

Figure S1. *PTEN* deletion/mutation induces glioma cell mesenchymal differentiation and promotes macrophage infiltration in GBM, related to Figure 1.

(A) The correlation analysis between stroma score (left panel) or immune score (right panel) and patient survival in TCGA GBM database. Pearson's correlation test.

(B) The stroma score (left panel) and immune score (right panel) in classical (C), mesenchymal(M) and proneural (P) patients in TCGA GBM database.

(C) GSEA analysis of mesenchymal gene signatures with alternatively expressed genes in *PTEN*-KO SF763 compared to *PTEN*-WT SF763 cells. NES, normalized enrichment score; FDR, false discovery rate.

(D) mRNA levels of *CTGF*, *FN1*, *VIM*, *CD44* and *OSMR* in *PTEN*-KO SF763 cells and *PTEN*-WT SF763 cells. n=3 biological replicates.

(E) Immunoblots for PTEN and phospho-Akt (P-AKT, Ser473) in lysates from SF763 *PTEN*-WT (#1, 3, 5) and CRISPR KO clones (#4, 6, 7, 8, 9).

(F) Representative transwell analysis of THP-1 macrophages following stimulation stimulated with conditioned media from *PTEN*-WT (#1 and #5) and *PTEN*-KO SF763 (#4 and #6) cells. Scale bar, 100 μ m.

(G) Immunoblots for PTEN and P-AKT (Ser473) in lysates from LN229 *PTEN*-WT (#1 and #3) and CRISPR KO clones (#5).

(H) Representative transwell analysis of THP-1 macrophages upon stimulation with conditioned media from *PTEN*-WT (#3) and *PTEN*-KO (#5) LN229 cells. Scale bar, 100 μm.

(I, J) Representative images of CD206 (I) and CD68 (J) immunofluorescence staining in tumors established from U87 cells with or without *PTEN* overexpression (OE). Scale bar, 100 μ m.

(K) Left panels, representative images showing the low, medium and high expression levels of P-AKT and Mac-2 in human GBM TMA (n=35). Scale bar, 100 μ m. Right panel, correlation analysis between P-AKT and Mac-2 expression in TMA. Pearson's correlation test.

Data from multiple replicates are presented as mean. Error bars indicate mean ± SD. Student's t test.

Table S1. Stroma and immune score is significantly correlated with the alteration of PTEN-PI3K pathway, but not other pathways in TCGA GBM patients, related to Figure 1.

Stromal or immune score	Altered PTEN-PI3K pathway vs WT	Altered EGFR/PDGFRA- PI3K pathway vs WT	Altered NF1- RAS-BRAF pathway vs WT	Altered RB1 pathway vs WT	Altered P53 pathway vs WT
Stromal score	Increased,	Decreased,	No change,	No change,	No change,
	p=0.000193	p=0.016	p=0.106	p=0.111	p=0.435
Immune score	Increased,	No change,	No change,	Increased,	No change,
	p=0.005	p=0.145	p=0.441	p=0.037	p=0.435

Table S2. *PTEN*, but not *TP53* and *EGFR*, genetic alteration promotes macrophage infiltration, related to Figure 1.

Gene sets	WT vs PTFN-	PTEN-KO vs WT	TP53 WT vs	FGFR WT vs
	deficient natients	SE763 cells	mutation/deletion	mutation/amplification
			natients	natients
Go regulation of	NES=-2 164	NES=2 192		NES=-0.849 [·]
macronhade	EDR<0.25	EDR<0.25	FDR>0.25	EDR>0.25
chemotaxis	1 DIX 30.20	1 DIX \$0.20	1 DIV 0.23	1 DIV 0.20
Go macrophago	NES- 1 386	NES-2 112	NES-1 056	NES- 0.074.
chomotoxic	EDD<0.25	EDD<0.25	EDB>0.25	EDB>0.25
Maaranhaga			NES-1 61:	NES- 0.05:
wacrophage	IN/A	N/A	NES-1.01,	NES0.95,
gene set i	N1/A	N1/A	FDR>0.25	FDR>0.25
Macrophage	N/A	N/A	NES=1.19;	NES=1.35;
gene set 2			FDR>0.25	FDR>0.25
M1 macrophage	N/A	N/A	NES=1.51;	NES=-1.5;
			FDR>0.25	FDR>0.25
M2 macrophages	N/A	N/A	NES=1.25;	NES=0.99;
			FDR>0.25	FDR>0.25
DC	N/A	N/A	NES=1.24;	NES=-0.84;
			FDR>0.25	FDR>0.25
Monocytes	N/A	N/A	NES=0.73;	NES=1.52;
			FDR>0.25	FDR>0.25
Neutrophils	N/A	N/A	NES=0.82:	NES=0.85:
			FDR>0.25	FDR>0.25
Naive T Cell	N/A	N/A	NES=-1 70	NES=0.88
			EDR<0.25	EDB>0.25
Microalia	Ν/Δ	Ν/Δ	NES=0.78	NES=1 19
Wheregha		11/75	EDR>0.25	EDR>0.25
	Ν/Λ	ΝΙ/Δ	NES-0.60:	NES-1 10:
1150	IN/75	IN/75	EDR>0.25	EDB>0.25
Nue enthreetee	NI/A	NI/A	NES-0.77:	NES-0.02
Nuc. erythrocytes	N/A	IN/A	NES-0.77,	NES-0.92,
	N1/A	N1/A	FDR>0.23	FDR>0.25
Eosinophiis	N/A	N/A	NES=0.80;	NES=-0.82;
T 000 1	N1/A	N1/A	FDR>0.25	FDR>0.25
I CD8 naive	N/A	N/A	NES=0.51;	NES=-0.84;
			FDR>0.25	FDR>0.25
T CD8 activated	N/A	N/A	NES=1.68;	NES=1.28;
			FDR>0.25	FDR>0.25
B Cell	N/A	N/A	NES=0.54;	NES=0.61;
			FDR>0.25	FDR>0.25
Granulocytes	N/A	N/A	NES=0.54;	NES=1.15;
			FDR>0.25	FDR>0.25
iDC	N/A	N/A	NES=0.97;	NES=-0.9;
			FDR>0.25	FDR>0.25
T CD4 naive	N/A	N/A	NES=0.83;	NES=-0.75;
			FDR>0.25	FDR>0.25
Mast cell	N/A	N/A	NES=1.31:	NES=0.79:
	·		FDR>0.25	FDR>0.25
NK cell	N/A	N/A	NES=0.67	NES=1 29
			FDR>0.25	FDR>0.25

Figure S2. *PTEN*-regulated LOX promotes macrophage migration, but has no effect on glioma cell proliferation and macrophage polarization, related to Figure 2.

(A) Immunoblots for LOX, CXCL5, FABP5 and SERPINE2 in lysates and conditioned media of *PTEN*-WT and *PTEN*-KO LN229 cells.

(B) Immunoblots (left panel) and RT-qPCR (right panel) for LOX in control and *PTEN*-OE U251 cells. n=3 biological replicates.

(C) Immunoblots for LOX in control and PTEN-OE GSC23 cells.

(D) SF763 *TP53* CRISPR KO cell line establishment and immunoblots of LOX in SF763 *TP53*-WT (#2 and #4) and SF763 *TP53*-KO (#1 and #3) cells (top 2 panels) and their respective conditioned media (bottom 2 panels).

(E) *EGFRvIII* overexpression (VIII OE) in LN229 cells, astrocytes or NSCs and immunoblots of LOX in control and VIII overexpressing cells.

(F) Immunoblots of LOX in *PTEN*-WT and *PTEN* CRISPR KO prostate (DU145) and breast (T-47D) cells and their conditioned media (bottom 2 panels).

(G) Representative macrophage transwell analysis when THP-1 cells were stimulated with recombinant LOX, MCP-1, CXCL5, FABP5 and SERPINE2 proteins (10 ng/ml). Scale bar, 100 μ m.

(H) Colony formation assay in SF763 and LN229 (*PTEN*-WT and *PTEN* CRIPSR KO) cells treated without or with the LOX inhibitor BAPN at indicated concentrations.

(I) Colony formation assay in SF763 *PTEN*-KO and U87 cells expressing shControl (shC) or *LOX* shRNA (sh*LOX*).

(J) Immunoblots for cleaved caspase 3 and Bcl-2 in U87 cells expressing shC or shLOX.

(K) Representative shRNA knockdown efficiency and THP-1 macrophage transwell analysis of migrated macrophages following stimulation with conditioned media from SF763 *PTEN*-KO cells expressing shC or sh*LOX*. Scale bar, 100 μm.

(L, M) GSEA analysis for two gene sets related macrophage polarization in *PTEN*-WT GBM patients compared with *PTEN*-deficient GBM patients in TCGA GBM database.

(N) RT-qPCR for indicated M2 genes and M1 genes in PMA-differentiated macrophages treated with or without CM from parental SF763 and *PTEN*-KO SF763 cells.

(O) Immunoblots for PPAR γ in PMA-differentiated macrophages treated with or without CM from parental SF763 and *PTEN*-KO SF763 cells.

(P) RT-qPCR for M2 genes in Raw264.7 macrophages treated with IL4 or LOX at indicated concentrations.

(Q) RT-qPCR for M1 genes in Raw264.7 macrophages treated with LPS or LOX at indicated concentrations.

Data from multiple replicates are presented as mean. Error bars indicate mean ± SD. ***p<0.001, Student's t test.

Table S3. A list of the secreted proteins differentially expressed by *PTEN*-KO SF763 cells relative to *PTEN*-WT SF763 cells (Fold change>2), related to Figure 2.

Gene Symbol	Fold Change (linear) (KO vs. WT)	ANOVA p- value (KO vs. WT)	FDR p- value (KO vs. WT)	Description	Chromosome
CXCL5	313.22	0.000141	0.116083	chemokine (C-X-C motif) ligand 5	chr4
SEMA3E	63.21	0.000339	0.136366	sema domain, immunoglobulin domain (Ig), short basic domain, secreted, (semaphorin) 3E	chr7
DAB2	41.52	0.000293	0.132902	Dab, mitogen-responsive phosphoprotein, homolog 2 (Drosophila)	chr5
LOX	37.71	0.000922	0.177276	lysyl oxidase	chr5
SERPINE2	25.16	0.005712	0.29061	serpin peptidase inhibitor, clade E (nexin, plasminogen activator inhibitor type 1), member 2	chr2
SERPINB2	19.24	0.05556	0.560525	serpin peptidase inhibitor, clade B (ovalbumin), member 2	chr18
SPP1	12.81	0.006714	0.308489	secreted phosphoprotein 1	chr4
FABP5	12.04	0.000047	0.088937	fatty acid binding protein 5 (psoriasis-associated)	chr8
VEGFC	9.67	0.004761	0.277937	vascular endothelial growth factor C	chr4
CTGF	7.94	0.014545	0.384372	connective tissue growth factor	chr6
TNC	7.39	0.007705	0.319189	tenascin C	chr9
CSF1	7.28	0.00454	0.27429	colony stimulating factor 1 (macrophage)	chr1
LCN2	5.9	0.009123	0.338539	lipocalin 2	chr9
GAL	4.57	0.007818	0.321112	galanin/GMAP prepropeptide	chr11
COL6A1	3.97	0.001605	0.206285	collagen, type VI, alpha 1	chr21
CCL5	3.43	0.028477	0.46741	chemokine (C-C motif) ligand 5	chr17
IGF2	2.6	0.047455	0.537892	insulin-like growth factor 2	chr11
IL6	2.55	0.054825	0.559328	interleukin 6	chr7
ADM	2.54	0.003047	0.245175	adrenomedullin	chr11
CKLF	2.37	0.000575	0.154231	chemokine-like factor; CKLF- CMTM1 readthrough	chr16

Table S4. Computational analysis demonstrates a key role of LOX for myeloid/leukocyte migration in TCGA GBM patients, related to Figure 2.

Top ten	Gene On	KEGG		
enriched	Cell Compartment	Biological	Molecular	Enrichment
pathways		Process	Function	Analysis
#1	Extracellular matrix	Leukocyte	Cytokine activity	Cytokine-cytokine
		migration		receptor
				interaction
#2	Proteinaceous	Cell chemotaxis	Cytokine receptor	TNF signaling
	extracellular matrix		binding	pathway
#3	Secretory granule	Leukocyte	G-protein coupled	Chemokine
		chemotaxis	receptor binding	signaling pathway
#4	Endoplasmic	Myeloid leukocyte	Glycosaminoglycan	AGE-RAGE
	reticulum lumen	migration	binding	signaling pathway
				in diabetic
				complications
#5	Extracellular matrix	Granulocyte	Sulfur compound	IL-17 signaling
	component	migration	binding	pathway
#6	Collagen trimer	Regulation of	Heparin binding	Complement and
		leukocyte		coagulation
		migration		cascades
#7	Vesicle lumen	Granulocyte	Chemokine	Amoebiasis
		chemotaxis	receptor binding	
#8	Cytoplasmic	Positive regulation	Chemokine activity	Rheumatoid
	membrane-bounded	of leukocyte		arthritis
	vesicle lumen	migration		
#9	Secretory granule	Neutrophil	Serine-type	Protein digestion
	lumen	migration	endopeptidase	and absorption
			activity	
#10	Complex of collagen	Neutrophil	CCR chemokine	Staphylococcus
	trimer	chemotaxis	receptor binding	aureus infection

H _{Control}

Figure S3. SRC/AKT-YAP1, but not NOTCH1, regulates LOX expression and macrophage migration in GBM, related to Figure 3.

(A) Heat map representation of the 17 most upregulated YAP1 signature genes in SF763 PTEN-

KO cells. Red signal indicates higher expression and blue signal denotes lower expression.

(B) RT-qPCR validation of key genes in *YAP1* signature in SF763 *PTEN*-WT and *PTEN* CRIPSR-KO cells. n=3 biological replicates. Error bars indicate mean ± SD.

(C) GSEA for NOTCH1 signature in PTEN-KO cells vs PTEN-WT SF763 cells.

(D) Immunoblots of LOX, YAP1, cleaved NOTCH1 in *PTEN*-WT and *PTEN*-KO SF763 cells treated with or without NOTCH1 inhibitor (NOTCH1i) LY3039478 (1 μM).

(E) Immunofluorescence for YAP1 in *PTEN*-WT and *PTEN*-KO SF763 cells treated with or without SRC inhibitor (SRCi) KX2-391 (50 nM) and AKT inhibitor (AKTi) MK2206 (2 μ M). Scale bar, 50 μ m.

(F) Immunoblots of LOX and YAP1 in U251 PTEN-null GBM cell lines expressing shC or sh YAP1.

(G) Representative transwell analysis of THP-1 macrophages following stimulation with conditioned media from U343 cells expressing shC or sh*YAP1*. Scale bar, 100 μ m.

(H) Representative transwell analysis of BMDMs following stimulation with conditioned media from SF763 *PTEN*-KO cells pretreated with verteporfin (1 μ M). Scale bar, 100 μ m.

Figure S4. LOX can be internalized into macrophages and promote macrophage migration through PYK2 pathway, related to Figure 4.

(A) Immunoblots of LOX in J714 macrophages incubated with recombinant LOX (100 ng/ml) for indicated time. The cell surface binding of LOX was removed by washing with acid buffer.

(B) Representative immunofluorescence for LOX in J714 macrophages incubated with or without recombinant LOX (100 ng/ml) for 1 hr. Scale bar, 10 μm.

(C, D) Immunoblots of LOX in Raw264.7 macrophages incubated with recombinant LOX (100 ng/ml) for 1 hr pretreated with or without the inhibitors of the caveola/lipid raft pathway (nystatin, C) or the clathrin-dependent pathway (chlorpromazine, CPZ, D) at indicated concentrations. The cell surface binding of LOX was removed by washing with acid buffer.

(E) Representative images for human phospho-kinase array in human THP-1 macrophages treated with or without LOX protein (150 ng/ml). Kinases with more than a 2-fold change are marked.

(F) Relative levels (fold change of phosphorylation levels) of indicated signals in human THP-1 macrophages treated with or without human LOX protein (150 ng/ml). The cut-off was set as 2. Error bars indicate SD.

(G) Immunoblots for Phospho-FAK and FAK in Raw264.7 macrophages treated with LOX at indicated concentrations and time points.

(H) Representative THP-1 macrophage transwell analysis (left panels) and quantification (right panel) of migrated macrophages when they stimulated with LOX (10 ng/ml) pretreated with or without catalase (Cat) at indicated concentrations. Scale bar, 100 μ m. n=3 biological replicates; Error bars indicate mean ± SD. **p<0.01, ***p<0.001, Student's t test.

(I) Representative transwell analysis of Raw264.7 macrophage following stimulation with LOX (10 ng/ml) pretreated with or without PF-00562271 (PF-271) at indicated concentrations. Scale bar, 100 μ m.

Figure S5. LOX Inhibition impairs *PTEN*-null GBM growth and progression, related to Figure 5.

(A) GSEA for YAP1 signature in P53DN-AKT-hNSCs comparing to P53DN-hNSCs.

(B) Heatmap of key gene expression of *YAP1* signature in P53DN-hNSCs and P53DN-AKT-hNSCs.

(C, D) LOX mRNA (C) and LOX protein expression (D) in P53DN-hNSCs and P53DN-AKT-hNSCs.

(E) Representative (left panels) and quantification (right panel) of *in vivo* bioluminescence-based images of SCID mice at day 17 post-orthotopic injection of U87 (5×10⁵ cells). The mice were treated with IgG or LOX antibodies (20 mg/kg body weight, once every 4 days) starting at 4 days post-orthotopic injection of U87 cells.

(F) Representative images of H&E staining (Scale bar, 1000 μ m) in tumors at 22 days postorthotopic injection of 005 GSCs (2×10⁴ cells). The mice were treated with IgG or LOX antibodies (20 mg/kg body weight, once every 4 days) starting at 4 days post-orthotopic injection of 005 GSC (n=5/group).

(G) IHC (left panel) and quantification (right panel) of macrophage marker Mac-2 in U87 tumors treated with IgG or LOX antibodies. Scale bar, 100 μ m. n=3 biological replicates.

(H) IHC staining (left panel) and quantification (right panel) of Mac-2 in 005 GSC tumors treated with IgG or LOX antibodies. Scale bar, 100 μm. n=3 biological replicates.

(I) Survival curves of SCID mice implanted with GSC23 (1×10⁵ cells). Mice were treated with or without LOX inhibitor BAPN (2 g/L in drinking water) starting at 7 days post-orthotopic injection of GSC23 (n=10/group).

(J) Survival curves of mice implanted with 005 GSCs (2×10^4 cells). Mice were treated with LOX inhibitor BAPN (2 g/L in drinking water), or clodronate liposomes (200 µl, once every 3 days) starting at 4 days post-orthotopic injection of 005 GSCs (n=5-10/group).

(**K**, **L**) *In vivo* bioluminescence-based images 11 days post-orthotopic injection of GL261 cells (5×10^4) . The C57BL/6 mice treated with LOX inhibitor BAPN (2 g/L in drinking water) starting at 4 days post-orthotopic injection of Gl261 cells. Representative mice (**K**) and quantification of tumor volume based on bioluminescence (**L**) are shown (n=6/group).

(M) Survival curves of C57BL/6 mice implanted with GL261 cells (5×10^4) . Mice were treated with or without LOX inhibitor BAPN (2 g/L in drinking water) starting at 4 days post-orthotopic injection of GL261 cells (n=5 per group).

(**N**, **O**) *In vivo* bioluminescence-based images 45 days post-orthotopic injection of *PTEN*-OE U87 cells (5×10^5). The SCID mice treated with LOX inhibitor BAPN (2 g/L in drinking water) starting at

4 days post-orthotopic injection of cells. Representative mice (**N**) and quantification of tumor volume based on bioluminescence (**O**) are shown (n=5/group) at 45 days post-orthotopic injection of cells.

(P) Survival curves of SCID mice implanted with *Inf4a/Arf^{/-}EGFRviii* NSCs (5×10⁴). Mice were treated with or without LOX inhibitor BAPN (2 g/L in drinking water) starting at 4 days postorthotopic injection of NSCs (n=5 per group).

Data from multiple replicates are presented as mean. Error bars indicate mean \pm SD. *p<0.05, **p<0.01, ***p<0.001, n.s., no significant difference, Student's t test. In (I), (J), (M) and (P), *p<0.05, **p<0.01, n.s., no significant difference, log-rank test.

Figure S6. LOX inhibition does not affect glioma cell proliferation and TAM-derived SPP1 promotes GBM progression and angiogenesis, related to Figure 6.

(A, B) IHC for Ki67 in 005 GSC mouse tumors treated with LOX antibodies (**A**), and in U87 tumors treated with LOX inhibitor BAPN (**B**). Scale bars, 50 μm.

(C) Quantification of relative Ki67 levels in 005 GSC mouse tumors treated with LOX antibodies and in U87 tumors treated with LOX inhibitor BAPN. n=3 biological replicates.

(D,E) The analysis of 16 common genes encoding secreted proteins from top 100 upregulated genes in glioma-associated BMDMs comparing to monocytes in two GBM mouse models (Bowman et al., 2016).

(F) Clustering of human TCGA GBM samples into Macrophage-high, -medium and -low groups using a 38-gene macrophages signature.

(G) The expression of *SPP1*, *P4HA2*, *MOXD1*, *IGF1*, *GAS6*, *CCL8*, *CCL7* and *ADM* in Macrophage-high, -medium and -low TCGA GBM patients.

(H,I) The correlation between total macrophage (H) and M2 macrophage (I) signatures and *SPP1* levels in TCGA GBM patients. r and p values are shown.

(J) The expression level of *SPP1* in normal brain tissues (n=10) and GBM tumor tissues (n=528) in TCGA GBM database.

(K) Kaplan-Meier survival curves of GBM patients relative to expression levels of *SPP1* in TCGA GBM database.

(L) The correlation between *SPP1* and *CD34* in patients of Rembrandt GBM database. r and p values are shown.

(M) The expression of CD34 in Macrophage-high, -medium and -low TCGA GBM patients.

(N) Kaplan-Meier survival curves of GBM patients relative to expression levels of *CD34* in Gravendeel GBM database.

Data from multiple replicates are presented as mean. Error bars indicate mean ± SD. ***p<0.001, n.s., no significant difference, Student's t test. In (H), (I) and (L), pearson's correlation test.

Figure S7. YAP1-LOX- β 1 integrin -macrophage axis in GBM progression, related to Figure 7.

(A) The mRNA expression levels of *YAP1*, *LOX*, *ITGB1* and *LGALS3* in normal brain tissues (n=10) and GBM tumor tissues (n=528) in TCGA GBM database. ****P*<0.001 vs normal brain tissue, Student's t test.

(B) Immunohistochemistry (IHC) for YAP1, LOX, β 1 integrin and Mac-2 in human GBM tissue microarray which contains 5 normal brain tissues, 32 GBM and 3 anaplastic astrocytoma samples. The expression levels were quantified as the IHC score based on their expression level. Scale bar, 50 µm. Error bars indicate mean ± SD. ***P*<0.01, ****P*<0.001, Student's t test.

(C-F) Kaplan-Meier survival curves of GBM patients relative to expression levels of *YAP1* in Rembrandt GBM database (C), *LOX* in TCGA GBM database (D), *ITGB1* in Gravendeel GBM database (E), and *LGALS3* in TCGA GBM database (F).

Gene name	Forward	Reverse
ACTB	CATGTACGTTGCTATCCAGGC	CTCCTTAATGTCACGCACGAT
ADM	ATGAAGCTGGTTTCCGTCG	GACATCCGCAGTTCCCTCTT
ARG1	TGGACAGACTAGGAATTGGCA	CCAGTCCGTCAACATCAAAACT
BICC1	GGAAACAAATACGCAGATTGCTT	CTTCAGTGTGACTCGATTGCTT
CCL5	TCTGCGCTCCTGCATCTG	AGTGGGCGGGCAATGTAG
CCL22	ATCGCCTACAGACTGCACTC	GACGGTAACGGACGTAATCAC
CKLF	CGGCTGGCACTAACTGTGA	CGGTGACTTCAAATCCAGTGATA
COL6A1	ACAGTGACGAGGTGGAGATCA	GATAGCGCAGTCGGTGTAGG
CSF1	TGGCGAGCAGGAGTATCAC	AGGTCTCCATCTGACTGTCAAT
CSF2	TCCTGAACCTGAGTAGAGACAC	TGCTGCTTGTAGTGGCTGG
CTGF	CAAGGGCCTCTTCTGTGACT	ACGTGCACTGGTACTTGCAG
CXCL5	AGCTGCGTTGCGTTTGTTTAC	TGGCGAACACTTGCAGATTAC
DAB2	GTAGAAACAAGTGCAACCAATGG	GCCTTTGAACCTTGCTAAGAGA
EMP2	ATTCACGACAAAAACGCGAAAT	CAGTATCAGGTACATCATGCCG
FABP5	TGAAGGAGCTAGGAGTGGGAA	TGCACCATCTGTAAAGTTGCAG
GAL	CCGGCCAAGGAAAAACGAG	GAGGCCATTCTTGTCGCTGA
GAPDH	GGAGCGAGATCCCTCCAAAAT	GGCTGTTGTCATACTTCTCATGG
IFNG	GTCCAACGCAAAGCAATACA	ATATTGCAGGCAGGACAACC
IGF2	GTGGCATCGTTGAGGAGTG	CACGTCCCTCTCGGACTTG
IL4	CCAACTGCTTCCCCCTCTG	TCTGTTACGGTCAACTCGGTG
IL6	ATTCTGCGCAGCTTTAAGGA	ATCTGAGGTGCCCATGCTAC
IL13	CCTCATGGCGCTTTTGTTGAC	TCTGGTTCTGGGTGATGTTGA
LCN2	GACAACCAATTCCAGGGGAAG	GCATACATCTTTTGCGGGTCT
LOX	CGGCGGAGGAAAACTGTCT	TCGGCTGGGTAAGAAATCTGA
SEMA3E	GTTTGCTGGACTCTACAGTGAC	CTTTCAACAGACGCTCATCGT
SERPINB2	CAGCACCGAAGACCAGATGG	CCTGCAAAATCGCATCAGGATAA
SERPINE2	TGGTGATGAGATACGGCGTAA	GTTAGCCACTGTCACAATGTCTT
SPP1	GAAGTTTCGCAGACCTGACAT	GTATGCACCATTCAACTCCTCG
THBS1	AGACTCCGCATCGCAAAGG	TCACCACGTTGTTGTCAAGGG
TNC	TCCCAGTGTTCGGTGGATCT	TTGATGCGATGTGTGAAGACA
TNFA	CCTGTGAGGAGGACGAACAT	GGTTGAGGGTGTCTGAAGGA
TSPAN3	GAGTGTCCCTCTTAGCTGCTG	AGCTTCTTCACTACTAGAGCCTC
VEGF	AGGGCAGAATCATCACGAAGT	AGGGTCTCGATTGGATGGCA
VEGFC	GAGGAGCAGTTACGGTCTGTG	TCCTTTCCTTAGCTGACACTTGT
Actb	GGCTGTATTCCCCTCCATCG	CCAGTTGGTAACAATGCCATGT
Adm	CACCCTGATGTTATTGGGTTCA	CCACTTATTCCACTTCTTTCGGA
Arg1	TTGGGTGGATGCTCACACTG	GTACACGATGTCTTTGGCAGA
Ccl2	TTAAAAACCTGGATCGGAACCAA	GCATTAGCTTCAGATTTACGGGT
Ccl7	CCACATGCTGCTATGTCAAGA	ACACCGACTACTGGTGATCCT
Ccl8	TCTACGCAGTGCTTCTTTGCC	AAGGGGGATCTTCAGCTTTAGTA
Ccl24	ATTCTGTGACCATCCCCTCAT	TGTATGTGCCTCTGAACCCAC
	ATCCACGGCATACTATCAACATC	
Cd200r1	AGGCATTICCAGTATCACAAGG	
Gaso Jafi		
III16		ATOTTTTGGGGTCCGTCAACT
116	TAGTCCTTCCTACCCCAATTTCC	TIGGTCCTTAGCCACTCCTTC

Table S5. A list of primers used for RT-qPCR analysis, related to STAR Methods.

Moxd1	ACACACAGTGATCGAGTTTAGC	CGGGATCGTCATGGTGGTA
Mrc1	CTCTGTTCAGCTATTGGACGC	CGGAATTTCTGGGATTCAGCTTC
P4ha2	CACCTCCATTGGGCACATGA	GCTCTTAATCTTGGCGAGCTT
Pparg	GGAAGACCACTCGCATTCCTT	GTAATCAGCAACCATTGGGTCA
Ptgs2	TGAGCAACTATTCCAAACCAGC	GCACGTAGTCTTCGATCACTATC
Spp1	AGAGCGGTGAGTCTAAGGAGT	TGCCCTTTCCGTTGTTGTCC
Tnfa	CCCTCACACTCAGATCATCTTCT	GCTACGACGTGGGCTACAG