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Text S1. Derivation of Column-Integrated Steady State Relationship 
Here we show the derivation of Eqn. (3) from Eqn. (2) (both appearing in the main text). Equation (2) 

presents the instantaneous in situ steady state relationship between HCHO and OH: 

[𝐻𝐶𝐻𝑂] =
𝛼𝑘𝑂𝐻

′ [𝑂𝐻]+𝑃0 

𝑗𝐻𝐶𝐻𝑂+𝑘𝐻𝐶𝐻𝑂+𝑂𝐻[𝑂𝐻]
         (2) 

Here,  is the effective HCHO yield weighted over all OH reactions (unitless), k’OH is the pseudo-first order 

OH reactivity (s-1), PO represents HCHO production from minor non-OH HCHO sources (cm-3 s-1), jHCHO is the 

HCHO photolysis frequency (s-1, both channels), and kHCHO+OH is the rate coefficient for reaction of HCHO 

with OH (cm3 s-1). Moving the denominator to the left and integrating over altitude gives 

∫ (𝑗𝐻𝐶𝐻𝑂 + 𝑘𝐻𝐶𝐻𝑂+𝑂𝐻[𝑂𝐻])[𝐻𝐶𝐻𝑂]𝑑𝑧
𝑧

0
= ∫ 𝛼𝑘𝑂𝐻

′ [𝑂𝐻]𝑑𝑧
𝑧

0
+ ∫ 𝑃0𝑑𝑧

𝑧

0
    (S1) 

Next, we define the following column-integrated quantities. 

𝑘𝐻𝐶𝐻𝑂
′ =

∫ (𝑗𝐻𝐶𝐻𝑂+𝑘𝐻𝐶𝐻𝑂+𝑂𝐻[𝑂𝐻])[𝐻𝐶𝐻𝑂]𝑑𝑧
𝑧

0

∫ [𝐻𝐶𝐻𝑂]𝑑𝑧
𝑧

0

       (S2) 

𝑠𝑂𝐻 =
∫ 𝛼𝑘𝑂𝐻

′ [𝑂𝐻]𝑑𝑧
𝑧

0

∫ [𝑂𝐻]𝑑𝑧
𝑧

0

          (S3) 

The HCHO reactivity, k’HCHO, is the integrated HCHO loss frequency weighted by HCHO abundance and is 

calculated explicitly from observations for each profile as described in Methods. The slope parameter, sOH, 

is the integrated HCHO production rate (from OH reactions only) normalized by OH abundance (or, 

equivalently, the HCHO production frequency weighted by OH abundance). The latter is treated as a 

constant and calculated via a fit of ATom data. Substitution of (S2) and (S3) into (S1) gives 

𝑘𝐻𝐶𝐻𝑂
′ ∫ [𝐻𝐶𝐻𝑂]𝑑𝑧

𝑧

0
= 𝑠𝑂𝐻 ∫ [𝑂𝐻]𝑑𝑧

𝑧

0
+ ∫ 𝑃0𝑑𝑧

𝑧

0
      (S4) 

Finally, replacing integrals by the prefix  and moving k’HCHO gives Eqn. (3) from the main text: 

Ω[𝐻𝐶𝐻𝑂] = 𝑠𝑂𝐻
Ω[𝑂𝐻]

𝑘𝐻𝐶𝐻𝑂
′ + Ω[𝐻𝐶𝐻𝑂]0        (3) 

Here the HCHO column attributable to non-OH sources, Ω[𝐻𝐶𝐻𝑂]0 = Ω𝑃0/𝑘𝐻𝐶𝐻𝑂
′ , is the intercept in the 

fit to ATom data. 

Equation (3) is only pseudo-linear with respect to OH, as the k’HCHO term includes a contribution from OH. 

As discussed in Sect. 3.1 of the main text, this assumption is consistent with the fact that photolysis 

generally dominates the HCHO loss budget.   
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Text S2. OMI Evaluation 
HCHO vertical column densities are derived from measurements taken by the Ozone Monitoring 

Instrument (OMI) flying on NASA’s Aura satellite (1). Aura follows a sun-synchronous orbit with an 

equatorial overpass time of 13:30 LST. OMI measures spectrally-resolved solar back-scattered radiation 

in the UV/Visible range with a nominal pixel size of 13 x 24 km2 at nadir and global coverage every ~2 days. 

HCHO slant column densities are retrieved by spectrally fitting HCHO absorption in the UV. Vertical column 

densities are derived from slant columns using corrections to account for radiation scatter, instrument 

sensitivity, background offsets, and other issues. 

Retrieval of total column formaldehyde (Ω[HCHO]) from space-based remote sensors is a 

complex, multi-step process requiring numerous model inputs and various assumptions. As outlined in 

the main text, the general agreement of OMI and ATom observations gives us confidence that the OMI-

SAO v003 product captures the main features of Ω[HCHO] variability in remote regions. Here we examine 

two aspects of the retrieval in closer detail: a priori vertical profiles and the reference sector offset 

correction. 

 A priori HCHO vertical profiles are one component of the air mass factors (AMF) used to convert 

slant column densities to vertical column densities. The a priori enters the AMF calculation as a “shape 

factor,” which is the vertical profile normalized by the total column density. Errors in the shape factor can 

degrade retrieval accuracy, as the sensitivity of solar scattering-based instruments is inherently altitude-

dependent (2). A prioris are typically derived from a global model; the OMI-SAO v003 retrieval uses a 

monthly GEOS-Chem climatology at 2° x 2.5° (3). On average, the OMI-SAO a priori is ~18% lower than the 

mean HCHO profile for ATom 1 and 2 (Fig. S5a), consistent with previous model-measurement comparisons 

in remote regions (4, 5). Despite the underestimate of absolute magnitude, the shape of both profiles is 

quite similar. Area normalization and multiplication by the average scattering weight profile yields an AMF 

density function (Fig. S5b), which is the integrand for AMF calculation. AMF density functions are similar 

for OMI and ATom. Roughly 10% of the OMI AMF density resides above 10 km. To calculate the “full” AMF 

for ATom, we integrate the ATom AMF density from 0 – 10 km and add the difference between OMI AMFs 

calculated from 0 – 10 km and over the full domain (0 – 36 km). ATom AMFs calculated in this fashion are 

higher than OMI by 4 ± 7% (Fig. S5c). Thus, model a prioris do not introduce significant error into OMI 

Ω[HCHO] over the ATom study region. 

 “Reference sector” normalization corrects for detector drift and, at high latitudes, spectral 

contamination by BrO (3, 6). Essentially, the correction involves selecting a region in the remote Pacific 

(currently 140°W – 160°W for OMI-SAO), averaging slant columns into latitudinal bands, subtracting these 

values from all slant columns within each band, and adding back in latitude- and month-dependent GEOS-

Chem climatological columns from the reference sector region. Thus, some fraction of the retrieval 

product is effectively a model-simulated value. Figure S6 illustrates the absolute and fractional change in 

Ω[HCHO] resulting from this correction. The correction is typically within ±30% of Ω[HCHO] within the 

Tropics but can exceed -100% at higher latitudes, especially in the wintertime hemispheres. Even in regions 

where the correction is relatively large, however, OMI Ω[HCHO] exhibits significant spatial variability that 

is consistent with ATom observations (Fig. 1). Note, for example, the significant difference in Ω[HCHO] for 
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ATom 2 between the Northern Hemisphere Pacific and Atlantic basins. Figure S7 compares ATom 

observations to the OMI-SAO Ω[HCHO] retrievals prior to application of this correction. Not surprisingly, 

all correlation metrics are degraded relative to the corrected product shown in Fig. 3 of the main text. 

Even so, the correlation between OMI and ATom is still moderate (r2 = 0.39) and there remains a clear 

linear relationship. Thus, we contend that the OMI-SAO retrieval contains real information about the 

atmosphere even prior to applying the reference sector correction. 
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Text S3. GMI Simulation and Evaluation 

The MERRA-2 GMI simulation couples the Goddard Earth Observing System version 5 (GEOS-5) general 

circulation model (7) to the comprehensive Global Modeling Initiative (GMI) stratosphere-troposphere 

chemical mechanism (8-10). The GMI chemical mechanism includes 117 species, 322 chemical reactions, 

and 81 photolysis reactions. The SMVGEAR II algorithm (11) is used to integrate the chemical mass balance 

equations. The mechanism includes a detailed description of O3-NOx-hydrocarbon chemistry, and rate 

coefficients have been updated to the latest JPL recommendations (12) where possible. Photolysis rates 

are determined with an updated version of Fast-JX (13). The GMI mechanism includes the impact of solar 

cycle variability on the actinic flux (9). The concentrations of methane, other greenhouse gases, and ozone 

depleting substances are specified as a surface boundary condition based on observed values. Fossil fuel 

and biofuel emissions of trace gases come from the MACCity inventory (14), scaled up through present 

using the Representative Concentration Pathways (RCP 8.5) emissions. Daily biomass burning emissions 

are from the GFEDv4.1s dataset (15), which includes emissions from small fires (16). 

 Under the GEOS-5 framework, the GMI chemical mechanism can be coupled to several different 

circulation models. The MERRA-2 GMI simulation uses the GEOS-5 model in Replay mode at 0.5° 

horizontal resolution on the cubed sphere with outputs that have the same 0.625° x 0.5° grid as the 

MERRA-2 Reanalysis and was run from 1980-2017. A subset was rerun over the ATom1 and 2 time periods 

saving high temporal resolution (1 hourly) output for the analysis done in this study. 

 GMI output is used to estimate the sampling variance for individual ATom profiles for comparison 

with OMI as discussed in Sect. 3.2 of the main text. By “sampling variance,” we mean the uncertainty 

associated with acquiring a single hourly sample from a month-long distribution. First, the standard 

deviation of [HCHO] for each grid box is calculated using all hourly output over each campaign. Next, 

these values are sampled along the ATom flight path by averaging all grid boxes traversed by a given 

profile (analogous to how OMI retrievals are sampled), yielding a model-derived sampling standard 

deviation for each profile. Average standard deviations are uncorrelated with modeled or measured 

[HCHO], thus we take their mean (0.45 x 1015 cm-2) as a reasonable estimate of sampling-induced 

uncertainty across the ATom dataset. 

 Figure S9 shows the model relationship between [HCHO] and [OH]/k’HCHO, in analogy with Fig. 

2(a) in the main text. For this plot, model output is filtered to only include non-land areas and SZA < 80°. 

More than 99% of model columns fall within the range sampled by ATom. The full distribution of model 

output is much broader, with occasional high [HCHO] related to non-methane hydrocarbon influence 

(typically near coastal regions). Model output is loosely consistent with ATom observations but is offset 

toward lower [HCHO] or higher [OH]/k’HCHO. This may be related to one or more potential model issues 

(over-estimated HCHO deposition, model OH fields, etc.), and is consistent with the findings of other 

studies (4, 5). We show this plot mainly to illustrate the qualitative agreement of ATom observations and 

GMI output. 

Model output is needed to constrain global HCHO loss frequencies, creating the potential for 

model-induced bias in inferred Ω[OH]. Of particular concern is the model OH distribution, as a non-
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negligible fraction of HCHO loss occurs via reaction with OH. Thus, errors in model OH fields could 

propagate into k’HCHO. GMI j’HCHO and k’HCHO follow the same general relationship as ATom (Fig. S10), but 

the model also shows a somewhat different distribution of j’HCHO/k’HCHO ratios. Some differences may be 

due to more OH in certain air masses not sampled by ATom (e.g. coastal outflow with elevated NOx), but 

as mentioned above these are a minor fraction of total output. Other potential explanations include cloud-

related bias in model J-values (17) or bias in model OH or temperature fields. A full model evaluation is 

outside the scope of the present work. Even in the most extreme GMI cases, photolysis is always 50% or 

more of total HCHO loss. 

To curtail the above issue, we use the ATom relationship between total (k’HCHO) and photolysis 

(j’HCHO) loss frequencies to rescale GMI j’HCHO. This correlation is strong (r2 = 0.94, Fig. S11), and use of 

predicted k’HCHO in Eqn. (4) does not significantly alter ATom fit coefficients (Fig. S12). Column-weighted 

GMI j’HCHO is calculated using the analogue of Eqn. (S2) and integrating from the ground to the model 

tropopause. Daily j’HCHO values are averaged over each mission and transformed into k’HCHO using the 

quadratic scaling factors shown in Fig. S11a. Figure S13 shows GMI fields for mission-average j’HCHO and 

scaled k’HCHO; spatial patterns in both are consistent with ATom observations. Additional potential sources 

of bias in GMI-derived HCHO loss frequencies include model cloud cover and HCHO vertical profiles; below 

we examine each using ATom observations. 

Model cloud cover could bias campaign-average j’HCHO if it is statistically different from the real 

atmosphere. Clouds enhance or reduce photolysis, but their aggregate effects are highly location- and 

model-dependent (17). Figure S14b shows fair agreement for j’HCHO between ATom and GMI in terms of 

both magnitude and variability. This provides some confidence in the GMI product and suggests that we 

do not need to filter model output for cloud cover. The latter point is also supported by the fact that GMI 

j’HCHO is relatively insensitive to clouds for all but the clearest conditions, where column-average j’HCHO is 

reduced by 10 – 15% (Fig. S14a). This result is somewhat surprising given the dramatic difference in albedo 

between the ocean surface and clouds, but this may indicate partial compensation of enhancements and 

reductions when averaging over the column and over multiple days. 

 Another potential concern is the weighting of j’HCHO by the model’s HCHO vertical profile. To assess 

the importance of the HCHO profile shape, we perform a sensitivity test using ATom observations where 

j’HCHO is re-calculated for each profile using the mean vertical HCHO distribution over all of ATom 1 and 2. 

Profiles vary substantially over the mission, but the magnitude and shape of the vertical profile has a 

generally negligible impact on j’HCHO (Fig. S15). This result also supports the use of differing altitude limits 

for the various calculation inputs (GMI j’HCHO is integrated from the ground to the model tropopause). 
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Text S4. Potential Influence of Clear-sky Bias on X[OH] 
Both airborne and satellite observations are inherently biased toward conditions with low cloud cover. 

ATom profiles typically occurred in partly cloudy or clear conditions and tended to avoid heavily overcast 

or stormy areas. OMI observations are filtered at the single-pixel level for cloud cover < 30% to ensure 

retrieval quality. Clouds cover 70 – 80% of the ocean on average (18), thus the questions arises: is the 

X[OH] product derived here representative of the whole atmosphere, or is there a bias relative to “all sky” 

OH? To unravel the complex effects of clouds, we consider separately the cloud influence on each of the 

three major terms in Eqn. (4) of the main text: the slope, sOH; the HCHO column, [HCHO]; and the HCHO 

loss frequency, k’HCHO. 

  The slope parameter, sOH, reflects the column-integrated steady state relationship between HCHO 

production/loss and OH abundance. We first consider this from the HCHO production perspective. 

Following Eqn. (S3), variability in sOH is a function of the effective HCHO yield, , and total OH reactivity, 

k’OH (weighted by OH abundance). Both are a function of chemical composition. CO and CH4 are the 

dominant components of k’OH in the remote atmosphere, with reactive hydrocarbons occasionally making 

important regional contributions. We do not expect cloud cover to induce significant variability in k’OH. 

The effective HCHO yield depends on the speciation of OH sinks and the balance of RO2 fates (mainly loss 

via NO and HO2). Clouds impart similar perturbations to J(NO2) and J(O1D) on average (17), thus we also 

do not expect a large clear-sky bias in this term. Indeed we expect  to vary little in the remote 

atmosphere, as all CH4 oxidation pathways eventually lead to HCHO. As noted in Sect. 3.1 of the main text, 

sOH is also sensitive to the OH vertical profile. Clouds can enhance OH in the middle/upper troposphere, 

and in such cases the ATom-derived value of sOH is expected to be higher than the “true” column-specific 

value. If we were applying the pseudo-linear transform to “all sky” HCHO columns, this could impart a low 

bias of ~30% to inferred X[OH] in regions with heavy cloud cover in the lower/middle troposphere (Fig. 

S4a, see points above observed [OH] = 6 x 1012 cm-2). Since OMI retrievals are cloud-filtered, however, 

the ATom-derived value of sOH is an appropriate estimate. Based on the above arguments, we do not 

expect a cloud-related bias in X[OH] due to sOH. 

 Alternatively, we can consider variations in sOH from the HCHO loss perspective. From Eqn. (3), 

the slope is proportional to the ratio k’HCHO[HCHO]:[OH]. Both terms scale with UV radiation; indeed, 

this is the main mode of variability driving the correlation in Fig. 2. Thus, in general we expect radiative 

cloud effects to mostly compensate one another for large-scale changes in cloud cover (e.g. clear-sky vs 

solid overcast). Mixed cloud cover is a more complex situation, as this can lead to intermittent high or low 

OH where HCHO is not in instantaneous steady state (the HCHO loss frequency responds rapidly, but the 

HCHO abundance has a time constant of hours). In such cases, HCHO is still representative of the oxidative 

capacity averaged over its lifetime of several hours. Furthermore, integration over the full atmospheric 

column tends to smooth out localized perturbations. Again, we do not expect cloud cover to significantly 

alter sOH, and thus we do not suspect a bias in this parameter as derived from ATom observations. 

 If OMI [HCHO] retrievals (which are cloud-filtered) differ systematically from all-sky [HCHO], 

then OMI observations could impart a bias to X[OH]. We cannot easily test such effects with available 

observations, so we use GMI output to estimate the influence of cloud filtering on retrieval 
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representativeness. For this sensitivity test, we average hourly GMI output over each mission using either 

all columns (“all sky”) or only columns with a cloud fraction of 0.3 or less (“clear sky”). Figure S16 shows 

that the clear sky bias is small (< ±5%) throughout the tropics and subtropics. Larger deviations, up to 

±50%, can occur in regions with low insolation and/or persistent cloud cover, notably the Southern Ocean 

and the NH mid-latitudes in February. The strongest biases are mostly negative, indicating that persistent 

cloud cover tends to increase total column HCHO in GMI. Such effects also depend on cloud top pressure, 

with lower clouds leading to enhanced photochemistry in a larger fraction of the column. The normalized 

mean bias in clear sky Ω[HCHO] is -4.8% for all non-land areas, and this decreases to -0.03% when 

weighting by tropospheric mass (as is done when spatially averaging X[OH]). Thus, OMI [HCHO] cloud 

filtering likely does not impart a bias to large-scale averages of X[OH] but may impact some mid-latitude 

and polar regions where HCHO and OH are typically near the OMI precision estimate of 1 x 1015 cm-2. 

The effects of cloud cover on column-average HCHO photolysis, j’HCHO, are discussed in Text S3. 

We find that GMI j’HCHO is relatively insensitive to clouds and, more importantly, that the variability and 

magnitude of GMI j’HCHO is consistent with ATom observations (Fig. S14). The link between j’HCHO and k’HCHO 

(which includes OH loss) is well-described by the quadratic ATom relationship (Fig. S11). The curvature of 

this correlation is driven by the stronger UV dependence of J(O1D) relative to J(HCHO), and we do not 

expect clouds to cause a significant deviation from the observed relationship. 

In summary, we find little evidence that X[OH] will contain biases due to preferential clear-sky 

sampling in ATom or OMI observations. This finding is consistent with the agreement between X[OH] and 

MCF-based global inferences of OH abundance and the NH/SH ratio as described in the main text. Based 

on GMI output, biases in [HCHO] of up to -50% are possible in the Southern Ocean. Columns in this 

region are typically quite low (< 1 x 1015 cm-2, Fig. 1), but this bias may partially explain the discrepancy 

between X[OH] and the box model estimates of Spivakovsky, et al. (19) for ATom 2 (Fig. S18). It may be 

possible to correct for such biases using satellite-based cloud products. Ideally, such a correction would 

be tied to in situ observations that provide sufficient statistics on how clouds influence tropospheric 

column composition and chemistry.  
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Text S5. Global OH Burden Reconciliation 
Here we explore the potential utility of combining X[OH] with a top-down global constraint on oxidizing 

capacity. The bi-seasonal average of remote or “ocean” X[OH] covers ~72% of global tropospheric mass 

and, given the agreement between ATom 1 and 2, likely approximates an annual average. Roughly 27% of 

tropospheric mass resides over land in this scenario, while the remaining < 1% is near the poles where OH 

is negligibly small. Thus, merging these observations with an MCF-based global estimate may elucidate 

the variability of terrestrial OH. It is not immediately obvious whether OH should be higher or lower over 

land, as this region contains both elevated sources (NOx stimulating radical turnover) and sinks (short-lived 

non-methane hydrocarbons). 

 Recent studies have quantified total oxidizing capacity in terms of CH4 lifetime (CH4), and we will 

adopt the same perspective here. For the global methane lifetime, we use the Prather et al. (20) estimate 

of 11.2 ± 1.3 y for the global CH4 lifetime. Though this value is derived for the year 2010, inter-annual 

variability in OH is expected to be small (2.3 ± 1.5%) (21) compared to the 1 uncertainty. Next, we define 

3 regions: “water,” comprising all non-land areas with valid OMI observations; “land,” comprising all 

remaining areas with valid OMI observations; and “poles,” where OMI observations are not valid. The 

global CH4 loss rate is the sum of loss rates over the individual regions: 

𝑀𝐺𝑙𝑜𝑏𝑒

𝜏𝐺𝑙𝑜𝑏𝑒
=

𝑀𝑂𝑐𝑒𝑎𝑛

𝜏𝑂𝑐𝑒𝑎𝑛
+

𝑀𝐿𝑎𝑛𝑑

𝜏𝐿𝑎𝑛𝑑
+

𝑀𝑃𝑜𝑙𝑒𝑠

𝜏𝑃𝑜𝑙𝑒𝑠
        (S5) 

Here, M refers to the mass of CH4 over a given region as determined from GMI output (Table S4). The 

“poles” lifetime is assumed infinite (negligibly small OH).  

The “ocean” CH4 lifetime is calculated from X[OH] as 

𝜏𝑂𝑐𝑒𝑎𝑛 =
∑ 𝑀𝑖𝑖

∑ 𝑀𝑖𝑘(𝑇𝑖)𝑋[𝑂𝐻]𝑖𝑖
         (S6) 

Mi is the mass of CH4 in each column, Ti is the mass-weighted column-average air temperature, and k(Ti) 

is the rate coefficient for CH4 + OH from the most recent JPL recommendation (12). For the bi-seasonal 

average, this yields an “ocean” CH4 lifetime of 11.4 ± 3.7 y (Table S4). Technically, the temperature used in 

this calculation should be weighted by the rate of CH4 mass loss via OH to properly account for co-location 

of OH and CH4. Doing so requires relying on 3-D GMI OH fields, and we find that this leads to a significantly 

shorter lifetime of ~8.2 y. The correlation between global average OH and CH4 lifetime follows a well-

defined relationship (Fig. S19), and our results concur best with this trend when using mass-weighted air 

temperature. 

Via mass balance (Eqn. (S5)), we thus arrive at a “land” CH4 lifetime of 9.8 ± 5.4 y. We account here 

for partial error correlation of the global and “ocean” lifetimes due to rate coefficient uncertainty. As we 

are effectively taking the difference of two large numbers, however, the uncertainty in the “land” lifetime 

is relatively large.  

 Given the substantial uncertainties, it is not possible to draw definitive conclusions regarding the 

nature of land/water contrast in oxidizing capacity. Our best estimate indicates that OH is ~14% higher 
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over land on an annual average, but we cannot state this with confidence. We can repeat this calculation 

for individual missions, scaling the global CH4 lifetime using a typical model annual cycle (22) (Table S4). It 

is similarly difficult to discern seasonality, and the derived “land” lifetimes are very sensitive to the 

monthly lifetime scaling factor. More work is needed to understand how to synthesize bottom-up and top-

down OH estimates. 
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Text S6. Box Model Simulation 
Box model results are used primarily to illustrate the average source and sink distributions of OH and HCHO 

and to estimate a minor correction to measurement-constrained OH production rates. These results are 

not central to our analysis, thus we only provide here a brief summary of the simulation setup. Further 

details on measurement methods and uncertainties of observations used in the box model analysis are 

available on the ATom data archive. 

Measurement-constrained box model calculations were carried out using the Framework for 0-D 

Atmospheric Modeling (F0AM v3.2, available at https://github.com/AirChem/F0AM/) (23). Constraints are 

taken from the ATom “Modeling Data Stream,” which is a 10-second merge of in situ observations with 

linear interpolation to fill missing observations (further details can be found at 

https://espoarchive.nasa.gov/archive/browse/atom/DC8/MDS). This merge is designed to evaluate 

photochemical reactivity (24) and is adequate for our application. For model input, we further average 

observations from 10 to 60 seconds. Meteorological constraints include ambient temperature and 

pressure, water vapor, and photolysis frequencies for 15 compounds. Solar zenith angles are calculated 

from aircraft location and time. Chemical constraints include CH4, CO, O3, PAN, HNO3, HO2NO2, H2O2, 

methyl and ethyl nitrate, alkanes (ethane, propane, i-butane, n-butane), alkenes (ethene, isoprene), 

ethyne, aromatics (benzene, toluene, xylenes), and oxygenated hydrocarbons (formaldehyde, 

acetaldehyde, methyl hydrogen peroxide, and acetone). NOx concentrations are constrained using a fixed 

NO2 concentration for each set of observations, iteratively adjusted such that model-predicted NO 

matches observed NO. Chemistry is based on the Master Chemical Mechanism v3.3.1 (25) with several 

additional reactions: photolysis of HO2NO2, reaction of CH4 with O(1D), and reaction of CH3O2 with OH (26, 

27). For each set of constraints, the model is run forward in time for three days to reach steady state. All 

constraints except photolysis frequencies are held constant during integration, and the photolysis 

frequency update time is 30 minutes. 

  

https://github.com/AirChem/F0AM/
https://espoarchive.nasa.gov/archive/browse/atom/DC8/MDS
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Text S7. Regarding North/South Hemisphere OH Ratios 
Our calculation of the NH/SH ratio uses the geographic equator for separation, though some studies 

advocate the intertropical convergence zone (ITCZ) as a more natural mixing boundary (28). It is difficult 

to quantify the expected differences between these two options with the current dataset, as the ITCZ 

location varies with location and time. MCF inversion studies report a typical decrease of 7 – 12% in the 

multiannual NH/SH ratio when using the ITCZ as the delineator (28, 29), and we expect a similar effect on 

the bi-seasonal average reported in Table 1 of the main text. The ITCZ is situated significantly farther north 

of the equator during the Boreal summer than it is south during the Austral summer. Thus, we expect a 

significant decrease in the NH/SH ratio for ATom 1 and a slight increase in the ratio for ATom 2 when using 

the ITCZ for delineation.  
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Tables S1 to S4 
 

Table S1. ATom observations used to derive relationships between Ω[HCHO], Ω[OH], and ΩPOH. All 

measurements are reported at 1 Hz, except for OH and HO2, which are reported every 30 s (ATom 1) or 

20 s (ATom 2). 

Measurement Technique 1 Uncertainty Reference 

HCHO Laser-Induced Fluorescence 5% + 10 pptv (30) 

OH 
HO2 

Laser-Induced Fluorescence 16% (31) 

O3 
NO 

Chemiluminescence 
1.5% + 10 pptv 
1.7% + 3 pptv 

(32, 33) 

H2O2 
Chemical Ionization Mass 
Spectrometry 

15% + 25 pptv (34) 

H2O vapor Open Path IR Absorption 2.5% (35) 

J(HCHO) 
J(O1D) 
J(H2O2) 

Spectroradiometry +          
TUV v5.2a 

15% 
20% 
20% 

(36) 

Air Pressure 
Air Temperature 

Pitot Tube 
Platinum resistance 
thermometer 

0.2 hPa 
0.3 K 

(37) 

COb 
IR Cavity Ringdown 
Spectroscopy 

9 ppbv (38) 

k’OH
b Flow Tube 15% + 0.3 s-1 (39) 

aTropospheric Ultraviolet and Visible radiation model, available at 

https://www2.acom.ucar.edu/modeling/tropospheric-ultraviolet-and-visible-tuv-radiation-model. 

bOnly used for data sub-setting in Table S2 and illustration in Fig. S2. 

  

https://www2.acom.ucar.edu/modeling/tropospheric-ultraviolet-and-visible-tuv-radiation-model
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Table S2. Slopes of fits to subsets of column data shown in Fig. 2. Numbers in parentheses denote the 

number of points for each fit. Data-defined subsets (right four columns) are segregated using median 

value thresholds as indicated. Units for k’OH are s-1. Uncertainties for all values are ± 0.01. Bold text 

indicates values that differ at the 1 level between the two subsets. 

Parameter 
Global 
(139) 

Mission 

ATom 1 (59) 
ATom 2 (80) 

Basin 

Pacific (83) 
Atlantic (45) 

Hemisphere 

South (47) 
North (92) 

f
OH+CO

a
 

≤ 0.34 (70) 
> 0.34 (69) 

ΩNO
x

b
 

≤ 0.4 (70) 
> 0.4 (69) 

ΩNO
y

b
 

≤ 3.1 (69) 
> 3.1 (70) 

sPOH 

() 
0.20 

0.21 0.21 0.24 0.22 0.22 0.23 

0.20 0.20 0.20 0.19 0.20 0.19 
        

sOH 

(k’
OH) 

0.14 
0.14 0.12 0.15 0.14 0.14 0.16 

0.15 0.13 0.13 0.15 0.14 0.12 
aFraction of OH loss due to reaction with CO, calculated as Ω(kOH+CO[OH][CO]) / Ω(k’OH[OH]). For this 
calculation only, observed k’OH is used. 
bSubset thresholds given in units of 1015 cm-2. 

  



 

18 
 

Table S3. Sensitivity of statistics for X[OH] (106 cm-3) to various assumptions. Upper rows show results 

when averaging is limited to latitudes between 60°S and 60°N, where OMI data is usually valid for both 

missions. Lower rows show averages when X[OH] is calculated using separate slopes for the North and 

South Hemispheres (Table S2). All averages are weighted by tropospheric mass. Uncertainties are 1.  

 All X[OH] NH X[OH] SH X[OH] NH/SH 

Latitude ±60°     

ATom 1 1.04 ± 0.23 1.32 ± 0.27 0.81 ± 0.19 1.26 ± 0.14 

ATom 2 1.08 ± 0.25 0.88 ± 0.21 1.22 ± 0.28 0.54 ± 0.03 

Averagea 1.03 ± 0.24 1.09 ± 0.24 0.99 ± 0.24 0.84 ± 0.08 

     

Hemisphere-dependent sOH  

ATom 1 1.05 ± 0.25 1.36 ± 0.31 0.78 ± 0.18 1.35 ± 0.07 

ATom 2 1.04 ± 0.25 0.95 ± 0.22 1.10 ± 0.27 0.64 ± 0.06 

Averagea 0.98 ± 0.25 1.11 ± 0.27 0.89 ± 0.24 0.95 ± 0.09 

aGridded X[OH] is averaged over both missions prior to calculating statistics (Methods). Grid cells with 
missing X[OH] for one mission only are filled with 0 prior to averaging. 
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Table S4. Methane mass fractions and partial lifetimes against remote tropospheric OH (years). 

Uncertainties are 1 and include contributions from both X[OH] and the CH4 + OH rate constant.  

 MOcean/ 
MGlobe 

MLand/ 
MGlobe 

MPoles/ 
MGlobe 

CH4 globalb CH4 ”ocean” CH4 ”land” 

ATom 1 0.66 0.26 0.08 10.1 ± 1.2 10.3 ± 3.1 7.3 ± 2.8 
ATom 2 0.70 0.23 0.07 11.8 ± 1.4 10.6 ± 3.3 12.1 ± 9.6 
Averagea 0.72 0.27 0.005 11.2 ± 1.3 11.4 ± 3.7 9.8 ± 5.4 

aGridded X[OH] is averaged over both missions prior to calculating statistics (Methods). Grid cells with 
missing X[OH] for one mission only are filled with 0 prior to averaging. 
bGlobal value of Prather et al. (20), scaled by factors of 0.9 (ATom 1) or 1.05 (ATom 2) to adjust for 

seasonal variations following Nicely et al. (22).  
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Figures S1 to S19 

 

 

 

Figure S1. Average fractional production and loss rates for OH (a), HCHO (b), and CH3O2 (c) estimated by 

a measurement-constrained 0-D box model simulation. Results are averaged over all of ATom 1, 

excluding nighttime (SZA > 80°) and the continental US (flights 10 and 11). CH3O2 is the sole precursor of 

CH3O, which is the primary immediate precursor of HCHO. 
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Figure S2. Statistics for ATom vertical profiles of formaldehyde (a), hydroxyl concentration (b), hydroxyl 

production rate (c), and total observed OH reactivity (d). Statistics (median, mean, and standard 

deviation) are calculated for each 200-meter bin over all valid gridded profiles (Methods). 

  



 

22 
 

 

 

Figure S3. Correlation of total column OH concentration and production rate during ATom 1 and 2. Error 

bars reflect the combined 1 uncertainty of observations and rate coefficients. The solid black line 

represents an uncertainty-weighted ”least-squares cubic” regression that minimizesminimize error-

weighted residuals along both axes (40). Fit coefficients are given with their 1 uncertainty. Note that 

ΩPOH is adjusted for contributions other than those listed in (R2) – (R5) as described in Methods. The 

slope of this relationship is an indicator for the campaign-average column-weighted OH reactivity. 
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Figure S4. Comparison of ATom observed POH and [OH] against values predicted from ATom [HCHO] 

by inversion of linear fits shown in Fig. 2. Error bars reflect 1σ uncertainties. Errors for predicted values 

include both observation and fitting contributions. Fire-impacted columns sampled near Equatorial Africa 

during ATom 2 are marked as red triangles. Normalized mean bias (NMB) and normalized mean absolute 

error (NMAE) are given following the formulation of Gustafson and Yu (41). The 1:1 line is for illustration 

only. 
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Figure S5. (a) Comparison of the mean ATom 1 and 2 HCHO vertical profile (black) with the mean OMI a 

priori profile for ATom profile locations only (solid red) and all remote (non-land) regions (dashed red). 

Thin gray lines represent the 1 uncertainty in ATom observations. The OMI a priori extends to ~36 km. 

(b) Comparison of the air mass factor density, calculated by area-normalizing the profiles in (a) and 

multiplying the resulting “shape function” by the appropriate average scattering weight function and 

layer thickness. Summation of these profiles over altitude gives the AMF. (c) Comparison of the native 

OMI AMF with those calculated from ATom profiles as described in Text S2. The ratio of OMI to ATom 

AMFs (mean ± 1) is also shown. 
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Figure S6. Absolute magnitude (a – b) and fractional contribution (c – d) of the “reference sector” 

correction to OMI HCHO columns for ATom 1 and 2. Ωraw and Ωcorr respectively refer to vertical HCHO 

column densities before and after the correction, averaged over each mission using a precision-

weighted mean. Positive values indicate regions where the correction is positive (increases Ω[HCHO]). 

Color bars saturate at both ends. 
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Figure S7. Comparison of the “raw” OMI SAO HCHO retrieval (prior to reference sector correction) 

against ATom columns. For each ATom profile, the corresponding OMI value represents an average over 

all grid cells intersected by the flight path. OMI columns are scaled using ATom-derived AMFs (Text S2) 

and corrected for the fraction of [HCHO] residing below 10 km as determined by a priori profiles. The 

solid line is a ”least-squares cubic” regression that minimizes error-weighted residuals along both axes 

(40). The dashed line is a 1:1 relationship. Uncertainties represent estimated 1 precision as described 

in Sect. 3.2. 
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Figure S8. Comparison of two OMI retrievals against ATom 1. SAO retrievals are the same as those 

shown in Fig. 3 but without the minor AMF corrections. BIRA (v14) retrievals averaged over August 2016 

at 0.25° x 0.25° resolution are taken from the TEMIS archive (http://h2co.aeronomie.be/) and sampled 

along the ATom flight track as described in Fig. 3. BIRA retrievals for ATom 2 (Feb. 2017) were not 

available on the TEMIS archive at the time of this analysis. 

  

http://h2co.aeronomie.be/
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Figure S9. Relationship between column-integrated formaldehyde and OH (normalized by HCHO loss 

frequency) in the GMI simulation for both ATom missions. Hourly GMI output was sampled at 1300LT 

and averaged in each grid cell over each mission. Column mixing ratios are integrated over the pressure 

coordinate from the surface to the model tropopause. Gray points show individual GMI columns, 

filtered to only include grid cells over water and solar zenith angles below 80° (N = 245,439). Blue lines 

enclose model output probability at 99% (solid) and 99.9% (dash) percentiles. The red line is a reduced 

major axis fit of all model points falling within the range of ATom observations ( [OH]/k’HCHO < 50 x 1015 

cm-2 s-1 and [HCHO] < 8 x 1015 cm-2). The black line is the ATom fit as shown in Fig. 2(a). 
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Figure S10. Comparison of GMI and ATom column-average HCHO loss frequencies for photolysis (j’HCHO) 

and photolysis plus OH loss (k’HCHO). (a) Scatter plot of all values for ATom 1 and 2. Gray points show 

individual GMI columns, filtered to only include grid cells over water and solar zenith angles below 80° 

(N = 245,439). Black points are ATom observations from all valid columns. Dashed lines show the range 

of slopes. (b) Distribution of the fraction of photolysis contributing to total HCHO loss in the column.  
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Figure S11. (a) Correlation of ATom column-weighted HCHO loss frequencies for photolysis-only and 

total loss (photolysis plus OH reaction). Error bars reflect the combined 1 uncertainty of observations 

and rate constants. The solid black line represents an unweighted ordinary least-squares quadratic 

regression with the intercept forced to zero; fit coefficients are given with their 1 uncertainty. (b) 

Comparison of observed k’HCHO with values predicted from j’HCHO and the relationship shown in (a). NMB 

and NMAE are as described in Fig. S4. (c) Example theoretical quadratic relationship between HCHO 

photolysis and its sum with O(1D) production from O3 photolysis (the latter being a loose marker for 

photolytic OH production). J-values are calculated from the Tropospheric Ultraviolet and Visible 

Radiation Model (TUV v5.2) as implemented in F0AM (23) using nominal inputs of altitude = 1 km, 

overhead O3 column = 300 DU, and surface albedo = 0.06. Curvature as the sun nears zenith is due to 

the increased flux of UV radiation, which preferentially enhances O3 photolysis.   
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Figure S12. As in Figs. 2 and S4, but using k’HCHO predicted from j’HCHO via the ATom scaling coefficients 

(see previous figure).  
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Figure S13. Column-weighted HCHO photolysis frequencies (a and c) and total loss frequencies (b and d) 

derived from the GMI simulation for ATom 1 and 2. Values for j’HCHO are from GMI model output 

sampled at 1300 LT and averaged over the mission period. Column integration is from the surface to the 

model tropopause. k’HCHO is calculated from j’HCHO using the ATom relationship shown in Fig. S11a. 

Vertical banding is due to the use of hourly output for 1300 LT, which changes at intervals of 15 degrees 

longitude.  
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Figure S14. Evaluation of GMI column-weighted HCHO photolysis frequencies. Model values were 

extracted from hourly output at 1300 LT for open water grid cells corresponding to valid OMI 

observations and temporally averaged over the ATom 1 period. (a) Dependence of j’HCHO on average 

cloud fraction. Model values are binned by cloud fraction and solar zenith angle in increments of 0.1 and 

2°, respectively. (b) Agreement of model j’HCHO with ATom 1 and 2 observations. The orange shaded 

region signifies the 2 variability about mean model values. 
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Figure S15. Evaluation of [HCHO] vertical profile effects on column-weighted photolysis frequencies. (a) 

All [HCHO] vertical profiles for ATom 1 and 2 (gray lines), gridded and filtered as described in Methods. 

The thick black line is the mean profile. (b) Comparison of j’HCHO for all ATom profiles calculated with the 

observed (“true”) or mission-mean [HCHO] profiles. NMB and NMAE are as defined in Fig. S3.   
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Figure S16. Effects of cloud-filtering on GMI [HCHO]. Hourly model output is averaged over each 

mission either with or without a filter to exclude columns with cloud fractions > 0.3. Colors indicate the 

relative bias of the cloud-filtered or “clear sky” average relative to the unfiltered or “all sky” average for 

ATom 1 (left) and 2 (right). 
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Figure S17. Comparison of OMI-inferred tropospheric column OH production rates (a) and 

concentrations (b) to ATom observations. OMI-inferred values are extracted from the campaign-average 

datasets shown in Fig. 4. For each ATom profile, the corresponding OMI-inferred value represents the 

average over all grid cells intersected by the flight path. OMI-inferred columns are corrected for ATom-

derived AMFs (Text S1) and for the fraction of [HCHO] residing below 10 km as determined by a priori 

profiles. They are also scaled by a factor of cos(SZAATom)/cos(SZAOMI) to correct for differences in the time 

of observation. The solid line is an uncertainty-weighted ordinary least squares regression. The dashed 

line is a 1:1 relationship shown for comparison. All uncertainties are 1. NMB and NMAE are as 

described in Fig. S4. 

  



 

37 
 

 

 

Figure S18. Comparison of zonal mean X[OH] against the box model climatology of Spivakovsky, et al. (19). 

ATom results are as described in Fig. 5. Spivakovsky monthly 3-D fields are converted to column-mean [OH] 

by integration over the pressure coordinate (42) and normalization by maximum altitude (100 hPa for 

latitudes within ±32°, 200 hPa otherwise). Dotted lines are zonal averages over the whole globe and 

dashed lines are averages for grid cells with more than 50% of the surface defined as water. 
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Figure S19. Global tropospheric mean [OH] and total CH4 loss frequency due to OH are highly correlated. 

Blue crosses show all individual global model estimates from the year 2000 columns of Table 1 of Naik, 

et al. (43). Based on the simple formulation of (𝜏𝐶𝐻4)−1 = 𝑘(𝑇𝑒𝑓𝑓)[𝑂𝐻]𝑡𝑟𝑜𝑝 and a rate coefficient of k = 

2.45E-12 exp(-1775/T) (12), the model relationship is best fit by an effective air temperature of Teff = 

264K (red line). Black stars indicate X[OH]-based estimates from each ATom mission and the average of 

both missions. The latter includes zero-filling for grid cells missing data from one mission or the other, 

thus the average is lower than the value from each mission. 


