%)	(g)	Gills (%)	n (g)	spiee n (%)	(g)	Brain (%)
Aquac ulture	y	f	1	34	57.75	NA	7.35	0.72	1.24	0.80	1.38	NA	NA	2.25	3.90	26.31	45.56	6.36	11.01	12.87	22.28	NA	NA	0.97	1.68	0.09	0.16	0.05	0.08
Aquac	v	f	1	35	52.81	NΔ	7 35	0.86	1.62	0.80	1 51	NΔ	NA	2 15	4.06	23.25	44.02	5 79	10.96	13 93	26 37	ΝΔ	NΔ	0.52	0.98	0.12	0.23	0.03	0.06
Aquac	у				52.01		7.55	0.80	1.02	0.80	1.51			2.15	4.00	23.25	44.02	5.75	10.50	13.55	20.57			0.52	0.58	0.12	0.25	0.05	0.00
Aquac	У	t	1	40	94.05	NA	8.72	1.26	1.34	1.29	1.37	0.33	0.35	3.78	4.02	40.24	42.79	9.77	10.38	28.75	30.57	NA	NA	1.73	1.84	0.20	0.21	0.05	0.05
ulture	у	f	1	39	108.65	NA	20.99	0.90	0.83	1.37	1.26	0.37	0.34	5.67	5.22	56.53	52.03	9.65	8.89	23.58	21.70	NA	NA	1.29	1.19	0.14	0.13	0.05	0.05
ulture	у	m	1	35	83.7	NA	23.24	0.61	0.73	1.28	1.53	NA	NA	4.85	5.79	39.90	47.67	9.07	10.84	19.19	22.93	NA	NA	1.18	1.41	0.11	0.13	0.04	0.05
Aquac ulture	у	m	1	34	76.12	NA	23.50	0.46	0.60	1.04	1.37	NA	NA	3.61	4.75	38.77	50.93	8.38	11.01	18.58	24.41	NA	NA	0.80	1.06	0.05	0.06	0.03	0.04
Aquac ulture	y	f	1	36	78.2	NA	11.32	0.82	1.04	0.93	1.18	0.10	0.13	2.11	2.69	44.91	57.43	8.55	10.94	13.69	17.51	NA	NA	0.93	1.19	0.07	0.10	0.05	0.06
Aquac		f	1	25	61 20	NA	0.01	0.45	0.72	0.96	1 41	0.16	0.27	2.40	5 5 2	27.24	44 54	E 40	9 OE	17 71	20 0E	NIA	NA	0.65	1.06	0.07	0.12	0.04	0.06
Aquac	У		1		01.35	NA	5.51	0.43	0.73	0.80	1.41	0.10	0.27	5.40	5.55	27.34	44.34	5.49	8.93	17.71	20.03	INA	NA	0.03	1.00	0.07	0.12	0.04	0.00
ulture Aquac	У	f	1	35	73.47	NA	21.35	0.84	1.14	0.98	1.34	0.31	0.42	4.14	5.64	41.36	56.30	6.35	8.65	12.86	17.50	NA	NA	1.27	1.73	0.10	0.14	0.07	0.09
ulture	У	f	1	35	65.9	NA	15.10	0.45	0.68	0.90	1.36	0.42	0.64	2.31	3.51	38.40	58.27	4.57	6.93	9.97	15.13	NA	NA	1.47	2.23	0.05	0.08	0.06	0.09
ulture	у	f	1	34	66.84	NA	13.75	0.73	1.09	0.91	1.36	0.10	0.14	2.63	3.93	32.93	49.27	7.73	11.56	15.61	23.36	NA	NA	0.89	1.33	0.14	0.21	0.05	0.07
Aquac ulture	у	f	1	35	63.7	NA	17.02	0.72	1.13	0.84	1.32	NA	NA	1.63	2.56	34.81	54.65	6.48	10.18	11.91	18.70	NA	NA	0.91	1.42	0.08	0.13	0.04	0.06
Aquac ulture	v	f	1	31	57.33	NA	26.49	0.48	0.84	0.61	1.06	NA	NA	2.48	4.32	29.68	51.78	5.85	10.20	12.77	22.28	NA	NA	0.42	0.73	0.06	0.10	0.03	0.05
Aquac			1	21	EC 20	NA	25.25	0.54	0.06	0.02	1.62	NA	NA	1 5 4	2.74	25 77	62.44	1 GE	0.75	6 5 2	11 56	NIA	NA	0.54	0.05	0.07	0.12	0.04	0.07
Aquac	У		1	51	50.56	NA	23.55	0.54	0.90	0.92	1.05	INA	NA	1.54	2.74	55.77	05.44	4.05	0.23	0.52	11.50	INA	NA	0.54	0.93	0.07	0.15	0.04	0.07
ulture Aquac	У	m	1	34	85.45	NA	27.37	0.61	0.71	1.01	1.18	NA	NA	3.29	3.85	47.30	55.35	9.49	11.11	17.29	20.23	NA	NA	0.81	0.94	0.04	0.05	0.04	0.04
ulture	У	f	1	35	66.65	NA	20.91	0.60	0.89	0.82	1.23	0.04	0.06	2.73	4.09	39.37	59.07	5.89	8.83	10.27	15.41	NA 1.0	NA	0.79	1.18	0.04	0.06	0.05	0.08
Eider	у	f	1	41	115	11.1	NA	NA	NA	1.78	1.55	0.20	0.17	7.18	6.24	60.89	52.95	17.17	14.93	16.86	14.66	5	1	2.45	2.13	NA	NA	NA	NA
Elbe	у	f	2	52	265	34.9	NA	NA	NA	2.88	1.09	2.52	0.95	11.19	4.22	160.30	60.49	32.50	12.26	36.47	13.76	1.0 3	0.3 9	1.71	0.65	NA	NA	NA	NA
Elbe	v	f	2	56	295	35.2	NA	NA	NA	3.53	1.20	1.48	0.50	16.10	5.46	174.31	59.09	32.62	11.06	51.47	17.45	0.8 8	0.3 0	2.83	0.96	NA	NA	NA	NA
Weser	v	f	2	55	320	32.7	NA	NA	NA	1 28	1 3/	1.60	0.50	22.10	7 25	101 16	50 7/	34.41	10.75	16.18	14 52	2.6	0.8	3 50	1 1 2	NA	NA	NA	NA
weser	У		2	55	520	52.7				4.20	1.54	1.00	0.50	23.15	7.25	151.10	55.74	34.41	10.75	40.48	14.55	0.1	0.0	5.55	1.12				
Weser	У	t	2	61	406	32.8	NA	NA	NA	5.10	1.26	1.86	0.46	21.88	5.39	247.64	61.00	38.11	9.39	60.03	14.79	8 1.6	4 0.4	5.75	1.42	NA	NA	NA	NA
Weser	у	f	2	60	395	29.9	NA	NA	NA	9.08	2.30	2.44	0.62	18.51	4.69	247.90	62.76	36.94	9.35	56.37	14.27	6	2	5.71	1.45	NA	NA	NA	NA
Weser	у	f	2	52	285	31.4	NA	NA	NA	4.82	1.69	1.67	0.59	16.40	5.75	151.91	53.30	29.76	10.44	52.00	18.25	3	6	4.15	1.46	NA	NA	NA	NA
Weser	у	f	2	57	306	20.4	NA	NA	NA	4.79	1.57	2.18	0.71	17.45	5.70	183.99	60.13	32.56	10.64	43.61	14.25	2.0	0.6 7	3.95	1.29	NA	NA	NA	NA
Weser	У	f	2	55	288	30.7	NA	NA	NA	3.90	1.35	1.25	0.43	14.28	4.96	182.94	63.52	25.57	8.88	43.71	15.18	0.7 9	0.2 7	3.69	1.28	NA	NA	NA	NA

Weser	У	f	2	58	508	33.3	NA	NA	NA	8.80	1.73	4.03	0.79	29.10	5.73	323.47	63.68	48.60	9.57	62.87	12.38	0.9 5	0.1 9	6.31	1.24	NA	NA	NA	NA
Weser	у	f	2	53	314	28	NA	NA	NA	5.85	1.86	1.30	0.41	12.23	3.89	203.29	64.74	27.85	8.87	38.90	12.39	0.6 1	0.1 9	2.99	0.95	NA	NA	NA	NA
Weser	у	f	2	51	218	15.3	NA	NA	NA	2.48	1.14	0.91	0.42	12.84	5.89	127.34	58.41	19.88	9.12	34.73	15.93	1.0 0	0.4 6	3.51	1.61	NA	NA	NA	NA
Weser	У	f	2	53	290	21.6	NA	NA	NA	5.66	1.95	1.02	0.35	19.83	6.84	164.31	56.66	28.79	9.93	46.29	15.96	1.0 0	0.3 4	4.96	1.71	NA	NA	NA	NA
Eider	v	f	2	52	201	10.8	NA	NA	NA	2.95	1.47	0.51	0.25	9.58	4.77	85.87	42.72	28.89	14.37	60.77	30.23	0.8 1	0.4 0	4.65	2.31	NA	NA	NA	NA
Eider	v	f	2	55	355	7.9	NA	NA	NA	4.53	1.28	0.82	0.23	11.73	3.30	122.46	34.50	37.20	10.48	58.21	16.40	1.3 6	0.3 8	5.52	1.55	NA	NA	NA	NA
Schlei	v	f	2	55	323	11.2	NA	NA	NA	6.23	1.93	1.35	0.42	15.16	4.69	172.46	53.39	36.64	11.34	70.25	21.75	2.6 8	0.8 3	3.85	1.19	NA	NA	NA	NA
Rhein	y v	f	2	56	281	19.6	NA	NA	NA	5 91	2 10	1 22	0.43	12 92	4 60	174.00	61 92	23.21	8 26	43.48	15.47	0.9	0.3	2 73	0.97	NA	NA	NA	NA
Rhein	v	f	2	51	206	21.2	NΔ	NA	NΔ	4 75	2 31	0.67	0.33	9 70	4 71	123.00	59 71	22.09	10.72	34 71	16.85	0.4	0.2	2.12	1.03	NΔ	NA	NΔ	NA
Phein	y V	f	2	52	200	18.2	NA	NA	NA	2.07	1.44	0.54	0.35	10.80	5.24	116.05	56.77	24.08	11.60	37.49	18 10	0.7	0.3	2.12	1.05	NA	NA	NA	NA
Phoin	y 	f	2	52	200	20.9	NA	NA	NA	2.57	1.77	0.00	0.20	14.94	E 20	162.90	50.77	23.00	11.05	44.70	16.13	1.5	0.5	2.07	1.50	NA	NA	NA	
Dhain	<u>у</u>	, ,	2	55	270	29.0	NA	NA	NA	3.77	1.57	0.90	0.55	14.04	3.38	102.00	50.55	32.22	11.07	44.73	10.25	1.5	0.5	3.09	0.00	NA	NA	NA	
Schlei/	У	ſ	2	53	272	30.2	NA	NA	NA	4.57	1.68	2.33	0.86	12.48	4.59	164.82	60.60	38.54 110.5	14.17	36.12	13.28	8 2.5	8 0.2	2.68	0.99	NA	NA	NA	NA
Trave	У	T	3	79	995	35.4	NA	NA	NA	11.93	1.20	13.61	1.37	30.95	3.11	668.23	67.16	/	11.11	121.43	12.20	8 2.5	1.0	8.42	0.85	NA	NA	NA	NA
Elbe	У	t	3	52	238	13.3	NA	NA	NA	2.68	1.13	0.89	0.37	15.99	6.72	127.18	53.44	26.86	11.29	47.09	19.79	3 1.0	6 0.2	2.86	1.20	NA	NA	NA	NA
Weser	У	f	3	59	354	21.3	NA	NA	NA	5.12	1.45	1.65	0.47	19.96	5.64	223.36	63.10	32.99	9.32	52.78	14.91	4 3.0	9 0.4	4.63	1.31	NA	NA	NA	NA
Eider	У	f	3	71	660	21.8	NA	NA	NA	8.15	1.23	3.10	0.47	25.05	3.80	403.63	61.16	76.32	11.56	106.66	16.16	4 2.9	6 0.6	9.35	1.42	NA	NA	NA	NA
Eider	У	f	3	63	442	15.3	NA	NA	NA	7.62	1.72	1.99	0.45	24.64	5.57	248.82	56.29	44.71	10.12	77.15	17.45	9 1.5	8 0.5	7.76	1.76	NA	NA	NA	NA
Eider	У	f	3	54	302	7	NA	NA	NA	3.97	1.31	0.72	0.24	18.73	6.20	167.84	55.58	37.04	12.26	47.98	15.89	7 2.1	2 0.7	5.16	1.71	NA	NA	NA	NA
Eider	у	f	3	54	276	10.1	NA	NA	NA	4.59	1.66	0.96	0.35	12.88	4.67	151.70	54.96	40.49	14.67	45.44	16.46	2	7	4.39	1.59	NA	NA	NA	NA
Eider	У	f	3	54	290	17.4	NA	NA	NA	4.34	1.50	0.80	0.28	13.97	4.82	163.55	56.40	36.80	12.69	47.79	16.48	2 1.1	9 0.3	2.72	0.94	NA	NA	NA	NA
Eider	У	f	3	56	303	9.3	NA	NA	NA	3.65	1.20	0.94	0.31	11.65	3.84	179.44	59.22	40.78	13.46	48.88	16.13	5	8	4.85	1.60	NA	NA	NA	NA
Eider	у	f	3	61	357	9.6	NA	NA	NA	5.37	1.50	1.00	0.28	16.64	4.66	183.65	51.44	46.63	13.06	82.70	23.17	0	2	7.22	2.02	NA	NA	NA	NA
Eider	У	f	3	60	374	18.2	NA	NA	NA	5.46	1.46	1.59	0.43	16.86	4.51	194.18	51.92	52.62	14.07	80.52	21.53	4	5	5.63	1.51	NA	NA	NA	NA
Trave	у	f	3	71	564	30	NA	NA	NA	7.63	1.35	6.28	1.11	22.28	3.95	310.54	55.06	73.09	12.96	113.52	20.13	1.5 9	5	6.18	1.10	NA	NA	NA	NA
Schlei/ Trave	у	f	3	84	1047	23.9	NA	NA	NA	12.80	1.22	14.51	1.39	22.33	2.13	590.01	56.35	141.7 3	13.54	217.14	20.74	3.4 1	0.3	10.9 5	1.05	NA	NA	NA	NA
Rhein	у	f	3	67	544	40	NA	NA	NA	6.76	1.24	3.65	0.67	19.98	3.67	333.08	61.23	47.84	8.79	87.15	16.02	1.5 1	0.2 8	5.85	1.08	NA	NA	NA	NA
Rhein	у	f	3	53	280	20.2	NA	NA	NA	4.42	1.58	1.16	0.41	11.01	3.93	184.20	65.79	21.87	7.81	44.84	16.01	1.2 9	0.4 6	2.82	1.01	NA	NA	NA	NA
Eider	у	f	3	63	544	22.5	NA	NA	NA	5.08	0.93	3.55	0.65	19.11	3.51	323.07	59.39	78.10	14.36	79.52	14.62	1.6 8	0.3 1	6.75	1.24	NA	NA	NA	NA
Eider	у	f	3	67	484	18	NA	NA	NA	5.90	1.22	3.12	0.64	21.10	4.36	293.55	60.65	49.87	10.30	86.78	17.93	1.6 6	0.3 4	8.39	1.73	NA	NA	NA	NA

Eider	у	f	3	62	429	28.8	NA	NA	NA	4.43	1.03	3.01	0.70	16.96	3.95	266.63	62.15	54.53	12.71	62.32	14.53	1.7 6	0.4 1	5.42	1.26	NA	NA	NA	NA
Eider	у	f	3	61	450	24.1	NA	NA	NA	5.64	1.25	2.39	0.53	21.94	4.88	274.19	60.93	52.00	11.56	68.45	15.21	1.5 0	0.3 3	6.31	1.40	NA	NA	NA	NA
Eider	у	f	3	64	424	26.1	NA	NA	NA	6.14	1.45	2.16	0.51	20.17	4.76	256.11	60.40	51.95	12.25	64.84	15.29	1.5 7	0.3 7	4.80	1.13	NA	NA	NA	NA
Eider	у	f	3	62	376	19.2	NA	NA	NA	4.90	1.30	1.33	0.35	20.24	5.38	202.96	53.98	49.05	13.05	77.45	20.60	1.5 8	0.4 2	6.95	1.85	NA	NA	NA	NA
Eider	v	f	3	60	330	24.9	NA	NA	NA	4.98	1.51	1.23	0.37	15.64	4.74	180.08	54.57	44.78	13.57	67.26	20.38	1.6 8	0.5 1	6.10	1.85	NA	NA	NA	NA
Eider	v	f	3	57	351	22.3	NA	NA	NA	4.70	1.34	1.62	0.46	16.96	4.83	196.91	56.10	42.72	12.17	69.23	19.72	2.2 8	0.6 5	4.38	1.25	NA	NA	NA	NA
Schlei/	5	f	4	91	1829	20.1	NA	NA	NA	20.68	1 13	25.81	1 41	48 78	2 67	1027.89	56.20	239.3	13.09	347 43	19.00	5.4	0.3	16.5 0	0.90	NA	NA	NA	NA
Schlei/	6	f	4	07	2110	25.2	NA	NA	NA	10.86	0.94	27.80	1 22	61 18	2 90	1265 15	50.06	249.0	11 80	397.06	18.92	5.3	0.2	22.0	1.05	NA	NA	NA	NA
Schlei/	5	1	4	97	1412	23.2		NA	NA	14.40	1.02	16.69	1.52	45.00	2.90	707.11	55.50	178.3	12.62	397.00	20.02	3.8	0.2	14.2	1.03	NA	NA	NA	NA
Schlei/	5	1	4	91	1412	24.0	NA	NA	NA	14.49	1.05	10.08	1.16	45.96	3.25	/9/.11	50.45	8 179.4	12.03	282.02	20.02	20.	1.5	16.2	1.01	NA	NA	NA	NA
Schlei/	S	T	4	80	1283	18.5	NA	NA	NA	18.23	1.42	12.13	0.95	39.94	3.11	614.18	47.87	9 177.9	13.99	316.20	24.65	4.1	0.3	3 11.4	1.27	NA	NA	NA	NA
Trave Schlei/	S	f	4	90	1318	25.3	NA	NA	NA	15.02	1.14	16.56	1.26	43.37	3.29	738.89	56.06	6 146.6	13.50	258.80	19.64	1 3.3	1 0.2	6 13.6	0.87	NA	NA	NA	NA
Trave Schlei/	S	f	4	80	1153	24.5	NA	NA	NA	15.77	1.37	15.81	1.37	35.98	3.12	646.87	56.10	2 208.0	12.72	237.13	20.57	9 5.6	9 0.3	7 14.6	1.19	NA	NA	NA	NA
Trave Schlei/	S	f	4	91	1625	26.9	NA	NA	NA	19.82	1.22	15.13	0.93	52.94	3.26	706.67	43.49	3 189.2	12.80	253.61	15.61	5 3.8	5 0.3	9 12.6	0.90	NA	NA	NA	NA
Trave Schlei/	S	f	4	86	1283	20.9	NA	NA	NA	12.91	1.01	16.54	1.29	35.43	2.76	715.71	55.78	5	14.75	245.41	19.13	6 2.9	0	1	0.98	NA	NA	NA	NA
Trave	S	f	5	66	620	24.7	NA	NA	NA	6.97	1.12	8.72	1.41	26.69	4.30	367.78	59.32	80.91	13.05	98.65	15.91	2	7	7.09	1.14	NA	NA	NA	NA
Eider	S	f	5	69	611	22.5	NA	NA	NA	7.96	1.30	8.07	1.32	21.29	3.48	350.80	57.41	87.56	14.33	95.78	15.68	7	0	8.28	1.36	NA	NA	NA	NA
Eider	S	f	5	70	681	24.7	NA	NA	NA	9.04	1.33	8.52	1.25	20.47	3.01	411.36	60.41	7	15.12	92.79	13.63	9	7	7.47	1.10	NA	NA	NA	NA
Eider	s	f	5	62	528	27.9	NA	NA	NA	7.19	1.36	4.07	0.77	26.02	4.93	300.07	56.83	62.78	11.89	94.47	17.89	4.4	5	5.91	1.12	NA	NA	NA	NA
Eider	s	f	5	62	602	21.9	NA	NA	NA	6.42	1.07	7.57	1.26	17.57	2.92	375.28	62.34	88.35	14.68	71.52	11.88	3.1 1	0.5 2	5.62	0.93	NA	NA	NA	NA
Eider	S	f	5	67	579	28.7	NA	NA	NA	5.13	0.89	6.52	1.13	19.89	3.44	360.54	62.27	75.03	12.96	78.58	13.57	3.2 1	0.5 5	7.88	1.36	NA	NA	NA	NA
Eider	s	f	5	62	405	6	NA	NA	NA	8.20	2.02	0.94	0.23	21.03	5.19	190.43	47.02	47.57	11.75	107.10	26.44	1.6 3	0.4 0	9.56	2.36	NA	NA	NA	NA
Weser	s	f	5	70	683	19.8	NA	NA	NA	9.73	1.42	10.17	1.49	31.42	4.60	326.87	47.86	117.2 4	17.17	8.09	1.18	2.6 7	0.3 9	152. 49	22.33	NA	NA	NA	NA
Weser	s	f	5	63	519	18.7	NA	NA	NA	8.12	1.56	9.56	1.84	22.35	4.31	252.25	48.60	102.9 2	19.83	96.47	18.59	1.9 0	0.3 7	4.77	0.92	NA	NA	NA	NA
Schlei/ Trave	s	f	5	72	736	23.7	NA	NA	NA	11.83	1.61	8.03	1.09	23.80	3.23	366.53	49.80	97.07	13.19	194.97	26.49	3.6 9	0.5 0	6.11	0.83	NA	NA	NA	NA
Schlei/ Trave	s	f	5	84	988	22.1	NA	NA	NA	10.84	1.10	13.99	1.42	32.05	3.24	540.07	54.66	147.6 1	14.94	195.55	19.79	5.0 7	0.5 1	12.4 7	1.26	NA	NA	NA	NA
Schlei/	s	f	5	74	709	25	NA	NA	NA	7.44	1.05	6.87	0.97	27.09	3.87	401 27	56 60	100.4 9	14.17	128 73	18.16	2.7	0.3 8	8.44	1.19	NA	NA	NA	NA
Schlei/		f	5	79	807	23	NA	NA	NA	8 96	1 11	8 75	1.08	27.05	2 74	464 95	57.61	116.6 1	14.17	147 42	18.27	2.8	0.3	10.1	1.15	NA	NA	NA	NA
Schlei/	3	, ,		10	450	27.1	NA	NA	NA	6.50	1.11	7.07	1.00	16.53	2.74	224.20	57.01	1 20.00	17.50	147.42	17.00	4.0	0.8	10.3	2.25	NA	NA	NA	NA
Travé	5	T	5	64	459	25.0	NA	NA	NA	0.55	1.45	7.07	1.54	10.53	3.60	254.58	51.00	80.69	17.58	82.45	17.96	2.1	0.4	8	2.20	NA	NA	NA	NA
Eluer	5		Э	60	404	11.1	INA	NA	INA	7.05	1.40	2.19	0.45	20.54	4.20	203.19	34.30	21.10	11.01	103.04	21.41	4	4	0.95	T.02	NA	INA	NA	INA

Eider	s	f	5	64	427	17.4	NA	NA	NA	4.90	1.15	2.06	0.48	20.32	4.76	245.93	57.59	47.48	11.12	78.23	18.32	1.7 3	0.4 1	7.91	1.85	NA	NA	NA	NA
Eider	S	f	5	60	521	24.5	NA	NA	NA	7.32	1.40	5.92	1.14	22.86	4.39	315.51	60.56	71.24	13.67	81.64	15.67	1.6 0	0.3 1	6.74	1.29	NA	NA	NA	NA
Weser	s	m	6	43	143	23.2	NA	1.01	NA	1.99	1.39	0.01	0.01	4.06	2.84	75.78	52.99	27.27	19.07	19.36	13.54	0.6 6	0.4 6	1.67	1.17	NA	NA	NA	NA
Weser	s	m	6	39	120	23.8	NA	1.09	NA	1.72	1.43	0.07	0.06	3.25	2.71	66.51	55.43	19.55	16.29	14.92	12.43	0.5 3	0.4 4	1.37	1.14	NA	NA	NA	NA
Weser	s	m	6	40	117	20.9	NA	1.39	NA	1.60	1.37	0.09	0.08	4.54	3.88	61.82	52.84	15.66	13.38	16.66	14.24	0.2	0.1 9	1.23	1.05	NA	NA	NA	NA
Weser	s	m	6	38	106	20.4	NA	1.18	NA	2.06	1.94	0.08	0.08	2.66	2.51	45.98	43.38	11.99	11.31	13.44	12.68	1.2 3	1.1 6	1.21	1.14	NA	NA	NA	NA
Weser	s	m	6	40	130	25.3	NA	1.83	NA	3.20	2.46	0.21	0.16	4.18	3.22	74.87	57.59	16.89	12.99	15.29	11.76	1.0 7	0.8 2	1.30	1.00	NA	NA	NA	NA
Weser	s	m	6	39	92	24.6	NA	0.55	NA	1 41	1 53	0.03	0.03	2.88	3 13	49.89	54.23	11.05	12 01	14 74	16.02	0.2 9	0.3	0.86	0.93	NA	NA	NA	NA
Weser	5	 m	6	43	120	25.5	NA	0.94	NA	1.92	1 5 2	0.09	0.08	3.03	2 52	67.66	56.38	16 55	13 70	15 / 2	12.86	0.5	0.4	1.09	0.91	NA	NA	NA	NA
Weser	5	m	6	36	81	25.5	NA	0.94	NA	1.03	1.55	0.03	0.00	3.05	3.08	46.66	57.60	9.63	11.80	10.56	12.00	0.3	0.3	0.62	0.77	NA	NA	NA	NA
Weser	, ,	 m	6	42	120	23.4	NA	0.01	NA	1.05	1.04	0.01	0.00	2.07	2 20	72.04	EE 94	18.09	14.02	16.00	10.04	0.4	0.3	1.26	0.09	NA	NA	NA	NA
weser	5	m	0	45	129	21.5	NA	0.57	NA	1.95	1.51	0.11	0.09	2.97	2.50	72.04	55.64	18.08	14.02	10.49	12.78	0.3	0.3	1.20	0.98	NA	NA	NA	NA
weser	s	m	6	36	90	27.9	NA	0.57	NA	1.72	1.91	0.01	0.01	3.92	4.36	45.99	51.10	11.64	12.93	14.63	16.26	1 4.2	4	0.69	0.77	NA	NA	NA	NA
Ems	mature	t	м	81	1385	NA	34.39	NA	NA	18.38	1.33	743	53.65	13.20	0.95	249.66	18.03	0	9.47	82.50	5.96	0 2.6	0	4	0.81	NA	NA	NA	NA
Ems	mature	f	М	65	584	NA	22.32	NA	NA	6.39	1.09	282	48.34	7.60	1.30	123.67	21.18	69.34 107.3	11.87	35.34	6.05	3 3.4	5 0.3	5.43	0.93	NA	NA	NA	NA
Ems	mature	f	М	79	1073	NA	21.85	NA	NA	16.61	1.55	457	42.61	11.91	1.11	263.56	24.56	5 112.2	10.00	55.63	5.18	0 4.2	2 0.3	9.15	0.85	NA	NA	NA	NA
Schlei	mature	f	М	80	1177	NA	35.03	NA	NA	14.28	1.21	659	55.99	10.38	0.88	176.53	15.00	2	9.53	69.24	5.88	0 2.0	6 0.3	9.43	0.80	NA	NA	NA	NA
Schlei	mature	f	М	63	567	NA	25.00	NA	NA	6.38	1.13	325	57.32	5.40	0.95	93.88	16.56	48.25	8.51	23.63	4.17	3	6	7.82	1.38	NA	NA	NA	NA
Arresö	mature	f	М	76	808	NA	NA	NA	NA	7.82	0.97	397.3	49.17	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Elbe	mature	f	М	70	609	NA	NA	NA	NA	6.65	1.09	302.1	49.61	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Arresö	mature	f	М	81	992	NA	NA	NA	NA	NA	NA	342.0	34.48	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Arresö	mature	f	м	81	934	NA	NA	NA	NA	11.23	1.20	473.9	50.74	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Arresö	mature	f	М	78	912	NA	NA	NA	NA	14.22	1.56	432.3	47.40	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Elbe	mature	f	м	64	601	NA	NA	NA	NA	7.86	1.31	238.0	39.60	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Elbe	mature	f	М	79	1049	NA	NA	NA	NA	13.77	1.31	569.2	54.26	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Arresö	mature	f	м	73	730	NA	NA	NA	NA	13.30	1.82	366.0	50.14	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Arresö	mature	f	м	75	1013	NA	NA	NA	NA	18.51	1.83	403.0	39.78	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Weser	mature	f	м	82	966	NA	NA	NA	NA	13.50	1.40	428.2	44.33	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Weser	mature	f	м	69	628	NA	NA	NA	NA	9.60	1.53	230.1	36.64	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Ploen lake	mature	f	м	91	1484	NA	NA	NA	NA	NA	NA	393	26.48	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Weser	mature	f	м	71	654	NA	NA	NA	NA	11.30	1.73	309.8	47.37	NA															
Weser	mature	f	м	76	791	NA	NA	NA	NA	NA	NA	305.3	38.60	NA															
Ploen lake	mature	f	м	94	1941	NA	NA	NA	NA	23.60	1.22	871.2	44.89	NA															
Ploen lake	mature	f	м	84	1153	NA	NA	NA	NA	20.70	1.80	322.5	27.97	NA															
Weser	mature	f	м	72	777	NA	NA	NA	NA	12.70	1.63	368.2	47.39	NA															
Ploen lake	mature	f	м	85	1104	NA	NA	NA	NA	13.29	1.20	307.8	27.88	NA															
Weser	mature	f	м	77	967	NA	NA	NA	NA	14.21	1.47	471.4	48.75	NA															
Weser	mature	f	м	67	633	NA	NA	NA	NA	10.00	1.58	269.7	42.61	NA															
Weser	mature	f	м	75	891	NA	NA	NA	NA	13.20	1.48	298.5	33.50	NA															
Weser	mature	f	м	66	786	NA	NA	NA	NA	9.01	1.15	321.4	40.89	NA															
Ploen lake	mature	f	м	78	1159	NA	NA	NA	NA	16.10	1.39	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Figure S1: Bone loss in skeletal elements from eels in different maturation stages and mineral accumulation in female silver eels.

(a) Clinical tomography calcium maps pf skull and skeletal elements of eels showed declining bone density along progressing maturation. (b) Note accumulated mineral signals around gonadal tissue in silver females at onset of maturation. Images obtained by clinical computed tomography.

Figure S2: Structural aspects of bone loss during sexual maturation in male eels.

Superior view (a) and (500x) magnified (b) SEM images of entire vertebral body endplates of male eels in different maturation stages depict the successive bone loss on a supracellular level. (c) Bone histology is based on azan-dyed, para-sagittal sections of vertebral bodies and illustrates changes of bone structures along the maturation process on a cellular level. Defined structures are marked and labeled by abbreviations: (NC = Notochord, BT = Bone Trabeculae, VE = Vertebral Body Endplate, OS = Osteon, * = indication of bone resorption). (sm= silver male; mm= mature male).

Supplementary References

- Anonymous (2013) Tierschutz-Versuchstierverordnung vom 1. August 2013 (BGBI. I S. 3125, 3126)
- Brinkmann M, Rizzo L, Lammers T, Gremse F, Schiwy S, Kiessling F, Hollert H (2016) Micro-computed tomography (μCT) as a novel method in ecotoxicology determination of morphometric and somatic data in rainbow trout (*Oncorhynchus mykiss*) Science of The Total Environment 543(Pt A):135-139. DOI:10.1016/j.scitotenv.2015.11.020
- Gremse F, Stark M, Ehling J, Menzel JR, Lammers T, Kiessling F. (2016) Imalytics Preclinical: Interactive Analysis of Biomedical Volume Data. Theranostics; 6(3):328– 341. pmid:26909109
- 4. Gremse F, Doleschel D, Zafarnia S, Babler A, Jahnen-Dechent W, Lammers T, et al. (2015) Hybrid microCT-FMT imaging and image analysis. J Vis Exp;(100).
- 5. Yang CC, Nagarajan MB, Huber MB, Carballido-Gamio J, Bauer JS, Baum T et al (2014) Improving bone strength prediction in human proximal femur specimens through geometrical characterization of trabecular bone microarchitecture and support vector regression. J. Electron. Imaging. 2014;23: 013013.
- 6. Presnell JK, Schreibman MP (1998) Humason's Animal Tissue Techniques. Fifth edition, the John Hopkins University Press, Baltimore. 572 pages