Supplementary table 1 | Characteristics of studies included in this analysis.

		Study	characteri	stics and citation details	Study contrib	data oution
Study no.	First author	Journal	Year	Title	Pts. in data set*	Data set no.
1	Leschka S	Eur Heart J	2005	Accuracy of MSCT coronary angiography with 64-slice technology: first experience	49	1
2	Alkadhi H	Heart	2010	Low-dose, 128-slice, dual-source CT coronary angiography: accuracy and radiation dose of the high-pitch and the step-and- shoot mode	99	2
3	Alkadhi H	Eur Heart J	2008	Dual-source computed tomography coronary angiography: influence of obesity, calcium load, and heart rate on diagnostic accuracy	150	3
4	Leschka S	AJR Am J Roentgenol	2008	Effect of decrease in heart rate variability on the diagnostic accuracy of 64-MDCT coronary angiography	80	4
5	Andreini D	J Am Coll Cardiol	2007	Diagnostic accuracy of multidetector computed tomography coronary angiography in patients with dilated cardiomyopathy	170	5
6	Andreini D	Circ Cardiovasc Imaging	2009	Sixty-four-slice multidetector computed tomography: an accurate imaging modality for the evaluation of coronary arteries in dilated cardiomyopathy of unknown etiology	127	6
7	Bettencourt N	Circ Cardiovasc Imaging	2009	Multislice computed tomography in the exclusion of coronary artery disease in patients with presurgical valve disease	65	7
8	Dewey M	Ann Intern Med	2006	Noninvasive detection of coronary artery stenoses with multislice computed tomography or magnetic resonance imaging	129	8
9	Dewey M	Circulation	2009	Noninvasive coronary angiography by 320-row computed tomography with lower radiation exposure and maintained diagnostic accuracy: comparison of results with cardiac catheterization in a head-to-head pilot investigation	29	9
10	Chow BJ	Can J Cardiol	2007	Comparison of computed tomographic angiography versus rubidium-82 positron emission tomography for the detection of patients with anatomical coronary artery disease	26	10
11	Diederichsen AC	Scand Cardiovasc J	2009	Diagnostic value of cardiac 64-slice computed tomography: importance of coronary calcium	99	11

12	Diederichsen AC	Unpublished stud	ly #1		50	12
13	Garcia MJ	JAMA	2006	Accuracy of 16-row multidetector computed tomography for the assessment of coronary artery stenosis	230	13
14	Watkins MW	Am J Cardiol	2007	Detection of coronary artery stenosis using 40-channel computed tomography with multi-segment reconstruction	8	14
15	Kefer J	J Am Coll Cardiol	2005	Head-to-head comparison of three-dimensional navigator-gated magnetic resonance imaging and 16-slice computed tomography to detect coronary artery stenosis in patients	41	15
16	Pouleur AC	Circ Cardiovasc Imaging	2008	Direct comparison of whole-heart navigator-gated magnetic resonance coronary angiography and 40- and 64-slice multidetector row computed tomography to detect the coronary artery stenosis in patients scheduled for conventional coronary angiography	75	16
17	Pouleur AC	European Radiology	2007	Usefulness of 40-slice multidetector row computed tomography to detect coronary disease in patients prior to cardiac valve surgery	15	17
18	Ghostine S	J Am Coll Cardiol	2006	Non-invasive detection of coronary artery disease in patients with left bundle branch block using 64-slice computed tomography	32	18
19	Halon DA	Cardiology	2007	Uses and limitations of 40 slice multi-detector row spiral computed tomography for diagnosing coronary lesions in unselected patients referred for routine invasive coronary angiography	42	19
20	Halvorsen BA	Tidsskr Nor Laegeforen	2008	Angiography with 64-channel CT upon suspicion of stable coronary disease	83	20
21	Hamdan A	JACC Cardiovasc Imaging	2011	A prospective study for comparison of MR and CT imaging for detection of coronary artery stenosis	88	21
22	Hausleiter J	Eur Heart J	2007	Non-invasive coronary computed tomographic angiography for patients with suspected coronary artery disease: the Coronary Angiography by Computed Tomography with the Use of a Submillimeter resolution (CACTUS) trial	243	22
23	Jenkins SM	QJM	2011	Limited clinical utility of CT coronary angiography in a district hospital setting	99	23

24	Langer C	J Comput Assist Tomogr	2009	Noninvasive coronary angiography focusing on calcification: multislice computed tomography compared with magnetic	68	24
				resonance imaging		
25	Martuscelli E	Eur Heart J	2004	Accuracy of thin-slice computed tomography in the detection of coronary stenoses	64	25
26	Meijboom WB	Am J Cardiol	2007	Comparison of diagnostic accuracy of 64-slice computed tomography coronary angiography in women versus men with	178	26
				angina pectoris		and
27	Meijboom WB	Heart	2007	64-Slice CT coronary angiography in patients with non-ST elevation acute coronary syndrome		27
28	Meijboom WB	J Am Coll Cardiol	2006	Pre-operative computed tomography coronary angiography to detect significant coronary artery disease in patients referred for cardiac valve surgery		
29	Mollet NR	Circulation	2005	High-resolution spiral computed tomography coronary angiography in patients referred for diagnostic conventional coronary angiography		
30	Pugliese F	Eur Radiol	2006	Diagnostic accuracy of non-invasive 64-slice CT coronary angiography in patients with stable angina pectoris		
31	Meijboom WB	J Am Coll Cardiol	2008	Diagnostic accuracy of 64-slice computed tomography coronary angiography: a prospective, multicenter, multivendor study	108	28
32	Mendoza- Rodriguez V	The Internet Journal of Cardiology	2009	Ischemic Heart Disease Diagnosed by 64 Slice Computed Tomography Coronary Angiography	81	29
33	Bonmassari R	J Cardiovasc Med (Hagerstown)	2006	Noninvasive detection of coronary artery stenosis with 16-slice spiral computed tomography in a population at low to moderate risk for coronary artery disease	33	30
34	Nikolaou K	AJR Am J Roentgenol	2006	Accuracy of 64-MDCT in the diagnosis of ischemic heart disease	60	31
35	Nikolaou K	AJR Am J Roentgenol	2006	Clinical value of MDCT in the diagnosis of coronary artery disease in patients with a low pretest likelihood of significant disease	33	32
36	Ovrehus KA	Am J Cardiol	2010	Comparison of usefulness of exercise testing versus coronary computed tomographic angiography for evaluation of patients suspected of having coronary artery disease	100	33

37	Ovrehus KA	JCCT	2010	Coronary computed tomographic angiography in patients suspected of coronary artery disease: impact of observer experience on diagnostic performance and interobserver reproducibility	110	34
38	Pontone G	Clin Radiol	2007	Accuracy of multidetector spiral computed tomography in detecting significant coronary stenosis in patient populations with differing pre-test probabilities of disease	116	35
39	Pontone G	Coron Artery Dis	2007	Diagnostic work-up of unselected patients with suspected coronary artery disease: complementary role of multidetector computed tomography, symptoms and electrocardiogram stress test	144	36
40	Pontone G	J Am Coll Cardiol	2009	Diagnostic accuracy of coronary computed tomography angiography: a comparison between prospective and retrospective electrocardiogram triggering	96	37
41	Rixe J	Circ J	2009	Detection of relevant coronary artery disease using dual-source computed tomography in a high probability patient series: comparison with invasive angiography	76	38
42	Sato A	J Nucl Cardiol	2010	Incremental value of combining 64-slice computed tomography angiography with stress nuclear myocardial perfusion imaging to improve noninvasive detection of coronary artery disease	107	39
43	Herzog C	Radiology	2007	Does two-segment image reconstruction at 64-section CT coronary angiography improve image quality and diagnostic accuracy?	98	40
44	Herzog C	Radiology	2007	Significant coronary artery stenosis: comparison on per-patient and per-vessel or per-segment basis at 64-section CT angiography		
45	Arnoldi E	Radiologe	2010	Coronary CT angiography using prospective ECG triggering: high diagnostic accuracy with low radiation dose	20	41
46	Shabestari AA	Am J Cardiol	2007	Diagnostic performance of 64-channel multislice computed tomography in assessment of significant coronary artery disease in symptomatic subjects	113	42
47	Ugolini P	Can J Cardiol	2009	Evaluation of coronary atheroma by 64-slice multidetector computed tomography: Comparison with intravascular ultrasound and angiography	13	43
48	Ugolini P	Unpublished stu	dy #2		3	44

49	Yang L	AJR Am J Roentgenol	2009	64-MDCT coronary angiography of patients with atrial fibrillation: influence of heart rate on image quality and efficacy in evaluation of coronary artery disease	60	45
50	Xu L	Eur Radiol	2011	Diagnostic performance of 320-detector CT coronary angiography in patients with atrial fibrillation: preliminary results	37	46
51	Sun K	Chinese Medical Sciences Journal	2012	Feasibility and diagnostic accuracy for assessment of coronary artery stenosis of prospectively electrocardiogram-gated high-pitch spiral acquisition mode dual-source ct coronary angiography in patients with relatively higher heart rates: In comparison with catheter coronary angiography	37	47
52	Jakamy R	Arch Cardiovasc Dis	2012	Accuracy of multislice computed tomography in the preoperative assessment of coronary disease in patients scheduled for heart valve surgery	32	48
53	Kajander	Circulation	2010	Cardiac positron emission tomography/computed tomography imaging accurately detects anatomically and functionally significant coronary artery disease	99	49
54	Pontone G	Am Heart J	2011	Feasibility and accuracy of a comprehensive multidetector computed tomography acquisition for patients referred for balloon- expandable transcatheter aortic valve implantation	39	50
55	Herzog BA	Eur Heart J	2008	Accuracy of low-dose computed tomography coronary angiography using prospective electrocardiogram-triggering: first clinical experience	22	51
56	Herzog BA	Heart	2009	First head-to-head comparison of effective radiation dose from low-dose 64-slice CT with prospective ECG-triggering versus invasive coronary angiography	36	52
57	Husmann L	Acad Radiol	2010	Usefulness of additional coronary calcium scoring in low-dose CT coronary angiography with prospective ECG-triggering impact on total effective radiation dose and diagnostic accuracy	61	53
58	Andreini D	Cardiovasc Diabetol	2010	Comparison of the diagnostic performance of 64-slice computed tomography coronary angiography in diabetic and non-diabetic patients with suspected coronary artery disease	210	54

59	Chen CC	Int J	2011	The effect of calcium score on the diagnostic accuracy of coronary	75	55
		Cardiovasc		computed tomography angiography		
		Imaging				
60	Laissy JP	Heart	2007	Comprehensive evaluation of preoperative patients with aortic	13	56
				valve stenosis: usefulness of cardiac multidetector computed		
				tomography		
61	Scheffel H	Eur Radiol	2006	Accuracy of dual-source CT coronary angiography: First experience	24	57
				in a high pre-test probability population without heart rate control		
62	Leschka S	Heart	2008	Combining dual-source computed tomography coronary	67	58
				angiography and calcium scoring: added value for the assessment of		
				coronary artery disease		
63	Gueret P	Am J Cardiol	2013	Diagnostic Performance of Computed Tomography Coronary	574	59
		2		Angiography (from the Prospective National Multicenter		
				Multivendor EVASCAN Study)		
64	Rochitte CE	Eur Heart J	2014	Computed tomography angiography and perfusion to assess	265	60
		5		coronary artery stenosis causing perfusion defects by single photon		
				emission computed tomography: the CORE320 study		
65	Ghostine S	Eur Heart J	2008	Non-invasive diagnosis of ischaemic heart failure using 64-slice	31	61
		5		computed tomography		

Full study citations can be found in Supplementary table 18. Pts. = Number of patients *=number of patients in the data set for main analysis. Number in the whole COME-CCT data set may be higher. The data set number will be used in supplementary 5 and 6 for identification.

Supplementary table 2 | QUADAS-2 analysis

	Stu	dies		Risk o	of Bias		Applic	ability Co	ncerns	Risk of Bias	Applicability Concerns
#	First author	Journal, Year	Patient	Index	Reference	Flow and	Patient	Index	Reference	Total	Total
			Selection	Test	Standard	Timing	Selection	Test	Standard		
1	Alkadhi H	Eur Heart J 2008	Low	Low	Low	Low	Low	Low	Low	Low	Low
2	Alkadhi H	Heart 2010	Low	Low	Low	Low	Low	Low	Low	Low	Low
		Cardiovasc Diabetol									
3	Andreini D	2010	Low	Low	Low	Low	Low	Low	Low	Low	Low
		Circ Cardiovasc									
4	Andreini D	Imaging 2009	Low	Low	Low	Low	Low	Low	Low	Low	Low
		J Am Coll Cardiol									
5	Andreini D	2007	Low	Low	Low	Low	Low	Low	Low	Low	Low
6	Arnoldi E	Radiologe 2010	Low	Unclear	Low	Unclear	Low	Low	Low	Unclear	Low
		Circ Cardiovasc									
7	Bettencourt N	Imaging 2009	Low	Low	Low	Low	Low	Low	Low	Low	Low
		J Cardiovasc Med									
8	Bonmassari R	(Hagerstown) 2006	Low	Unclear	Unclear	Unclear	Low	Low	Low	Unclear	Low
		Int J Cardiovasc									
9	Chen CC	Imaging 2011	Low	Low	Unclear	High	Low	Low	Low	High	Low
10	Chow BJ	Can J Cardiol 2007	Unclear	Unclear	Unclear	Low	Low	Low	Low	Unclear	Low
11	Dewey M	Ann Intern Med 2006	Low	Low	Low	Low	Low	Low	Low	Low	Low
12	Dewey M	Circulation 2009	Low	Low	Low	Low	Low	Low	Low	Low	Low
		Scand Cardiovasc J									
13	Diederichsen AC	2009	Low	Low	Low	Low	Low	Low	Low	Low	Low
14	Garcia MJ	JAMA 2006	High	Low	Unclear	Low	Low	Low	Low	High	Low
		J Am Coll Cardiol									
15	Ghostine S	2006	Low	Low	Low	Low	Low	Low	Low	Low	Low

16	Ghostine S	Eur Heart 2008	Low	Low	Low	Low	Low	Low	Low	Low	Low
17	Gueret P	Am J Cardiol 2013	High	Low	Low	Low	Low	Low	Low	High	Low
18	Halon DA	Cardiology 2007	High	Low	Low	High	Low	Low	Low	High	Low
		Tidsskr Nor									
19	Halvorsen BA	Laegeforen 2008	Х	Х	Х	Х	Х	Х	Х	Х	Х
		JACC Cardiovasc									
20	Hamdan A	Imaging 2011	High	Low	Low	Low	Low	Low	Low	High	Low
21	Hausleiter J	Eur Heart J 2007	Low	Low	Low	Low	Low	Low	Low	Low	Low
22	Herzog BA	Eur Heart J 2008	Low	Unclear	Low	Low	Low	Low	Low	Low	Low
23	Herzog BA	Heart 2009	Low	Unclear	Low	Low	Low	Low	Low	Low	Low
24	Herzog C	Radiology 2007*	Low	Low	Low	Unclear	Low	Low	Low	Unclear	Low
25	Herzog C	Radiology 2007**	Low	Unclear	Low	Low	Low	Low	Low	Unclear	Low
26	Husmann L	Acad Radiol 2010	High	Unclear	Low	Unclear	Low	Low	Low	High	Low
		Arch Cardiovasc Dis									
27	Jakamy R	2012	Low	Unclear	Low	High	Low	Low	Low	High	Low
28	Jenkins SM	QJM 2012	Low	Low	Low	High	Low	Low	Low	Low	Low
29	Kajander	Circulation 2010	Low	Low	Low	High	Low	Low	Low	High	Low
		J Am Coll Cardiol									
30	Kefer J	2005	Low	Low	Low	High	Low	Low	Low	Low	Low
31	Laissy JP	Heart 2007	Low	Unclear	Unclear	Low	Low	Low	Low	Unclear	Low
		J Comput Assist									
32	Langer C	Tomogr 2007	Low	Low	Unclear	Low	Low	Low	Low	Unclear	Low
33	Leschka S	Eur Heart 2005	High	Low	Low	Low	Low	Low	Low	High	Low
34	Leschka S	Heart 2008	Low	Low	Low	Low	Low	Low	Low	Low	Low
		AJR Am J Roentgenol									
35	Leschka S	2008	High	Low	Low	Low	Low	Low	Low	High	Low
36	Martuscelli E	Eur Heart J 2004	Low	Low	Unclear	High	Low	Low	Low	High	Low
		J Am Coll Cardiol									
37	Meijboom WB	2008	Low	Low	Low	Low	Low	Low	Low	Low	Low

		J Am Coll Cardiol									
38	Meijboom WB	2006	Low	Low	Low	Low	Low	Low	Low	Low	Low
39	Meijboom WB	Heart 2007	Low	Low	Low	Low	Low	Low	Low	Low	Low
40	Meijboom WB	Am J Cardiol 2007	Low	Low	Low	Low	Low	Low	Low	Low	Low
	Mendoza-Rodriguez	The Internet Journal									
41	V	of Cardiology 2007	Low	Unclear	Low	Unclear	Low	Low	Low	Unclear	Low
42	Mollet NR	Circulation 2005	Low	Low	Low	Low	Low	Low	Low	Low	Low
43	Nikolaou K	AJR Am J Roentgenol ⁺	High	Low	Low	High	Low	Low	Low	High	Low
		AJR Am J									
44	Nikolaou K	Roentgenol ⁺⁺	Low	Low	Low	Low	Low	Low	Low	Low	Low
45	Ovrehus KA	Am J Cardiol 2010	Low	Low	Low	Low	Low	Low	Low	Low	Low
		J Cardiovasc Comput									
46	Ovrehus KA	Tomogr 2010	Low	Low	Low	Low	Low	Low	Low	Low	Low
47	Pontone G	Coron Art Dis 2007	High	Unclear	Low	Unclear	Low	Low	Low	Unclear	Low
48	Pontone G	Am Heart J 2011	High	Unclear	Unclear	Unclear	Low	Low	Low	High	Low
		J Am Coll Cardiol									
49	Pontone G	2009	High	Low	Low	Low	Low	Low	Low	High	Low
50	Pontone G	Clin Radiol 2007	Low	Unclear	Low	High	Low	Low	Low	High	Low
51	Pouleur AC	Eur Radiol 2007	Low	Low	Low	Low	Low	Low	Low	Low	Low
		Circ Cardiovasc									
52	Pouleur AC	Imaging 2008	Low	Low	Low	Low	Low	Low	Low	Low	Low
53	Pugliese F	Eur Radiol 2006	Low	Low	Low	Low	Low	Low	Low	Low	Low
54	Rixe J	Circ J 2009	Low	Unclear	Low	Low	Low	Low	Low	Unclear	Low
55	Rochitte CE	Eur Heart J 2014	High	Low	Low	Low	Low	Low	Low	High	Low
56	Sato A	J Nucl Cardiol 2010	Low	Low	Unclear	High	Low	Low	Low	High	Low
57	Scheffel H	Eur Radiol 2006	Low	Unclear	Low	High	Low	Low	Low	High	Low
58	Shabestari AA	Am J Cardiol 2007	High	Low	Unclear	High	Low	Low	Low	High	Low
59	Sun K	Chin Med Sci J 2012	Low	Low	Low	Unclear	Low	Low	Low	Unclear	Low
60	Ugolini P	Can J Cardiol 2009	Low	Low	Low	Low	Low	Low	Low	Low	Low

61	Watkins MW	Am J Cardiol 2007	High	Low	Low	Unclear	Low	Low	Low	High	Low
62	Xu L	Eur Radiol 2011	Low								
		AJR Am J Roentgenol									
63	Yang L	2009	Low								
63 64	Yang L Unpublished data	2009 Diederichsen AC	Low X								

* refers to study 24 in supplementary table 1. ** refers to study 25 in supplementary table 1. + refers to study 43 in supplementary table 1. + refers to study 44 in supplementary table 1. X = QUADAS assessment not possible because of study language (Norwegian, #19) or unpublished data (#64 and #65).

Risk of bias	Patient	Index test	Reference	Flow and	Total
	selection		standard	timing	
Low	47	47	52	41	31
High	14	0	0	12	20
Unclear	1	15	10	9	11

Supplementary table 3 | QUADAS-2 risk of bias summary

Applicability	Patient	Index test	Reference	Total
concerns	selection		standard	
Low	62	62	62	62
High	0	0	0	0
Unclear	0	0	0	0

Supplementary table 4 | QUADAS-2 applicability concerns summary

Data	Patients	Age	Male	Chest pa	in sympton	ms		Risk fact	tor distribution	ution			Patients
set*		mean (SD)	sex	Typical AP	Atypical AP	Non- anginal CD	Other CD	Arterial HTN	DM	HLD	Active Smokers	Former Smokers	with CAD
1	49	56 (13)	35 (71.4)	18 (36.7)	22 (44.9)	9 (18.4)	0 (0.0)	26 (53.1)	5 (10.2)	21 (42.9)	17 (34.7)	3 (6.1)	30 (61.2)
2	99	63 (8)	73 (73.7)	17 (17.2)	37 (37.4)	45 (45.5)	0 (0.0)	46 (46.5)	23 (23.2)	35 (35.4)	38 (38.4)	31 (31.3)	35 (35.4)
3	150	64 (12)	103 (68.7)	32 (21.3)	91 (60.7)	27 (18.0)	0 (0.0)	75 (50.0)	29 (19.3)	57 (38.0)	62 (41.3)	7 (4.7)	59 (39.3)
4	80	61 (11)	46 (57.5)	12 (15.0)	32 (40.0)	27 (33.8)	9 (11.3)	41 (51.3)	12 (15.0)	40 (50.0)	32 (40.0)	7 (8.8)	39 (48.8)
5	170	54 (8)	121 (71.2)	0 (0.0)	20 (11.8)	19 (11.2)	131 (77.1)	37 (21.8)	1 (0.6)	45 (26.5)	22 (12.9)	25 (14.7)	84 (49.4)
6	127	56 (7)	79 (62.2)	0 (0.0)	5 (3.9)	3 (2.4)	119 (93.7)	49 (38.6)	14 (11.0)	41 (32.3)	17 (13.4)	0 (0.0)	46 (36.2)
7	65	70 (8)	38 (58.5)	62 (95.4)	0 (0.0)	0 (0.0)	3 (4.6)	45 (69.2)	12 (18.5)	33 (50.8)	5 (7.7)	8 (12.3)	22 (33.8)
8	129	63 (9)	34 (26.4)	61 (47.3)	32 (24.8)	13 (10.1)	23 (17.8)	93 (72.1)	21 (16.3)	66 (51.2)	30 (23.3)	59 (45.7)	67 (51.9)
9	29	60 (10)	9 (31.0)	7 (24.1)	10 (34.5)	2 (6.9)	10 (34.5)	26 (89.7)	5 (17.2)	17 (58.6)	4 (13.8)	14 (48.3)	11 (37.9)
10	26	56 (9)	18 (69.2)	17 (65.4)	4 (15.4)	1 (3.8)	4 (15.4)	15 (57.7)	4 (15.4)	19 (73.1)	4 (15.4)	16 (61.5)	19 (73.1)
11	99	62 (11)	53 (53.5)	77 (77.8)	0 (0.0)	0 (0.0)	22 (22.2)	49 (49.5)	9 (9.1)	43 (43.4)	25 (25.3)	32 (32.3)	31 (31.3)
12	50	62 (10)	26 (52.0)	13 (26.0)	19 (38.0)	18 (36.0)	0 (0.0)	30 (60.0)	3 (6.0)	18 (36.0)	13 (26.0)	24 (48.0)	20 (40.0)
13	230	60 (9)	156 (67.8)	134 (58.3)	59 (25.7)	37 (16.1)	0 (0.0)	102 (44.3)	14 (6.1)	98 (42.6)	47 (20.4)	100 (43.5)	72 (31.3)
14	8	61 (10)	6 (75.0)	5 (62.5)	3 (37.5)	0 (0.0)	0 (0.0)	6 (75.0)	0 (0.0)	7 (87.5)	0 (0.0)	0 (0.0)	3 (37.5)
15	41	64 (13)	32 (78.0)	21 (51.2)	4 (9.8)	5 (12.2)	11 (26.8)	23 (56.1)	5 (12.2)	20 (48.8)	15 (36.6)	4 (9.8)	24 (58.5)
16	75	60 (13)	56 (74.7)	12 (16.0)	4 (5.3)	5 (6.7)	54 (72.0)	40 (53.3)	13 (17.3)	45 (60.0)	23 (30.7)	10 (13.3)	17 (22.7)
17	15	62 (12)	9 (60.0)	3 (20.0)	0 (0.0)	0 (0.0)	12 (80.0)	8 (53.3)	0 (0.0)	4 (26.7)	4 (26.7)	0 (0.0)	5 (33.3)
18	32	70 (13)	15 (46.9)	20 (62.5)	12 (37.5)	0 (0.0)	0 (0.0)	23 (71.9)	10 (31.3)	19 (59.4)	13 (40.6)	0 (0.0)	15 (46.9)
19	42	56 (12)	35 (83.3)	0 (0.0)	0 (0.0)	0 (0.0)	42 (100.0)	18 (42.9)	8 (19.0)	0 (0.0)	11 (26.2)	9 (21.4)	22 (52.4)
20	83	61 (9)	46 (55.4)	46 (55.4)	35 (42.2)	0 (0.0)	2 (2.4)	42 (50.6)	12 (14.5)	53 (63.9)	15 (18.1)	34 (41.0)	39 (47.0)
21	88	64 (9)	56 (63.6)	25 (28.4)	28 (31.8)	17 (19.3)	18 (20.5)	62 (70.5)	20 (22.7)	53 (60.2)	16 (18.2)	40 (45.5)	44 (50.0)
22	243	62 (10)	158 (65.0)	38 (15.6)	136 (56.0)	0 (0.0)	69 (28.4)	0 (0.0)	0 (0.0)	152 (62.6)	38 (15.6)	46 (18.9)	101 (41.6)
23	99	58 (11)	55 (55.6)	55 (55.6)	0 (0.0)	38 (38.4)	6 (6.1)	53 (53.5)	11 (11.1)	87 (87.9)	24 (24.2)	32 (32.3)	38 (38.4)
24	68	64 (11)	38 (55.9)	0 (0.0)	68 (100.0)	0 (0.0)	0 (0.0)	57 (83.8)	11 (16.2)	51 (75.0)	7 (10.3)	22 (32.4)	26 (38.2)

Supplementary table 5 | Participant characteristics for each data set. Figures are numbers (percentages) unless stated otherwise.

25	64	59 (7)	59 (92.2)	33 (51.6)	16 (25.0)	2 (3.1)	13 (20.3)	61 (95.3)	37 (57.8)	52 (81.3)	24 (37.5)	24 (37.5)	43 (67.2)
26	38	60 (12)	33 (86.8)	18 (47.4)	11 (28.9)	9 (23.7)	0 (0.0)	20 (52.6)	7 (18.4)	21 (55.3)	10 (26.3)	0 (0.0)	21 (55.3)
27	140	60 (11)	95 (67.9)	58 (41.4)	35 (25.0)	47 (33.6)	0 (0.0)	74 (52.9)	15 (10.7)	67 (47.9)	37 (26.4)	0 (0.0)	72 (51.4)
28	108	61 (6)	75 (69.4)	61 (56.5)	17 (15.7)	10 (9.3)	20 (18.5)	65 (60.2)	24 (22.2)	67 (62.0)	28 (25.9)	0 (0.0)	69 (63.9)
29	81	56 (8)	61 (75.3)	25 (30.9)	56 (69.1)	0 (0.0)	0 (0.0)	52 (64.2)	20 (24.7)	41 (50.6)	39 (48.1)	0 (0.0)	18 (22.2)
30	33	69 (8)	23 (69.7)	0 (0.0)	0 (0.0)	6 (18.2)	27 (81.8)	16 (48.5)	8 (24.2)	17 (51.5)	7 (21.2)	11 (33.3)	14 (42.4)
31	60	60 (10)	33 (55.0)	3 (5.0)	22 (36.7)	35 (58.3)	0 (0.0)	NA	NA	NA	NA	NA	5 (8.3)
32	33	64 (11)	24 (72.7)	32 (97.0)	1 (3.0)	0 (0.0)	0 (0.0)	NA	NA	NA	NA	NA	21 (63.6)
33	100	61 (9)	50 (50.0)	31 (31.0)	28 (28.0)	41 (41.0)	0 (0.0)	50 (50.0)	3 (3.0)	69 (69.0)	14 (14.0)	38 (38.0)	29 (29.0)
34	110	61 (9)	72 (65.5)	64 (58.2)	46 (41.8)	0 (0.0)	0 (0.0)	70 (63.6)	15 (13.6)	82 (74.5)	24 (21.8)	45 (40.9)	44 (40.0)
35	116	63 (10)	86 (74.1)	10 (8.6)	39 (33.6)	67 (57.8)	0 (0.0)	76 (65.5)	14 (12.1)	71 (61.2)	25 (21.6)	27 (23.3)	63 (54.3)
36	144	62 (10)	109 (75.7)	58 (40.3)	86 (59.7)	0 (0.0)	0 (0.0)	88 (61.1)	21 (14.6)	105 (72.9)	49 (34.0)	47 (32.6)	95 (66.0)
37	96	65 (9)	81 (84.4)	24 (25.0)	37 (38.5)	4 (4.2)	31 (32.3)	64 (66.7)	17 (17.7)	54 (56.3)	27 (28.1)	40 (41.7)	90 (93.8)
38	76	63 (10)	47 (61.8)	22 (28.9)	35 (46.1)	12 (15.8)	7 (9.2)	64 (84.2)	25 (32.9)	51 (67.1)	9 (11.8)	14 (18.4)	40 (52.6)
39	107	67 (10)	69 (64.5)	69 (64.5)	21 (19.6)	10 (9.3)	7 (6.5)	73 (68.2)	49 (45.8)	65 (60.7)	44 (41.1)	21 (19.6)	59 (55.1)
40	98	60 (10)	49 (50.0)	75 (76.5)	20 (20.4)	0 (0.0)	3 (3.1)	86 (87.8)	27 (27.6)	0 (0.0)	24 (24.5)	24 (24.5)	45 (45.9)
41	20	60 (12)	15 (75.0)	20 (100.0)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	11 (55.0)
42	113	64 (10)	81 (71.7)	1 (0.9)	2 (1.8)	80 (70.8)	30 (26.5)	87 (77.0)	48 (42.5)	63 (55.8)	49 (43.4)	9 (8.0)	90 (79.6)
43	13	62 (5)	8 (61.5)	7 (53.8)	4 (30.8)	1 (7.7)	1 (7.7)	4 (30.8)	0 (0.0)	12 (92.3)	2 (15.4)	6 (46.2)	5 (38.5)
44	3	54 (16)	2 (66.7)	1 (33.3)	1 (33.3)	1 (33.3)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	2 (66.7)	0 (0.0)
45	60	58 (7)	23 (38.3)	2 (3.3)	6 (10.0)	14 (23.3)	38 (63.3)	4 (6.7)	1 (1.7)	6 (10.0)	10 (16.7)	1 (1.7)	8 (13.3)
46	37	60 (6)	16 (43.2)	6 (16.2)	3 (8.1)	6 (16.2)	22 (59.5)	12 (32.4)	6 (16.2)	19 (51.4)	3 (8.1)	10 (27.0)	10 (27.0)
47	37	59 (11)	25 (67.6)	5 (13.5)	3 (8.1)	24 (64.9)	5 (13.5)	6 (16.2)	4 (10.8)	11 (29.7)	15 (40.5)	16 (43.2)	27 (73.0)
48	32	65 (12)	21 (65.6)	1 (3.1)	0 (0.0)	0 (0.0)	31 (96.9)	19 (59.4)	4 (12.5)	14 (43.8)	5 (15.6)	13 (40.6)	6 (18.8)
49	99	64 (7)	56 (56.6)	53 (53.5)	39 (39.4)	7 (7.1)	0 (0.0)	39 (39.4)	13 (13.1)	65 (65.7)	16 (16.2)	9 (9.1)	43 (43.4)
50	39	80 (9)	10 (25.6)	3 (7.7)	0 (0.0)	5 (12.8)	31 (79.5)	26 (66.7)	2 (5.1)	13 (33.3)	7 (17.9)	3 (7.7)	11 (28.2)
51	22	58 (11)	13 (59.1)	6 (27.3)	10 (45.5)	2 (9.1)	4 (18.2)	10 (45.5)	3 (13.6)	7 (31.8)	10 (45.5)	0 (0.0)	12 (54.5)
52	36	62 (9)	24 (66.7)	7 (19.4)	19 (52.8)	9 (25.0)	1 (2.8)	21 (58.3)	3 (8.3)	19 (52.8)	18 (50.0)	0 (0.0)	20 (55.6)
53	61	61 (11)	37 (60.7)	35 (57.4)	11 (18.0)	12 (19.7)	3 (4.9)	36 (59.0)	4 (6.6)	28 (45.9)	28 (45.9)	0 (0.0)	33 (54.1)

54	210	61 (8)	184 (87.6)	38 (18.1)	45 (21.4)	34 (16.2)	93 (44.3)	137 (65.2)	105 (50.0)	104 (49.5)	60 (28.6)	0 (0.0)	180 (85.7)
55	75	61 (10)	61 (81.3)	31 (41.3)	31 (41.3)	6 (8.0)	7 (9.3)	48 (64.0)	15 (20.0)	23 (30.7)	14 (18.7)	14 (18.7)	50 (66.7)
56	13	69 (11)	7 (53.8)	3 (23.1)	1 (7.7)	1 (7.7)	8 (61.5)	6 (46.2)	2 (15.4)	4 (30.8)	2 (15.4)	0 (0.0)	2 (15.4)
57	24	63 (12)	18 (75.0)	15 (62.5)	2 (8.3)	7 (29.2)	0 (0.0)	17 (70.8)	13 (54.2)	14 (58.3)	19 (79.2)	0 (0.0)	9 (37.5)
58	67	61 (12)	44 (65.7)	34 (50.7)	15 (22.4)	7 (10.4)	11 (16.4)	39 (58.2)	16 (23.9)	16 (23.9)	17 (25.4)	0 (0.0)	29 (43.3)
59	574	60 (11)	387 (67.4)	320 (55.7)	189 (32.9)	65 (11.3)	0 (0.0)	296 (51.6)	136 (23.7)	180 (31.4)	157 (27.4)	0 (0.0)	274 (47.7)
60	265	62 (8)	156 (58.9)	92 (34.7)	118 (44.5)	6 (2.3)	49 (18.5)	NA	NA	NA	NA	NA	152 (57.4)
61	31	69 (10)	22 (71.0)	29 (93.5)	2 (6.5)	0 (0.0)	0 (0.0)	17 (54.8)	7 (22.6)	17 (54.8)	14 (45.2)	0 (0.0)	20 (64.5)

* data set numbers for studies are provided in supplementary Table 1.

Study	Patients			CT r	ows			CT gating	СТА	Effective dose,	kV
ID		16	32	40	64	128	320		showing	mean (SD), mSv	
									CAD	Effective dose,	
										mean (SD), mSv	
1	49	0	49	0	0	0	0	retrospective	30	10.0 (1.8)	120
2	99	0	0	0	0	99	0	prospective	43	0.9 (0.2)	100
3	150	0	0	0	150	0	0	retrospective	78	8.0 (1.0)	120
4	80	0	80	0	0	0	0	retrospective	53	10.1 (1.9)	120
5	170	170	0	0	0	0	0	retrospective	106	14.5 (1.1)	120 to 140 according to the
											patient's body weight
6	127	0	0	0	127	0	0	both	66	19.8 (6.9)	120
7	65	0	65	0	0	0	0	retrospective	55	11.2 (3.1)	120
8	129	129	0	0	0	0	0	retrospective	91	11.9 (1.4)	120
9	29	0	0	0	0	0	29	prospective	12	6.3 (4.0)	120
10	26	26	0	0	0	0	0	retrospective	18	NA	120
11	99	0	0	0	99	0	0	retrospective	48	25.5 (6.5)	120
12	50	0	0	0	50	0	0	both	58	7.4 (6.0)	NA
13	230	230	0	0	0	0	0	retrospective	190	6.3 (2.5)	120 to 140 according to the
											patient's body weight
14	8	0	0	8	0	0	0	retrospective	3	10.5 (1.5)	120 to 140 according to the
											patient's body weight
15	41	41	0	0	0	0	0	retrospective	31	11.5 (2.1)	140
16	75	1	0	58	16	0	0	retrospective	30	13.6 (2.3)	120
17	15	0	0	15	0	0	0	retrospective	5	13.8 (2.1)	120
18	32	0	0	0	32	0	0	retrospective	17	7.2 (2.4)	120
19	42	0	0	42	0	0	0	retrospective	27	NA	120

Supplementary table 6 | Technical characteristics of imaging tests for each data set. Figures are numbers (percentages) unless stated otherwise.

20	83	0	0	0	83	0	0	retrospective	52	NA	120 to 135
21	88	0	88	0	0	0	0	retrospective	56	16.5 (3.8)	120
22	243	129	0	0	114	0	0	retrospective	136	7.3 (3.0)	Not explicitly stated*
23	99	0	0	99	0	0	0	retrospective	99	15.7 (3.0)	120 to 140 according to the patient's body weight
24	68	68	0	0	0	0	0	retrospective	65	7.7 (3.8)	120
25	64	64	0	0	0	0	0	retrospective	46	NA	120
26	38	0	38	0	0	0	0	retrospective	22	NA	120
27	140	0	140	0	0	0	0	retrospective	80	NA	120
28	108	0	0	0	0	0	0	retrospective	87	NA	120
29	81	0	81	0	0	0	0	retrospective	22	10.9 (1.8)	120
30	33	33	0	0	0	0	0	retrospective	36	NA	140
31	60	60	0	0	0	0	0	retrospective	39	14.3 (1.0)	120
32	33	33	0	0	0	0	0	retrospective	29	8.6 (1.5)	120
33	100	0	51	0	49	0	0	retrospective	47	NA	120
34	110	0	44	0	66	0	0	retrospective	61	14.5 (4.0)	120
35	116	116	0	0	0	0	0	retrospective	91	13.1 (2.3)	120
36	144	144	0	0	0	0	0	retrospective	117	13.2 (2.5)	120 to 140 according to the patient's body weight
37	96	0	0	0	96	0	0	both	91	14.1 (8.9)	120
38	76	0	0	0	76	0	0	retrospective	52	NA	120
39	107	0	0	0	107	0	0	retrospective	95	15.0 (0.0)	120
40	98	0	0	0	98	0	0	retrospective	38	NA	120
41	20	0	0	0	20	0	0	prospective	15	2.5 (1.1)	100 to 120 according to the patient's body weight
42	113	0	113	0	0	0	0	retrospective	94	14.1 (1.5)	120
43	13	0	0	0	13	0	0	retrospective	7	NA	120
44	3	0	0	0	3	0	0	retrospective	2	8.3 (4.4)	NA
45	60	0	0	0	60	0	0	retrospective	18	14.4 (4.2)	100 to 135

46	37	0	0	0	0	0	37	prospective	15	13.0 (4.7)	100 and 120
47	37	0	0	0	0	37	0	prospective	34	1.1 (0.1)	100
48	32	0	0	0	32	0	0	prospective	11	22.7 (14.4)	120
49	99	0	0	0	99	0	0	both	46	9.5 (5.2)	100 to 120, depending on patient
											size
50	39	0	0	0	39	0	0	retrospective	17	36.6 (13.9)	120
51	22	0	0	0	22	0	0	prospective	18	2.1 (0.8)	100 and 120, according to the
											patient's BMI
52	36	0	0	0	36	0	0	prospective	22	2.1 (0.7)	100 and 120, according to the
											patient's BMI
53	61	0	0	0	61	0	0	prospective	39	2.1 (0.7)	100 and 120, according to the
											patient's BMI
54	210	0	0	0	210	0	0	retrospective	192	14.6 (1.7)	120
55	75	0	0	0	75	0	0	retrospective	51	16.3 (1.8)	120
56	13	13	0	0	0	0	0	retrospective	3	NA	no information
57	24	0	0	0	0	24	0	retrospective	8	NA	120
58	67	0	0	0	0	67	0	retrospective	39	NA	120
59	574	0	0	0	574	0	0	prospective	608	18.3 (7.3)	100 to 140, according to the
											patient's body weight
60	79	0	0	0	0	0	79	retrospective	34	NA	120
61	31	0	0	0	31	0	0	retrospective	21	9.9 (5.0)	120

* original citations from the publication: "To decrease radiation exposure, we consequently used dose-saving algorithms including prospective ECG-gated tube current modulation and 100 kV acquisition protocols, whenever possible."

Female patients	Participants	Pretest probability categories											
	Overall	0 to <10%	10 to <20%	20 to < 30%	30 to <40%	40 to <50%	50 to <60%	60 to <70%	70 to <80%	80 to <90%	90 to 100%		
Ν	1859	86	501	390	218	169	245	199	51	0	0		
ТР	533	14	114	97	69	52	90	68	29	-	-		
TN	927	52	292	210	104	81	107	72	9	-	-		
FP	147	6	35	40	21	11	17	12	5	-	-		
FN	34	1	3	7	4	4	8	7	0	-	-		
NDX	218	13	57	36	20	21	23	40	8	-	-		
NDX rate (%)	11.7	15.1	11.4	9.2	9.2	12.4	9.4	20.1	15.7	-	-		
PPV (%)	78.4	70.0	76.5	70.8	76.7	82.5	84.1	85.0	85.3	-	-		
NPV (%)	96.5	98.1	99.0	96.8	96.3	95.3	93.0	91.1	100.0	-	-		
Sensitivity (%)	94.0	93.3	97.4	93.3	94.5	92.9	91.8	90.7	100.0	-	-		
Specificity (%)	86.3	89.7	89.3	84.0	83.2	88.0	86.3	85.7	64.3	-	-		
Diagnostic	89.0	90.4	91.4	86.7	87.4	89.9	88.7	88.1	88.4	-	-		
accuracy (%)													
LR+	6.87	9.02	9.10	5.83	5.63	7.77	6.70	6.35	2.80	-	-		
LR-	0.07	0.07	0.03	0.08	0.07	0.08	0.09	0.11	0.00	-	-		

Supplementary Table 7 | Empiral data of female patients and their assignment to pretest probability categories

Male patients	Participants	Pretest	Pretest probability categories											
	Overall	0 to <10%	10 to <20%	20 to < 30%	30 to <40%	40 to <50%	50 to <60%	60 to <70%	70 to <80%	80 to <90%	90 to 100%			
Ν	3473	0	29	211	509	576	507	391	484	698	68			
ТР	1718	-	6	79	203	269	220	188	288	420	45			
TN	1104	-	21	102	230	206	187	122	94	134	8			
FP	228	-	1	13	28	48	38	27	33	38	2			
FN	87	-	0	3	14	7	9	15	17	21	1			
NDX	336	-	1	14	34	46	53	39	52	85	12			
NDX rate (%)	9,7	-	3.4	6.6	6.7	8.0	10.5	10.0	10.7	12.2	17.6			
PPV (%)	88,3	-	85.7	85.9	87.9	84.9	85.3	87.4	89.7	91.7	95.7			
NPV (%)	92,7	-	100.0	97.1	94.3	96.7	95.4	89.1	84.7	86.5	88.9			
Sensitivity (%)	95,2	-	100.0	96.3	93.5	97.5	96.1	92.6	94.4	95.2	97.8			
Specificity (%)	82,9	-	95.5	88.7	89.1	81.1	83.1	81.9	74.0	77.9	80.0			
Diagnostic	90,0	-	96.4	91.9	91.2	89.6	89.6	88.1	88.4	90.4	94.6			
accuracy (%)														
LR+	5,56	-	22.00	8.52	8.62	5.16	5.69	5.11	3.63	4.31	4.89			
LR-	0,06	-	0.00	0.04	0.07	0.03	0.05	0.09	0.08	0.06	0.03			

Supplementary Table 8 |Empirical data of male patients and their assignment to pretest probability categories

Supplementary table 9 | Predictors of non-diagnostic CTA results

Random effects		
Group	Variance	Standard deviation
Study_No (Intercept)	2.632	1.622

Fixed effects				
Group	Estimate	Standard error	Z value	P value
Intercept	-5.066	0.415	-12.242	< 0.001
Age >75	-0.009	0.166	-0.055	0.9560
Male	-0.200	0.107	-1.877	0.605
Heart rate	0.028	0.005	5.990	< 0.001

Patients ≤ 50 years	Participants	Pretest	etest probability categories											
	Overall	0 to <10%	10 to <20%	20 to < 30%	30 to <40%	40 to <50%	50 to <60%	60 to <70%	70 to <80%	80 to <90%	90 to 100%			
Ν	817	86	113	185	120	107	3	107	96	0	0			
ТР	255	14	19	69	26	39	0	40	48	-	-			
TN	397	52	71	89	71	49	2	40	23	-	-			
FP	51	6	5	12	6	7	1	7	7	-	-			
FN	21	1	2	3	1	2	0	6	6	-	-			
NDX	93	13	16	12	16	10	0	14	12	-	-			
NDX rate (%)	11.4	15.1	14.2	6.5	13.3	9.3	0.0	13.1	12.5	-	-			
PPV (%)	83.3	70.0	79.2	85.2	81.3	84.8	0.0	85.1	87.3	-	-			
NPV (%)	95.0	98.1	97.3	96.7	98.6	96.1	100.0	87.0	79.3	-	-			
Sensitivity (%)	92.4	93.3	90.5	95.8	96.3	95.1	n/a*	87.0	88.9	-	-			
Specificity (%)	88.6	89.7	93.4	88.1	92.2	87.5	66.7	85.1	76.7	-	-			
Diagnostic	90.1	90.4	92.8	91.3	93.3	90.7	66.7	86.0	84.5	-	-			
accuracy (%)														
LR+	8.12	9.02	13.75	8.07	12.36	7.61	n/a*	5.84	3.81	-	-			
LR-	0.09	0.07	0.10	0.05	0.04	0.06	n/a*	0.15	0.14	-	-			

Supplementary Table 10 | Patients ≤50 years and their assignment to pretest probability categories

Patients >50 to ≤ 65 years	Participants	Pretest	etest probability categories											
	Overall	0 to <10%	10 to <20%	20 to < 30%	30 to <40%	40 to <50%	50 to <60%	60 to <70%	70 to <80%	80 to <90%	90 to 100%			
Ν	2619	0	344	242	432	425	538	0	317	321	0			
ТР	1100	-	83	50	186	171	215	-	201	194	-			
TN	1039	-	201	140	182	172	223	-	54	67	-			
FP	173	-	24	21	25	31	36	-	19	17	-			
FN	48	-	1	3	14	7	11	-	8	4	-			
NDX	259	-	35	28	25	44	53	-	35	39	-			
NDX rate (%)	9.9	-	10.2	11.6	5.8	10.4	9.9	-	11.0	12.1	-			
PPV (%)	86.4	-	77.6	70.4	88.2	84.7	85.7	-	91.4	91.9	-			
NPV (%)	95.6	-	99.5	97.9	92.9	96.1	95.3	-	87.1	94.4	-			
Sensitivity (%)	95.8	-	98.8	94.3	93.0	96.1	95.1	-	96.2	98.0	-			
Specificity (%)	85.7	-	89.3	87.0	87.9	84.7	86.1	-	74.0	79.8	-			
Diagnostic	90.6	-	91.9	88.8	90.4	90.0	90.3	-	90.4	92.6	-			
accuracy (%)														
LR+	6.71	-	9.26	7.23	7.70	6.29	6.84	-	3.70	4.84	-			
LR-	0.05	-	0.01	0.07	0.08	0.05	0.06	-	0.05	0.03	-			

Supplementary Table 11 | Patients >50 to ≤65 years and their assignment to pretest probability categories

Patients >65 to \leq 75 years	Participants	Pretest	Pretest probability categories								
	Overall	0 to <10%	10 to <20%	20 to < 30%	30 to <40%	40 to <50%	50 to <60%	60 to <70%	70 to <80%	80 to <90%	90 to 100%
Ν	1434	0	73	116	133	180	160	434	0	338	0
ТР	692	-	18	42	53	98	71	199	-	211	_
TN	451	-	41	48	57	56	56	138	-	55	-
FP	109	-	7	14	13	15	13	28	-	19	-
FN	38	-	0	4	2	2	3	13	-	14	-
NDX	144	-	7	8	8	9	17	56	-	39	-
NDX rate (%)	10.0	-	9.6	6.9	6.0	5.0	10.6	12.9	-	11.5	-
PPV (%)	86.4	-	72.0	75.0	80.3	86.7	84.5	87.7	-	91.7	-
NPV (%)	92.2	-	100.0	92.3	96.6	96.6	94.9	91.4	-	79.7	-
Sensitivity (%)	94.8	-	100.0	91.3	96.4	98.0	95.9	93.9	-	93.8	-
Specificity (%)	80.5	-	85.4	77.4	81.4	78.9	81.2	83.1	-	74.3	-
Diagnostic	88.6	-	89.4	83.3	88.0	90.1	88.8	89.2	-	89.0	-
accuracy (%)											
LR+	4.87	-	6.86	4.04	5.19	4.64	5.09	5.57	-	3.65	-
LR-	0.06	-	0.00	0.11	0.04	0.03	0.05	0.07	-	0.08	-

Supplementary Table 12 | Patients >65 to \leq 75 years and their assignment to pretest probability categories

Patients >75 years	Participants	s Pretest probability categories									
	Overall	0 to <10%	10 to <20%	20 to < 30%	30 to <40%	40 to <50%	50 to <60%	60 to <70%	70 to <80%	80 to <90%	90 to 100%
N	462	0	0	58	42	33	51	49	122	39	68
ТР	204	-	-	15	7	13	24	17	68	15	45
TN	144	-	-	35	24	10	13	16	26	12	8
FP	42	-	-	6	5	6	5	4	12	2	2
FN	14	-	-	0	1	0	3	3	3	3	1
NDX	58	-	-	2	5	4	6	9	13	7	12
NDX rate (%)	12.6	-	-	3.4	11.9	12.1	11.8	18.4	10.7	17.9	17.6
PPV (%)	82.9	-	-	71.4	58.3	68.4	82.8	81.0	85.0	88.2	95.7
NPV (%)	91.1	-	-	100.0	96.0	100.0	81.3	84.2	89.7	80.0	88.9
Sensitivity (%)	93.6	-	-	100.0	87.5	100.0	88.9	85.0	95.8	83.3	97.8
Specificity (%)	77.4	-	-	85.4	82.8	62.5	72.2	80.0	68.4	85.7	80.0
Diagnostic	86.1	-	-	89.3	83.8	79.3	82.2	82.5	86.2	84.4	94.6
accuracy (%)											
LR+	4.14	-	-	6.83	5.08	2.67	3.20	4.25	3.03	5.83	4.89
LR-	0.08	-	-	0.00	0.15	0.00	0.15	0.19	0.06	0.19	0.03

Supplementary Table 13 | Patients >75 years and their assignment to pretest probability categories

Typical angina	Participants	Pretest	probability	v categories										
	Overall	0 to <10%	10 to <20%	20 to < 30%	30 to <40%	40 to <50%	50 to <60%	60 to <70%	70 to <80%	80 to <90%	90 to 100%			
Ν	1967	0	0	4	43	137	247	306	464	698	68			
ТР	989	-	-	1	9	39	89	108	278	420	45			
TN	547	-	-	3	23	72	109	112	86	134	8			
FP	116	-	-	0	3	5	18	19	31	38	2			
FN	62	-	-	0	1	4	8	13	14	21	1			
NDX	253	-	-	0	7	17	23	54	55	85	12			
NDX rate (%)	12.9	-	-	0.0	16.3	12.4	9.3	17.6	11.9	12.2	17.6			
PPV (%)	89.5	-	-	100.0	75.0	88.6	83.2	85.0	90.0	91.7	95.7			
NPV (%)	89.8	-	-	100.0	95.8	94.7	93.2	89.6	86.0	86.5	88.9			
Sensitivity (%)	94.1	-	-	100.0	90.0	90.7	91.8	89.3	95.2	95.2	97.8			
Specificity (%)	82.5	-	-	100.0	88.5	93.5	85.8	85.5	73.5	77.9	80.0			
Diagnostic	89.6	-	-	100.0	88.9	92.5	88.4	87.3	89.0	90.4	94.6			
accuracy (%)														
LR+	5.38	-	-	n/a*	7.80	13.97	6.47	6.15	3.59	4.31	4.89			
LR-	0.07	-	-	0.00	0.11	0.10	0.10	0.13	0.07	0.06	0.03			

Supplementary Table 14 | Patients with typical angina and their assignment to pretest probability categories

Atypical angina	Participants	Pretest p	retest probability categories								
	Overall	0 to <10%	10 to <20%	20 to < 30%	30 to <40%	40 to <50%	50 to <60%	60 to <70%	70 to <80%	80 to <90%	90 to 100%
Ν	1592	1	138	269	235	280	339	260	70	0	0
ТР	579	0	23	53	73	110	142	140	38	-	-
TN	691	1	86	150	120	108	136	73	17	-	-
FP	136	0	8	29	19	32	22	19	7	-	-
FN	27	0	2	5	2	4	4	7	3	-	-
NDX	159	0	19	32	21	26	35	21	5	-	-
NDX rate (%)	10.0	0.0	13.8	11.9	8.9	9.3	10.3	8.1	7.1	-	-
PPV (%)	81.0	n/a*	74.2	64.6	79.3	77.5	86.6	88.1	84.4	-	-
NPV (%)	96.2	100.0	97.7	96.8	98.4	96.4	97.1	91.3	85.0	-	-
Sensitivity (%)	95.5	n/a*	92.0	91.4	97.3	96.5	97.3	95.2	92.7	-	-
Specificity (%)	83.6	100.0	91.5	83.8	86.3	77.1	86.1	79.3	70.8	-	-
Diagnostic	88.6	100.0	91.6	85.7	90.2	85.8	91.4	89.1	84.6	-	-
accuracy (%)											
LR+	5.81	n/a*	10.81	5.64	7.12	4.22	6.99	4.61	3.18	-	-
LR-	0.05	n/a*	0.09	0.10	0.03	0.05	0.03	0.06	0.10	-	-

Supplementary Table 15 | Patients with atypical angina and their assignment to pretest probability categories

Non-anginal chest discomfort	Participants	Pretest	Pretest probability categories								
	Overall	0 to <10%	10 to <20%	20 to < 30%	30 to <40%	40 to <50%	50 to <60%	60 to <70%	70 to <80%	80 to <90%	90 to 100%
Ν	796	38	162	157	188	158	80	12	1	0	0
ТР	294	6	37	64	72	73	35	6	1	-	-
TN	347	19	87	71	83	58	27	2	0	-	-
FP	55	4	16	11	9	10	4	1	0	-	-
FN	17	1	1	2	9	1	3	0	0	-	-
NDX	83	8	21	9	15	16	11	3	0	-	-
NDX rate (%)	10.4	21.1	13.0	5.7	8.0	10.1	13.8	25.0	0.0	-	-
PPV (%)	84.2	60.0	69.8	85.3	88.9	88.0	89.7	85.7	100.0	-	-
NPV (%)	95.3	95.0	98.9	97.3	90.2	98.3	90.0	100.0	n/a*	-	-
Sensitivity (%)	94.5	85.7	97.4	97.0	88.9	98.6	92.1	100.0	100.0	-	-
Specificity (%)	86.3	82.6	84.5	86.6	90.2	85.3	87.1	66.7	n/a*	-	-
Diagnostic	89.9	83.3	87.9	91.2	89.6	92.3	89.9	88.9	100.0	-	-
accuracy (%)											
LR+	6.91	4.93	6.27	7.23	9.09	6.71	7.14	3.00	n/a*	-	-
LR-	0.06	0.17	0.03	0.03	0.12	0.02	0.09	0.00	n/a*	-	-

Supplementary Table 16 | Patients with non-anginal chest discomfort and their assignment to pretest probability categories

Other	Partici	Prete	Pretest probability categories								
discomfo	pants										
rt											
	Overall	0 to	10 to	20 to	30 to	40 to	50 to	60 to	70 to	80 to	90 to
		<10	<20	<	<40	<50	<60	<70	<80	<90	100
		%	%	30%	%	%	%	%	%	%	%
Ν	977	47	230	171	261	170	86	12	0	0	0
ТР	389	8	60	58	118	99	44	2	-	-	-
TN	446	32	140	88	108	49	22	7	-	-	-
FP	68	2	12	13	18	12	11	0	-	-	-
FN	15	0	0	3	6	2	2	2	-	-	-
NDX	59	5	18	9	11	8	7	1	-	-	-
NDX	6,0	10,6	7,8	5,3	4,2	4,7	8,1	8,3	-	-	-
rate (%)											
PPV (%)	85.1	80.0	83.3	81.7	86.8	89.2	80.0	100. 0	-	-	-
NPV (%)	96.7	100. 0	100. 0	96.7	94.7	96.1	91.7	77.8	-	-	-
Sensitivit	96.3	100.	100.	95.1	95.2	98.0	95.7	50.0	-	-	-
y (%)		0	0								
Specificit	86.8	94.1	92.1	87.1	85.7	80.3	66.7	100.	-	-	-
у (%)								0			
Diagnost	91.0	95.2	94.3	90.1	90.4	91.4	83.5	81.8	-	-	-
1C											
(%) I D +	7 20	17.0	126	7 20	6.66	4.09	2.07	n / 0*			
LNT	1.20	0	12.0 7	7.39	0.00	4.70	2.0/	11/ a	-	-	-
LR-	0.04	0.00	0.00	0.06	0.06	0.02	0.07	0.50	_	_	_

Supplementary Table 17 | Patients with other chest discomfort and their assignment to pretest probability categories

* n/a = not applicable (division by 0)Supplementary table19 | References of included studies in this analysis

1. Alkadhi H, Scheffel H, Desbiolles L, et al. Dual-source computed tomography coronary angiography: influence of obesity, calcium load, and heart rate on diagnostic accuracy. *European heart journal* 2008; **29**(6): 766-76.

2. Alkadhi H, Stolzmann P, Desbiolles L, et al. Low-dose, 128-slice, dual-source CT coronary angiography: accuracy and radiation dose of the high-pitch and the step-and-shoot mode. *Heart* 2010; **96**(12): 933-8.

3. Andreini D, Pontone G, Bartorelli AL, et al. Comparison of the diagnostic performance of 64-slice computed tomography coronary angiography in diabetic and non-diabetic patients with suspected coronary artery disease. *Cardiovascular diabetology* 2010; **9**: 80.

4. Andreini D, Pontone G, Bartorelli AL, et al. Sixty-four-slice multidetector computed tomography: an accurate imaging modality for the evaluation of coronary arteries in dilated cardiomyopathy of unknown etiology. *Circulation Cardiovascular imaging* 2009; **2**(3): 199-205.

5. Andreini D, Pontone G, Pepi M, et al. Diagnostic accuracy of multidetector computed tomography coronary angiography in patients with dilated cardiomyopathy. *Journal of the American*

College of Cardiology 2007; 49(20): 2044-50.

6. Arnoldi E, Ramos-Duran I, Abro JA, et al. [Coronary CT angiography using prospective ECG triggering: high diagnostic accuracy with low radiation dose]. *Der Radiologe* 2010; **50**(6): 500-6.

7. Bettencourt N, Rocha J, Carvalho M, et al. Multislice computed tomography in the exclusion of coronary artery disease in patients with presurgical valve disease. *Circulation Cardiovascular imaging* 2009; **2**(4): 306-13.

8. Bonmassari R, Muraglia S, Centonze M, Coser D, Stoppa G, Disertori M. Noninvasive detection of coronary artery stenosis with 16-slice spiral computed tomography in a population at low to moderate risk for coronary artery disease. *Journal of cardiovascular medicine* 2006; **7**(11): 817-25.

9. Chen CC, Chen CC, Hsieh IC, et al. The effect of calcium score on the diagnostic accuracy of coronary computed tomography angiography. *The international journal of cardiovascular imaging* 2011; **27 Suppl 1**: 37-42.

10. Chow BJ, Dennie C, Hoffmann U, et al. Comparison of computed tomographic angiography versus rubidium-82 positron emission tomography for the detection of patients with anatomical coronary artery disease. *The Canadian journal of cardiology* 2007; **23**(10): 801-7.

11. Dewey M, Teige F, Schnapauff D, et al. Noninvasive detection of coronary artery stenoses with multislice computed tomography or magnetic resonance imaging. *Annals of internal medicine* 2006; **145**(6): 407-15.

12. Dewey M, Zimmermann E, Deissenrieder F, et al. Noninvasive coronary angiography by 320-row computed tomography with lower radiation exposure and maintained diagnostic accuracy: comparison of results with cardiac catheterization in a head-to-head pilot investigation. *Circulation* 2009; **120**(10): 867-75.

13. Diederichsen AC, Petersen H, Jensen LO, et al. Diagnostic value of cardiac 64-slice computed tomography: importance of coronary calcium. *Scandinavian cardiovascular journal : SCJ* 2009; **43**(5): 337-44.

14. Garcia MJ, Lessick J, Hoffmann MH, Investigators CS. Accuracy of 16-row multidetector computed tomography for the assessment of coronary artery stenosis. *Jama* 2006; **296**(4): 403-11.

15. Ghostine S, Caussin C, Daoud B, et al. Non-invasive detection of coronary artery disease in patients with left bundle branch block using 64-slice computed tomography. *Journal of the American College of Cardiology* 2006; **48**(10): 1929-34.

16. Ghostine S, Caussin C, Habis M, et al. Non-invasive diagnosis of ischaemic heart failure using 64-slice computed tomography. *European heart journal* 2008; **29**(17): 2133-40.

17. Gueret P, Deux JF, Bonello L, et al. Diagnostic performance of computed tomography coronary angiography (from the Prospective National Multicenter Multivendor EVASCAN Study). *The American journal of cardiology* 2013; **111**(4): 471-8.

18. Halon DA, Gaspar T, Adawi S, et al. Uses and limitations of 40 slice multi-detector row spiral computed tomography for diagnosing coronary lesions in unselected patients referred for routine invasive coronary angiography. *Cardiology* 2007; **108**(3): 200-9.

19. Halvorsen BA, Rodevand O, Hagen G, Herud E, Mielczarek W, Molstad P. [Angiography with 64-channel CT upon suspicion of stable coronary disease]. *Tidsskrift for den Norske laegeforening : tidsskrift for praktisk medicin, ny raekke* 2008; **128**(19): 2172-6.

20. Hamdan A, Asbach P, Wellnhofer E, et al. A prospective study for comparison of MR and CT imaging for detection of coronary artery stenosis. *JACC Cardiovascular imaging* 2011; **4**(1): 50-61.

21. Hausleiter J, Meyer T, Hadamitzky M, et al. Non-invasive coronary computed tomographic angiography for patients with suspected coronary artery disease: the Coronary Angiography by Computed Tomography with the Use of a Submillimeter resolution (CACTUS) trial. *European heart journal* 2007; **28**(24): 3034-41.

22. Herzog BA, Husmann L, Burkhard N, et al. Accuracy of low-dose computed

tomography coronary angiography using prospective electrocardiogram-triggering: first clinical experience. *European heart journal* 2008; **29**(24): 3037-42.

23. Herzog BA, Wyss CA, Husmann L, et al. First head-to-head comparison of effective radiation dose from low-dose 64-slice CT with prospective ECG-triggering versus invasive coronary angiography. *Heart* 2009; **95**(20): 1656-61.

24. Herzog C, Nguyen SA, Savino G, et al. Does two-segment image reconstruction at 64section CT coronary angiography improve image quality and diagnostic accuracy? *Radiology* 2007; **244**(1): 121-9.

25. Herzog C, Zwerner PL, Doll JR, et al. Significant coronary artery stenosis: comparison on per-patient and per-vessel or per-segment basis at 64-section CT angiography. *Radiology* 2007; **244**(1): 112-20.

26. Husmann L, Herzog BA, Burger IA, et al. Usefulness of additional coronary calcium scoring in low-dose CT coronary angiography with prospective ECG-triggering impact on total effective radiation dose and diagnostic accuracy. *Academic radiology* 2010; **17**(2): 201-6.

27. Jakamy R, Barthelemy O, Le Feuvre C, et al. Accuracy of multislice computed tomography in the preoperative assessment of coronary disease in patients scheduled for heart valve surgery. *Archives of cardiovascular diseases* 2012; **105**(8-9): 424-31.

28. Jenkins SM, Johnston N, Hawkins NM, et al. Limited clinical utility of CT coronary angiography in a district hospital setting. *QJM : monthly journal of the Association of Physicians* 2011; **104**(1): 49-57.

29. Kajander S, Joutsiniemi E, Saraste M, et al. Cardiac positron emission tomography/computed tomography imaging accurately detects anatomically and functionally significant coronary artery disease. *Circulation* 2010; **122**(6): 603-13.

30. Kefer J, Coche E, Legros G, et al. Head-to-head comparison of three-dimensional navigator-gated magnetic resonance imaging and 16-slice computed tomography to detect coronary artery stenosis in patients. *Journal of the American College of Cardiology* 2005; **46**(1): 92-100.

31. Laissy JP, Messika-Zeitoun D, Serfaty JM, et al. Comprehensive evaluation of preoperative patients with aortic valve stenosis: usefulness of cardiac multidetector computed tomography. *Heart* 2007; **93**(9): 1121-5.

32. Langer C, Peterschroder A, Franzke K, et al. Noninvasive coronary angiography focusing on calcification: multislice computed tomography compared with magnetic resonance imaging. *Journal of computer assisted tomography* 2009; **33**(2): 179-85.

33. Leschka S, Alkadhi H, Plass A, et al. Accuracy of MSCT coronary angiography with 64slice technology: first experience. *European heart journal* 2005; **26**(15): 1482-7.

34. Leschka S, Scheffel H, Desbiolles L, et al. Combining dual-source computed tomography coronary angiography and calcium scoring: added value for the assessment of coronary artery disease. *Heart* 2008; **94**(9): 1154-61.

35. Leschka S, Scheffel H, Husmann L, et al. Effect of decrease in heart rate variability on the diagnostic accuracy of 64-MDCT coronary angiography. *AJR American journal of roentgenology* 2008; **190**(6): 1583-90.

36. Martuscelli E, Romagnoli A, D'Eliseo A, et al. Accuracy of thin-slice computed tomography in the detection of coronary stenoses. *European heart journal* 2004; 25(12): 1043-8.
37. Meijboom WB, Meijs MF, Schuijf JD, et al. Diagnostic accuracy of 64-slice computed tomography coronary angiography: a prospective, multicenter, multivendor study. *Journal of the American College of Cardiology* 2008; 52(25): 2135-44.

38. Meijboom WB, Mollet NR, Van Mieghem CA, et al. Pre-operative computed tomography coronary angiography to detect significant coronary artery disease in patients referred for cardiac valve surgery. *Journal of the American College of Cardiology* 2006; **48**(8): 1658-65.
39. Meijboom WB, Mollet NR, Van Mieghem CA, et al. 64-Slice CT coronary angiography in patients with non-ST elevation acute coronary syndrome. *Heart* 2007; **93**(11): 1386-92.
40. Meijboom WB, Weustink AC, Pugliese F, et al. Comparison of diagnostic accuracy of 64-slice computed tomography coronary angiography in women versus men with angina

pectoris. American Journal of Cardiology 2007; 100(10): 1532-7.

41. Mendoza V, Llerena L, Llerena L, Rodríguez L, Olivares E, Linares R. Ischemic heart disease diagnosed by 64 slice computed tomography coronary angiography. *The Internet Journal of Cardiology* 2009; **7**(1).

42. Mollet NR, Cademartiri F, van Mieghem CA, et al. High-resolution spiral computed tomography coronary angiography in patients referred for diagnostic conventional coronary angiography. *Circulation* 2005; **112**(15): 2318-23.

43. Nikolaou K, Knez A, Rist C, et al. Accuracy of 64-MDCT in the diagnosis of ischemic heart disease. *AJR American journal of roentgenology* 2006; **187**(1): 111-7.

44. Nikolaou K, Rist C, Wintersperger BJ, et al. Clinical value of MDCT in the diagnosis of coronary artery disease in patients with a low pretest likelihood of significant disease. *AJR American journal of roentgenology* 2006; **186**(6): 1659-68.

45. Ovrehus KA, Jensen JK, Mickley HF, et al. Comparison of usefulness of exercise testing versus coronary computed tomographic angiography for evaluation of patients suspected of having coronary artery disease. *The American journal of cardiology* 2010; **105**(6): 773-9.

46. Ovrehus KA, Munkholm H, Bottcher M, Botker HE, Norgaard BL. Coronary computed tomographic angiography in patients suspected of coronary artery disease: impact of observer experience on diagnostic performance and interobserver reproducibility. *Journal of cardiovascular computed tomography* 2010; **4**(3): 186-94.

47. Pontone G, Andreini D, Ballerini G, Nobili E, Pepi M. Diagnostic work-up of unselected patients with suspected coronary artery disease: complementary role of multidetector computed tomography, symptoms and electrocardiogram stress test. *Coronary artery disease* 2007; **18**(4): 265-74.

48. Pontone G, Andreini D, Bartorelli AL, et al. Feasibility and accuracy of a comprehensive multidetector computed tomography acquisition for patients referred for balloon-expandable transcatheter aortic valve implantation. *American heart journal* 2011; **161**(6): 1106-13.

49. Pontone G, Andreini D, Bartorelli AL, et al. Diagnostic accuracy of coronary computed tomography angiography: a comparison between prospective and retrospective

electrocardiogram triggering. *Journal of the American College of Cardiology* 2009; **54**(4): 346-55. 50. Pontone G, Andreini D, Quaglia C, Ballerini G, Nobili E, Pepi M. Accuracy of

multidetector spiral computed tomography in detecting significant coronary stenosis in patient populations with differing pre-test probabilities of disease. *Clinical radiology* 2007; **62**(10): 978-85. 51. Pouleur AC, le Polain de Waroux JB, Kefer J, et al. Usefulness of 40-slice multidetector row computed tomography to detect coronary disease in patients prior to cardiac valve surgery.

European radiology 2007; 17(12): 3199-207.

52. Pouleur AC, le Polain de Waroux JB, Kefer J, Pasquet A, Vanoverschelde JL, Gerber BL. Direct comparison of whole-heart navigator-gated magnetic resonance coronary angiography and 40- and 64-slice multidetector row computed tomography to detect the coronary artery stenosis in patients scheduled for conventional coronary angiography. *Circulation Cardiovascular imaging* 2008; **1**(2): 114-21.

53. Pugliese F, Mollet NR, Runza G, et al. Diagnostic accuracy of non-invasive 64-slice CT coronary angiography in patients with stable angina pectoris. *European radiology* 2006; **16**(3): 575-82.

54. Rixe J, Rolf A, Conradi G, et al. Detection of relevant coronary artery disease using dualsource computed tomography in a high probability patient series: comparison with invasive angiography. *Circulation journal : official journal of the Japanese Circulation Society* 2009; **73**(2): 316-22.

55. Rochitte CE, George RT, Chen MY, et al. Computed tomography angiography and perfusion to assess coronary artery stenosis causing perfusion defects by single photon emission computed tomography: the CORE320 study. *European heart journal* 2014; **35**(17): 1120-30.

56. Sato A, Nozato T, Hikita H, et al. Incremental value of combining 64-slice computed tomography angiography with stress nuclear myocardial perfusion imaging to improve noninvasive detection of coronary artery disease. *Journal of nuclear cardiology : official publication of the*

American Society of Nuclear Cardiology 2010; **17**(1): 19-26.

57. Scheffel H, Alkadhi H, Plass A, et al. Accuracy of dual-source CT coronary angiography: First experience in a high pre-test probability population without heart rate control. *European radiology* 2006; **16**(12): 2739-47.

58. Shabestari AA, Abdi S, Akhlaghpoor S, et al. Diagnostic performance of 64-channel multislice computed tomography in assessment of significant coronary artery disease in symptomatic subjects. *The American journal of cardiology* 2007; **99**(12): 1656-61.

59. Sun K, Han RJ, Cui LF, et al. Feasibility and Diagnostic Accuracy for Assessment of Coronary Artery Stenosis of Prospectively Electrocardiogram-gated High-pitch Spiral Acquisition Mode Dual-source CT Coronary Angiography in Patients with Relatively Higher Heart Rates: in Comparison with Catheter Coronary Angiography. *Chinese medical sciences journal = Chung-kuo i hsueh k'o hsueh tsa chih* 2013; **27**(4): 213-9.

60. Ugolini P, Pressacco J, Lesperance J, et al. Evaluation of coronary atheroma by 64-slice multidetector computed tomography: Comparison with intravascular ultrasound and angiography. *The Canadian journal of cardiology* 2009; **25**(11): 641-7.

61. Watkins MW, Hesse B, Green CE, et al. Detection of coronary artery stenosis using 40channel computed tomography with multi-segment reconstruction. *The American journal of cardiology* 2007; **99**(2): 175-81.

62. Xu L, Yang L, Fan Z, Yu W, Lv B, Zhang Z. Diagnostic performance of 320-detector CT coronary angiography in patients with atrial fibrillation: preliminary results. *European radiology* 2011; **21**(5): 936-43.

63. Yang L, Zhang Z, Fan Z, et al. 64-MDCT coronary angiography of patients with atrial fibrillation: influence of heart rate on image quality and efficacy in evaluation of coronary artery disease. *AJR American journal of roentgenology* 2009; **193**(3): 795-801.

64. Unpublished study #1.

65. Unpublished study #2.

Supplementary table 18

Studies without co	re labs	Studies with core	Studies with core labs					
Sensitivity	Specificity	Sensitivity (95% CI)	Specificity					
95.2	80.8	73.9	61.7					
(92.5 to 96.9)	(76.7 to 84.3)	(39.4 to 92.5)	(40.9 to 78.9)					

Supplementary figure 1 | Proportion of studies with low, high or unclear risk of bias in QUADAS-2

The X-axis displays the proportional rate of studies (in %) bearing a low (blue), high (red) or unclear (green) risk of bias regarding the items displayed on the Y-axis. In general, the risk of bias was low, especially regarding the both diagnostic tests, while it was highest in patient selection.

Supplementary figure 2 | Proportion of studies with low, high or unclear concerns regarding applicability in QUADAS-2

The X-axis displays the proportional rate of studies (in %) bearing a low (blue), high (red) or unclear (green) risk of bias regarding the items displayed on the Y-axis. There are only low concerns regarding the applicability of studies included in the analysis.

Supplementary figure 3 | Clinical diagnostic performance of CTA as a function of pretest probability excluding non-diagnostic examinations

The X-axis represents the predicted clinical pretest probability and the Y-axis shows the positive predictive value (PV) and 1-Negative PV with their 95% CI based on the generalised linear mixed model excluding non-diagnostic CTA examinations. Disease probabilities were predicted by averaging over the random-effects distribution.

Supplementary figure 4 | Heart rate during CTA in female and male patients

Median heart rate was significantly higher in females during CTA (63 beats per minute [bpm], IQR: 57-70) compared with males (60 bpm, IQR: 54-66, MWM test: W = 3504600, p<0.001). Data on heart rate were missing for 62 of 1859 females and 151 of 3473 males.

Supplementary figure 5 | Coronary calcium score in patients with up to 75 years of age vs older patients

Median calcium score (square root transformed) was significantly higher in patients above 75 years of age (17.916, IQR: 8.367-32.348) compared with younger patients (7.483, IQR: 0.000-13.74, p<0.001). Data on calcium score were missing for 311 of 552 patients above 75 years of age and 2567 of 4780 younger patients. The boxplot shows square root-transformed data of coronary calcium scores because of skewness of data.

	Square root transformed data							
Groups	Min	1 st Qu.	Median	Mean	3 rd Qu.	Max	NA's	
Age ≤75y	0.000	0.000	7.483	11.928	13.574	163.677	2567	
Age >75y	0.000	8.367	17.916	21.916	32.348	146.595	311	

Supplementary figure 6 | Receiver operating characteristic curves for CTA by subgroup excluding non-diagnostic CT examinationas

Subgroup comparisons in the three panels are provided for all patients after exclusion of nondiagnostic CT examinations. In the upper left panel diagnostic performance results are shown for all patients in comparison to results obtained after exclusion of non-diagnostic (NDX) test results like also demonstrated in the manuscript. Considering all patients resulted in lower performance, which is a more accurate prediction of the real-world performance to be expected. In contrast to the manuscript subgroup comparisons in the other three panels here are provided for patients after exclusion of nondiagnostic CT examinations: diagnostic performance is now similar in females and males. The other comparisons revealed similar results as when including non-diagnostic CT examinations: CTA's accuracy was lower in patients older than 75, and angina pectoris types were not significantly associated with performance. Like in the manuscript curves were generated using a generalised linear mixed model and predictions based on these models. Computations were performed with the statistical package R and the packages lme4 and pROC. AUC were constructed using the observed data and model-based predictions, which also included the random effects reflecting variability between studies and unobserved influential variables.

Supplementary figure 6-7 | Publication bias analysis using Funnel plot

This funnel plot shows the arc sinus difference of sensitivity and specificity *vs.* the corresponding standard error. The corresponding statistical test was performed using the method proposed by Rücker with a rank test: Kendal's tau = -661 s.e. = 584.973, z= -1.13, p=0.2585. There was no sign of publication bias.

Supplementary figure <u>87</u> | Summary receiver operating characteristic curves for CTA studies with and

without individual participant data available

Curves are shown for studies with individual participant data (IPD) available in comparison to studies for which no IPD were available. Curves were calculated using aggregated data methodology (summary receiver operating characteristic curves) both for panels and after excluding non-diagnostic test results, which were not consistently available in publications of studies which did not provide individual participant data. Among the 76 studies which provided individual participant data, aggregate data were not available for seven studies, two of them unpublished, leaving 69 for the analysis of studies with IPD, while 76 of the 78 studies which did not provide IPD had aggregate data available (see figure 1 of main paper). There was no significant difference in diagnostic performance between these two groups of diagnostic accuracy studies (P=0.73). Further details are shown in table 4 of main paper.

Supplementary PRISMA item 1 | PICOS

Patients:	Patients with stable chest discomfort and a clinical indication to undergo
	invasive coronary angiography
Intervention:	Coronary computed tomography angiography
Comparison/Control:	Invasive coronary angiography
Outcomes:	Diagnostic accuracy as defined by positive and negative predictive values
	as a function of pretest probability and sensitivity and specificity
Setting:	Individual participant meta-analysis of diagnostic accuracy studies
-	comparing coronary computed tomography angiography with invasive
	coronary as the reference standard.

Supplementary PRISMA items 2 | Search strategy for searching PubMed via Medline

(("tomography, x-ray computed"[MeSH Terms])OR ("computed tomography"[Text Words])OR ("CT"[Text Words])OR ("multidetector"[Text Words])OR ("multi-detector"[Text Words])OR ("multi detector"[Text Words])OR ("MDCT"[Text Words])OR ("multislice"[Text Words])OR ("multi-slice"[Text Words])OR ("MSCT"[Text Words])OR ("dual-source"[Text Words])OR ("dual source"[Text Words]) OR ("DSCT"[Text Words])OR ("multi-row"[Text Words])OR ("multi row"[Text Words]))AND(("coronary angiography"[Mesh Terms])OR ("coronary angiography"[Text Words]))AND(("coronary disease"[Mesh Terms])OR ("coronary artery disease"[Mesh Terms])OR ("coronary stenosis"[Mesh Terms])OR ("coronary disease"[Text Words])OR ("coronary artery disease"[Text Words])OR ("coronary stenosis"[Text Words])OR ("CAD"[Text Words])OR ("coronary heart disease"[Text Words])OR ("CHD"[Text Words]))Further details have been reported in the study protocol.

Supplementary PRISMA items 3 | Data items and IPD collection file

Data items were predefined and collected using an IPD collection in a Microsoft Excel format that was sent to all corresponding authors of identified eligible diagnostic accuracy studies. Data items consisted of all data necessary to estimate patients' pretest probability (age, gender, angina pectoris classification), 3x2 cross tabulations (test positive, negative or non-diagnostic for both, coronary computed tomography angiography and invasive coronary angiography), details of each CT scan (number of detector rows, heart rate during scan) and patient information on cardiac medical history (stents or bypasses received, risk factors, stress tests performed). Please find the IPD collection file for all collected data items in Appendix C.

Supplementary PRISMA items 4 | Data revision process

Data harmonisation was performed by two independent readers who analysed data and searched for non-plausible data, including range checks, wrong entries, non-logical values and date checks etc. The two readers also recalculated 2x2 and/or 3x2 cross tabulations and compared these with the published data if possible and if available, non-diagnostic examinations were also recorded. After consensus the data management team solved contradictions. If not possible, new Excel files were created for the missing data and again sent to the corresponding author with comments on implausible data and the request to check. For any remaining implausibilities, further reminder mails were sent. Most revisions had to be done on angina type classification (dual or missing entries, rare cases of other classification), missing values for heart rate during CT, 3x2 cross tabulations (due to another definition of non-diagnostic examinations), missing values of CT characteristics, and typing errors.