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SUMMARY

Kinase and phosphatase overexpression drives
tumorigenesis and drug resistance. We previously
developed amass-cytometry-based single-cell prote-
omicsapproach that enablesquantitativeassessment
of overexpression effects on cell signaling. Here, we
applied this approach in a human kinome- and phos-
phatome-wide study to assess how 649 individually
overexpressed proteins modulated cancer-related
signaling in HEK293T cells in an abundance-depen-
dent manner. Based on these data, we expanded the
functional classification of human kinases and
phosphatases and showed that the overexpression
effects include non-catalytic roles. We detected 208
previously unreported signaling relationships. The
signalingdynamics analysis indicated that the overex-
pression of ERK-specific phosphatases sustains
proliferative signaling. This suggests a phosphatase-
driven mechanism of cancer progression. Moreover,
our analysis revealed a drug-resistant mechanism
through which overexpression of tyrosine kinases,
including SRC, FES, YES1, and BLK, inducedMEK-in-
dependent ERK activation in melanoma A375 cells.
These proteins could predict drug sensitivity to
BRAF-MEK concurrent inhibition in cells carrying
BRAF mutations.

INTRODUCTION

Kinases and phosphatases control the reversible process of

phosphorylation. Signaling networks involving these enzymes
1086 Molecular Cell 74, 1086–1102, June 6, 2019 ª 2019 The Author
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compute extracellular signals into transcriptional, functional,

and phenotypical responses. Deregulation of signaling networks

can lead to the initiation and progression ofmany types of human

disease, including cancer (Fleuren et al., 2016; Julien et al.,

2007). Signaling network structure has been studied by mapping

physical interactions of kinases and phosphatases in steady and

dynamic states using biochemical approaches and reporter

assays (Barrios-Rodiles et al., 2005; Breitkreutz et al., 2010;

Couzens et al., 2013; Horn et al., 2011). Using in vitro kinase

assays and motif-based predictions, the specificity and targets

of many kinases have been revealed (Linding et al., 2007; Mok

et al., 2010; Yu et al., 2009). Kinase and phosphatase perturba-

tions have been applied to systematically determine network

responses in yeast and human cells (Bodenmiller et al., 2010;

Ochoa et al., 2016; Sacco et al., 2012a).

Mutation-induced signaling network rewiring and modulation

of signaling dynamics have also been characterized for many

kinases (Creixell et al., 2015; Pawson and Warner, 2007),

providing a basis for the identification of targeted therapies in

cancer (Hennessy et al., 2005; Logue and Morrison, 2012). Inde-

pendently of mutations, kinase overexpression drives tumori-

genesis in multiple cancer types and is a critical factor in drug

resistance (Eralp et al., 2008; Santarius et al., 2010; Shaffer

et al., 2017). Recently, overexpression of phosphatases has

been shown to mediate cancer progression and has been linked

to the poor prognosis of patients (Julien et al., 2011; Liu et al.,

2016; De Vriendt et al., 2013). Overexpression-induced signaling

modulation remains largely uncharacterized because factors

such as genetic instability induce highly heterogeneous quanti-

ties of deregulated signaling proteins in cancer cells (Abbas

et al., 2013), making conventional cell population-based analysis

inapplicable. Only recently have technologies emerged that ac-

count for such heterogeneity and that can comprehensively

quantify signaling network behavior with single-cell resolution.

This resolution is required to characterize abundance-related
(s). Published by Elsevier Inc.
creativecommons.org/licenses/by-nc-nd/4.0/).
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cellular signaling states (measured as phosphorylation levels of

signaling proteins) and phenotypical alterations caused by a

given kinase or phosphatase of interest (Bendall et al., 2011;

Lun et al., 2017). Mass cytometry allows simultaneous quantifi-

cation of >40 proteins or protein modifications at single-cell res-

olution, enabling the profiling of complex cellular behaviors in

highly heterogeneous samples (Bendall et al., 2011; Bodenmiller

et al., 2012; Chevrier et al., 2017; Levine et al., 2015). We have

recently established and thoroughly validated an approach that

couples transient protein overexpression with mass-cytometry-

based, single-cell analysis and have revealed that protein over-

expression induces complex signaling network modulations in

an abundance-dependent manner (Lun et al., 2017).

Here, we applied this technique in a human kinome- and phos-

phatome-wide screen to determine kinase and phosphatase

abundance-dependent effects on 30 phosphorylation sites

known to be involved in the regulation of growth, proliferation,

survival, and stress signaling pathways. Over 10 million individ-

ual cells were analyzed, covering 649 overexpression conditions

with or without 10-min epidermal growth factor (EGF) stimula-

tion. Assessing the effects of kinase and phosphatase on the

signaling network, we expanded the functional classification

of the kinome and phosphatome. Our analysis identified 1,323

pairs of overexpression-dependent signaling relationships,

including 208 pairs that were previously unknown. By character-

izing signaling dynamics in a follow-up EGF stimulation time

course and a kinase-phosphatase combinatorial overexpression

assay, we found a pro-cancer signaling response in which the

overexpression of ERK-specific phosphatases sustained cell

proliferative signals. Further analysis of our dataset revealed a

drug-resistant mechanism through which the overexpression

of tyrosine kinases, including SRC, FES, YES1, and BLK,

induced MEK-independent ERK activation in melanoma A375

cells. The expression levels of these proteins could predict

drug sensitivity to BRAF-MEK concurrent inhibition in patients

with BRAF mutations and may be suggestive of alternative

treatments.

RESULTS

Abundance-Dependent Effects of Human Kinases and
Phosphatases on Cell Signaling
Protein abundance variance on the single-cell level is often

observed in tumors as heterogeneous genomic abnormalities

accumulate (Du and Elemento, 2015). Inter-tumoral heterogene-

ity presumably results in highly variable signaling responses to

stimuli or drug treatments. In addition, a high degree of intra-tu-

moral heterogeneity further challenges cancer therapeutic inter-

ventions (Patel et al., 2014; Roth et al., 2016). To understand the

signaling network modulation in cells that overexpress a defined

kinase or phosphatase at various levels, we applied our abun-

dance-dependent signaling network assessment system (Lun

et al., 2017) in a kinome- and phosphatome-wide screen.

We cloned open reading frames (ORFs) from the human kinase

library (Johannessen et al., 2010) and the human phosphatase li-

brary into a vector, enabling the expression of GFP-tagged

proteins (Couzens et al., 2013). The generated 541 kinase and

108 phosphatase expression clones (Table S1) were individually
transiently transfected into human embryonic kidney HEK293T

cells. Unstimulated cells and cells stimulated for 10 min with

EGF were harvested and processed with a 126-plex barcoding

strategy (adapted from Bodenmiller et al., 2012; Zunder et al.,

2015) for simultaneous antibody staining followed bymultiplexed

mass cytometry measurements (Figure 1A).

Transient transfection generates a single-cell gradient of the

GFP-tagged protein of interest (POI) expression levels with up

to 1,000-fold enhancement relative to the endogenous POI

expression range (Lun et al., 2017). The abundance variation of

each overexpressed kinase or phosphatase was quantified on

the single-cell level by mass cytometry with detection by a

metal-conjugated anti-GFP antibody. Simultaneously, we quanti-

fied 30 phosphorylation states of proteins involved in key cancer-

related signaling pathways, including the AKT, protein kinase C

(PKC), signal transducer and activator of transcription (STAT),

mitogen-activated protein kinase (MAPK)/ERK, and stress path-

ways, and 5 non-signalingmarkers indicative of cell physiological

states (Table S2). Over 10million individual cells were analyzed in

the 659 overexpression conditions with or without 10-min EGF

stimulation, averaging �7,000 measured cells per sample. That

theGFP-tagging system rarely influenced protein overexpression

effects has been previously reported (Lun et al., 2017).

The dependence of phosphorylation levels on the abundance

of GFP-tagged POI was quantified by the binned pseudo-R2

(BP-R2) method, a density-independent measure of signaling

relationship strength (Figures S1A and S1B) (Lun et al., 2017).

We confirmed that signaling relationships assessed with our

approach were reproducible in five different cell lines from multi-

ple tissues of origin (Figure S1C). We analyzed 108 control sam-

ples (FLAG-GFP overexpression or untransfected cells) and used

the highest BP-R2 score (0.13) of all of the controls as the cutoff to

consider a signaling relationship as ‘‘strong.’’ In total, our human

kinomeandphosphatomeanalysis detected 1,323 pairs of strong

relationshipsbetweenPOIsandphosphorylationsites (Figure 1B).

Among the 649 kinases and phosphatases, 327 (50.4%) had

at least 1 strong signaling relationship to the cancer-related

signaling networkwhen overexpressed.Of these, 245 had narrow

influences with the modulation of 1–5 signaling nodes, and

26 overexpressed proteins had broad effects on the network

with >10measuredphosphorylation sites influenced (FigureS1D).

We identified 49 proteins that affected all of the measured

signaling pathways, including 11 receptor proteins (e.g., MET,

fibroblast growth factor receptor 1 [FGFR1], and platelet-derived

growth factor receptor A [PDGFRA]) and many MAPK cascade

activators (e.g., MAP4K1, MAP4K2, and MAP4K5) (Figure 1C).

To characterize how POI abundance modulates intracellular

signaling, we performed shape-based clustering (see STAR

Methods) on all of the detected strong signaling relationships.

We classified these relationship shapes into 10 shape clusters

(Figure 1D). Shapes 1–5 involve overexpression-induced signal

upregulation, with sensitivity to abundance changes increasing

from shape 1 to shape 5. Shape 6 is non-monotonic signaling re-

lationships, as phosphorylation levels initially increase and then

decrease as a function of POI abundance. Shapes 7–10 reflect

overexpression-induced signaling downregulation, with sensi-

tivity to POI abundance changes increasing from shape 7 to

shape 10 (Figure 1D). Overexpression of a particular POI can
Molecular Cell 74, 1086–1102, June 6, 2019 1087
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Figure 1. Kinome- and Phosphatome-wide Screen for Effects of Protein Abundance on Signaling States and Dynamics

(A) The experimental workflow: ORFs of 541 human kinases and 108 human phosphatases were cloned into a vector encoding GFP-tagged fusion proteins upon

transient transfection into HEK293T cells. Cells with or without 10-min EGF stimulation were harvested, barcoded, and stained with antibody mix before mass-

cytometry-based single-cell analysis.

(B) Plot of counts versus BP-R2 values for control and experimental samples. Cutoff value was determined by analysis of the BP-R2 values in all of the control

samples. Square-root transformation was applied on the y axis.

(C) Venn diagram showing the quantification of POIs with abundance-dependent influences on the AKT pathway (p-PDK1, p-GSK3b, b-catenin, p-mTOR,

p-p70S6K, p-4EBP1, and p-S6), MAPK-ERK pathways (p-RAF, p-MEK1/2, p-ERK1/2, p-p90RSK, p-CREB, and p-SMAD2/3), stress response pathways

(p-MKK3/6, p-MKK4/7, p-p38, p-JNK, p-MAPKAPK2, p-AMPKa, and p-p53), and PKC and STAT pathways (grouped for illustration purposes; p-SRC, p-FAK,

p-BTK, p-PLCg2, p-MARCKS, p-NFkB, p-STAT1, p-STAT3, and p-STAT5).

(D) Shape-based clustering on all strong signaling.
affect different phosphorylation sites with dissimilar shapes of

relationship (Table S3). We also found that 250 pairs of signaling

relationships had different shapes before and after EGF stimula-

tion, indicating that POI levels determine the strength of the

signaling response to EGF stimulation.

Altered responses to EGF stimulation are the potential results

of network topology modulations (Koseska and Bastiaens, 2017;
1088 Molecular Cell 74, 1086–1102, June 6, 2019
Santos et al., 2007) that are induced by POI abundance changes.

To verify this, we focused on two pairs of EGF-induced shape-

switching relationships, KSR2 to p-MAPKAPK2 (MAPKAPK2

signaling is essential for tumor cell survival; Morandell et al.,

2013) and TEC to p-ERK1/2 (a pair of non-monotonic rela-

tionship). We performed additional perturbation experiments us-

ing MEK inhibitor CI1040 and characterized signaling network
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(legend on next page)
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variations over a large dynamic range of POI concentrations.

We found that at the medium expression levels of KSR2,

MAPKAPK2 phosphorylation was MAPK-ERK cascade-depen-

dent and that it could be highly induced by EGF stimulation;

high KRS2 expression levels contributed to MAPK-ERK-inde-

pendent MAPKAPK2 signaling that had a weak response to

EGF stimulation and was insensitive to MEK inhibition (Figures

S1E–S1G). Increased TEC abundance led to non-monotonic

ERK1/2 phosphorylation that was partially diminished by MEK

inhibition (Figure S1H), indicating the presence of both MEK-

dependent and MEK-independent pathways for the TEC over-

expression-induced ERK activation. The MEK-dependent

signaling was reduced at high TEC expression levels, potentially

due to a negative regulatory mechanism that is only activated in

the presence of high concentrations of TEC (Figures S1H–S1J).

Here, by characterizing signaling network variations over a large

dynamic range of POI concentration, our analysis revealed com-

plex modulations of signaling network topology in a protein

abundance-dependent manner.

Functional Classification of Kinases and Phosphatases
Based on Signaling Network Modulations
To understand the regulatory and functional similarity of overex-

pressed POIs, we indicated the sign for signaling relationships

(according to their directionality) to the BP-R2 (Table S4; STAR

Methods). Then, we applied the dimensional reduction algorithm

t-distributed stochastic neighbor embedding (t-SNE) (van der

Maaten and Hinton, 2008) to the matrix of all 60 measured

signaling parameters (as signed-BP-R2 scores) over the 327

signaling network-influential kinases and phosphatases (Fig-

ure 2A). As expected, homologous groups of kinases and phos-

phatases showed nearly identical influences on signaling and

overlapped with each other on the t-SNE plot (Figure 2A, green

boxes). This demonstrates that our method sensitively, specif-

ically, and reproducibly detected abundance-dependent

signaling behaviors. All eight overexpressed SRC family mem-

bers—SRC, YES1, BLK, LCK, LYN, HCK, FGR, and FRK—co-

localized in the t-SNE analysis (Figure 2A, purple box), indicating

that these kinases have similar abundance-dependent signaling

effects, despite the previously revealed differential patterns of

expression (Parsons and Parsons, 2004). Members of protein

tyrosine phosphatase (PTPN1, PTPN2, and PTPN5) and dual-

specificity phosphatase (DUSP3, DUSP4, DUSP6, DUSP7,

DUSP10, and DUSP16) familieswere grouped together, suggest-

ing similarities in regulating the measured cancer signaling

network (Figure 2A, orange box).

We then applied hierarchical clustering based on signed-BP-

R2 scores of all of the measured phosphorylation sites (Figures

S2A and S2B) to further analyze functional similarities among

all of the kinases and phosphatases. This led to the identification

of 10 major signaling response clusters (color coded on the

t-SNE plot in Figure 2A). Correspondence analysis was per-
Figure 2. Kinase and Phosphatase Classification Based on Abundance

(A) t-SNE analysis of overexpressed kinases and phosphatases performed on

stimulation, color coded by hierarchical clusters.

(B) The mean signed-BP-R2 values of all measured phosphorylation sites in ea

signaling network visualizations.
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formed between these identified clusters and classes of kinases

and phosphatases previously established based on catalytic

domain sequences (Johannessen et al., 2010; Sacco et al.,

2012b) (Figure S2C). In certain cases, proteins with partial

sequence identity had similar influences on signaling. For

example, all of the kinases in cluster 1 are receptor or non-recep-

tor tyrosine kinases (Figure S2C). These kinases are early re-

sponders to stimuli, as shown in the literature-based graph of

canonical EGF receptor (EGFR) networks (Figure 2B). Clusters

5, 9, and 10 include non-receptor serine or threonine kinases

and kinases classified in the group of ‘‘other’’ (i.e., kinases that

do not fit into any of the major groups) (Figure S2C). Despite

conserved catalytic domain sequences, kinases in clusters 5,

9, and 10 induced different cellular responses (Figure 2B). Clus-

ter 7 proteins had negative relationships with the mediators of

the MAPK-ERK pathway when cells were treated with EGF (Fig-

ure 2B). Cluster 7 mostly consists of protein tyrosine phospha-

tases, but also includes a few proteins from the classes of

non-receptor serine or threonine kinase and lipid kinases (Fig-

ure S2C). Comparing our identified clusters to the phylogenetic

tree of the human kinome (Eid et al., 2017; Manning et al.,

2002), we observed the enrichment of cluster 1 in the tyrosine

kinase group (Figure S2D, orange arrow). In addition, PKC family

members are enriched in cluster 5 (Figure S2C, brown arrow),

and MAP3Ks are enriched in cluster 9 (Figure S2D, blue arrow).

In summary, the human kinome- and phosphatome-wide over-

expression analysis identified 10 clusters of kinases and phos-

phatases, with distinct signaling patterns found for each cluster.

These clusters partially matched the sequence-based classifica-

tion and expanded the functional classification of the human ki-

nases and phosphatases based on their abundance-dependent

modulations to the cancer signaling network.

Functional Enrichment Analysis of Kinase and
Phosphatase Clusters
Our analysis indicated that signaling proteins with different cata-

lytic domain sequences may affect signaling networks similarly

when overexpressed. To understand the functional relationship

between proteins with similar overexpression effects, we per-

formed a functional enrichment analysis using the STRING

database (Szklarczyk et al., 2017) on the 10 identified clusters

(Figures 2A and 3A). We found that 7 of the 10 clusters had sig-

nificant functional enrichment (p < 0.01; statistical details in

STARMethods). Physical and functional interaction enrichments

are shown as protein-protein association networks for cluster 7

in Figure 3B and for all other clusters in Figure S3A.

Cluster 7 is enriched for protein tyrosine phosphatases that

negatively regulate MAPK pathways. Several MAPK regulating

kinases are present in this cluster, including KSR1 and ARAF,

which have overexpression effects similar to those of the phos-

phatases (Figure 3B). KSR1 and ARAF are core components of

the KSR-RAF dimeric protein complex that transduces signal
-Dependent Effects on Cancer Signaling Network

signed-BP-R2 of all measured phosphorylation sites with and without EGF

ch cluster of kinases or phosphatases shown in literature-guided canonical
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Figure 3. Functional Enrichment Analysis of Kinases and/or Phosphatases in Each Cluster

(A) An unrooted tree shows the hierarchical clustering of the kinases and phosphatases based on their signed-BP-R2 scores. Terms of enriched functions

(p < 0.05) from each cluster are annotated, with circle color indicating the p value and circle size showing the coverage of cluster components. The percentage of

associated proteins is indicated by the size of the adjacent circle.

(B) Functional association analysis performed with the STRING database (Szklarczyk et al., 2017) for cluster 7. Confident edges are shown in the network.

Functional enrichments are shown as color-coded pies, with the pie radius indicating the p value.
in the MAPK-ERK cascade (Lavoie and Therrien, 2015). Overex-

pressing one subunit of this protein complex may result in

competitive inhibition, diminishing the downstream signal activ-

ities in a manner similar to that of phosphatase overexpression.

These analyses demonstrated that proteins with different cata-

lytic functions can mediate highly related signaling responses

when overexpressed and that kinase overexpression does not

affect signaling networks in the same manner as direct kinase

activation.

To assess the relationship between overexpression effects and

protein catalytic activities, we chose to overexpress five kinase-

dead mutants: AKT3K177M, AXLK567R, MAPK3K71R, PRKCEK437W,

and MAP2K1K97M. Unlike wild-type kinases, the overexpression
of kinase-dead mutants AXLK567R and PRKCEK437W had almost

no network effect (Figure S3B), indicating that the detected abun-

dance-dependent network modulations of these kinases are

related to their catalytic functions. In contrast, the main network

effects of AKT3, MAPK3, and MAP2K1 were also observed

when the kinase-deadmutantswere overexpressed (FigureS3B).

This suggests that overexpression-induced signaling network

modulations for these kinases are non-catalytic. In addition, 26

kinases in our screenwere previously predicted to be catalytically

inactive (Manning et al., 2002). We found that 6 of these 26 pro-

teins influenced the measured network, with a total of 17 pairs

of strong signaling relationships detected (Table S5), also

demonstrating that our analysis captured non-catalytic network
Molecular Cell 74, 1086–1102, June 6, 2019 1091
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Figure 4. Prediction of Potential Signaling Connections by Comparison with Literature Evidence in the Signaling Interaction Database

OmniPath

(A) Abundance-dependent relationship strength for each pair of overexpressed POIs and measured phosphorylation site, as quantified with signed-BP-R2,

plotted on the length of shortest signed, directed path between the two extracted from the OmniPath database (T€urei et al., 2016).

(B) Occurrences of strong signaling relationships (BP-R2 > 0.13), with path length from 0 to 5 or infinite path length (OmniPath) in each individual hierarchical

cluster.

(C and D) For clusters 8 (C) and 5 (D), respectively, the shortest signed directed path length for each determined strong signaling relationship is shown in Circos

plots (Krzywinski et al., 2009).
modulations determined by kinase abundance. In summary,

these data show that protein overexpression effects can be cat-

alytic or non-catalytic and suggest that activity-based modeling

of signaling network deregulation for drug target discovery alone

is likely insufficient.

Signaling Relationships Detected in Kinome- and
Phosphatome-wide Analysis
The functions of many kinases and phosphatases analyzed in

our screen are unknown or only poorly characterized. We

hypothesized that our global analysis could lead to the identifica-

tion of signaling relationships. To assess this, we performed a

systematic comparison between all identified overexpression-

induced signaling relationships and records in OmniPath, an

integrated database of literature-curated signaling interaction

information (T€urei et al., 2016). We first mapped all pairs of rela-

tionships to the OmniPath signaling network and then computed

the signed, directed paths for each pair of relationship (Krumsiek

et al., 2011; Perfetto et al., 2016). The distance between an over-

expressed protein and ameasured phosphorylation site is repre-

sented by the length of the path (Figure 4A). For example, a

distance of 0 indicates the relationship between the overex-

pressed POI and its own phosphorylation levels. Of 14 pairs of

signaling relationships with a known distance of 0, 12 had strong

BP-R2 values with and without 10-min EGF stimulation (Fig-

ure 4A), revealing that the phosphorylation level of a particular

kinase is often determined by its own abundance, even in the

absence of additional perturbation.

We detected 208 (16%) strong relationships (BP-R2 > 0.13)

with infinite distance (Figure 4A; Table S6), which is indicative

of connections not described previously. In total, 93 overex-
1092 Molecular Cell 74, 1086–1102, June 6, 2019
pressed POIs contributed to these signaling relationships, which

were enriched (in absolute count) in clusters 2, 3, and 4 and to a

lesser extent in cluster 6 (Figure 4B). We did not detect any rela-

tionships with infinite distance in clusters 9 or 10 (Figure 4B);

POIs from these clusters participate inMAPK signal transduction

(Figure 3A), which is well characterized. We also assessed the

distribution of infinite paths for each kinase and phosphatase

class and did not detect any enrichment (Figure S4A). There

were 132 pairs of strong relationships between proteins with

length of signed directed path >3 in OmniPath, suggesting

potentially undiscovered direct or short-range connections

(Figure 4A).

Many potential signaling relationships were related to disease

and to poorly characterized kinases (Figures 4C, 4D, and S4B).

For instance, high levels of RIOK2 (highlighted in Figure 4C)

have been recently shown to correlate with the poor prognosis

of patients with non-small-cell lung cancer, but the underlying

signaling mechanisms are unclear (Liu et al., 2016). We discov-

ered that RIOK2 overexpression affected several phosphorylation

sites, most strongly Thr172 on adenosine 50 monophosphate-

activated protein kinase a (AMPKa), Ser257/Thr261 on MKK4/7,

and Thr180/Tyr182 on p38 (Figure 4C), indicating the activation

of the AMPK-p38 axis upon RIOK2 overexpression. The AMPK-

p38 axis regulates cellular energy metabolism, contributing to

cancer cell survival in nutrient-deficient conditions (Chaube

et al., 2015; Zadra et al., 2015). In cancer proteome data from

the Clinical Proteomic Tumor Analysis Consortium (Koboldt

et al., 2012), we found that expression levels of RIOK2were highly

correlated with levels of AMPK subunits b and g and the AMPK

activator LKB1 (STK11), confirming RIOK2 as a co-regulatory

kinase in the AMPK signaling pathway (Figures S4C and S4D).
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Figure 5. Effects of EGF Stimulation on 39 Kinases and Phosphatases

(A) Heatmap of signed-BP-R2 scores for measured signaling relationships over a 1-h EGF stimulation time course. Six identified groups of kinases and phos-

phatases are labeled in color codes.

(B) For one representative POI from each group, signaling relationships to all measured phosphorylation sites, as quantified by signed-BP-R2, are shown in the

literature-guided canonical signaling network map.

(C–G) Violin plots show cell distribution in each of 10 bins based on GFP-tagged POI expression levels (see STAR Methods) for EGFR-GFP to p-ERK1/2 (C),

DUSP4-GFP to p-ERK1/2 (D), PTPN2-GFP to p-ERK1/2 (E), DUSP4-GFP to p-MEK1/2 (F), and PTPN2-GFP to p-MEK1/2 (G) over the 1-h EGF stimulation time

(legend continued on next page)
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To further illustrate the clinical relevance of overexpression-

induced AMPK activation, we coupled our data of kinase and

phosphatase overexpression effects with the proteome data of

breast cancer and ovarian cancer patients and their prognosis in-

formation (Mertins et al., 2016; Zhang et al., 2016) (Figures S4E

and S4F). We found three kinases (CSNK1A1, NEK7, and TLK1)

and a phosphatase (CDC25C) inducing AMPK activation when

overexpressed and affecting patient outcomes; patients overex-

pressing any of these kinases had significantly worse prognoses

in comparison to the patients underexpressing the same kinase

(Figures S4G and S4H). Our data suggest that kinase overexpres-

sion-induced AMPK activation is related to the prognosis in can-

cer patients and that AMPK is a potential therapeutic target for

patients overexpressing proteins, such as RIOK2, CSNK1A1,

CDC25C, NEK7, and TLK1.

Overexpression of a poorly characterized kinase, MGC42105

(NIM1K), in cluster 5 (highlighted in Figure 4D) modulated the

phosphorylation of Ser241 on PDK1, Thr389 on p70S6K, and

Ser235/Ser236 on S6, suggesting a role in growth signaling.

MGC42105 also induced abundance-dependent activation of

stress pathways, as strong relationships to p-p53 (Ser15) and

p-AMPKa (Thr172) were observed (Figure 4D). In summary,

mapping our identified signaling relationships to the OmniPath

database enabled the assignment of signaling functions to a

number of kinases and phosphatases and shed light on potential

signaling mechanisms associated with the poor prognosis of

cancer patients.

In-Depth Analysis of Signaling Dynamics Reveals
Overexpression-Dependent MAPK-ERK Activity
An understanding of signaling dynamics is essential for identi-

fying diseased signaling circuits within a network and in the pre-

diction of drug efficiency (Du and Elemento, 2015; Hughey et al.,

2010). We have previously shown that altering the expression

levels of central signaling proteins in the EGFR signaling network

results in complex changes in network dynamics (Lun et al.,

2017). Given the key role of signaling dynamics on cell prolifera-

tion, growth, and differentiation (Koseska and Bastiaens, 2017),

we systematically evaluated kinases and phosphatases from the

10 identified clusters for overexpression-induced signaling dy-

namic modulations. We calculated the differences in signed-

BP-R2 scores between the EGF-stimulated and -unstimulated

conditions to identify cases in which overexpression modulated

signaling dynamics (i.e., altered the strength or the shape of

abundance-dependent signaling relationships between the un-

stimulated and the 10-min EGF-stimulated conditions). We

found that POIs in clusters 1, 6, 7, 9, and 10 strongly modulated

signaling network dynamics when overexpressed (Figure S5A).

We then analyzed the overexpression effects of the top 39

dynamic-modulating POIs over a 1-h EGF stimulation time

course. The dynamic responses of all of the measured phos-

phorylation sites are shown in Figures 5A and 5B. Example
course. Medians of all 10 bins are connected to indicate the shape of signaling rel

R2, as shown on top of each individual plot. In the plot on the far right, media

abundance-dependent signaling trajectories.

(H) Schematic illustration of how two sets of phosphatases induce different ab

cascade.
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signaling relationship shapes at each time point during the time

course and the POI abundance-dependent signaling trajectories

over the time course are shown in Figures 5C–5G. Features of

the signaling amplitudes (see STAR Methods) are shown in Fig-

ures S5F–S5H.

Hierarchical clustering of the overexpression-induced EGFR

signaling dynamics classified the 39 selected proteins into

6 groups (Figures 5A and S5B). Signaling network responses

for one representative kinase or phosphatase from each of the

six identified groups are illustrated in Figure 5B. We showed

that the network responses to EGF stimulation were highly spe-

cific to cell lines (Figure S5C). In HEK293T cells, EGF stimulation

strongly activated the MAPK-ERK signaling pathway and had

weak effects on the AKT, PKC, STAT, or stress response path-

ways (Figure S5C). Similarly, we observed that EGF stimulation

primarily influenced the POI abundance-dependent dynamics

of the MAPK-ERK signaling cascade rather than the AKT, PKC,

and STAT pathways (Figure 5A). As the MAPK-ERK proliferative

pathway is known to be involved in tumor progression and drug

response, we focused our subsequent analyses on this pathway

in HEK293T cells.

Phosphorylation of Thr202/Tyr204 on ERK1/2 was elevated in

cells with high levels of GFP-tagged EGFR in the absence of

EGF stimulation (Figures 5B and 5C). These cells did not

respond to EGF stimulation, indicating ligand-independent

ERK activation (Figures 5C and S5G). Since the ligand-indepen-

dent ERK activation is known as a cancer-driving mechanism

(Guo et al., 2015), we next sought to systematically identify

signaling proteins causing similar abundance-dependent ligand

insensitivity. Applying shape-based clustering, we classified

p-ERK1/2 signaling trajectories during the 1-h EGF stimulation

time course, over the range of expression levels of each

analyzed POI. We found that overexpression of kinases

TYRO3, TEC, MST1R, MOS, MET, MAP3K8, FGF1R, and

ABL1 also led to prolonged ERK1/2 activation (Figures S6A–

S6D). These proteins have been previously shown to mediate

oncogenic signaling (Duan et al., 2016; Johannessen et al.,

2010; Paul and Mukhopadhyay, 2004; Salgia, 2017).

In the absence of EGF stimulation, overexpression of phos-

phatases DUSP4 and PTPN2 did not affect the levels of phos-

phorylation in the MAPK-ERK pathway (Ser221 on MEK1/2,

Thr202/Tyr204 on ERK1/2, or Ser380 on p90RSK) (Figures 5B,

5D–5G, S5D, and S5E). This suggests either a mechanism that

compensates for phosphatase overexpression to maintain basal

MAPK-ERK signaling or that the overexpressed phosphatases

are inactive without EGF stimulation. Upon EGF stimulation,

signaling dynamics on phosphorylation sites of the MAPK-ERK

pathway were modulated by DUSP4 and PTPN2 in an abun-

dance-dependent manner as negative signaling relationships to

p-ERK1/2 and p-p90RSK were detected (Figures 5B, 5D, 5E,

S5D, and S5E). DUSP4 or PTPN2 overexpression also resulted

in reduced p-ERK1/2 and p-p90RSK amplitudes (Figure S5H).
ationships (black lines), with the relationship strength quantified by signed-BP-

ns of each bin are connected over the time course to demonstrate the POI

undance-dependent influences on the signaling dynamics of the MAPK-ERK
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Different p-MEK1/2 dynamics were observed in cells overex-

pressing these two phosphatases. In response to the EGF stim-

ulation, cells with DUSP4 overexpression had more sustained

MEK1/2 activation (Figure 5F) compared to cells with PTPN2

overexpression (Figure 5G). DUSP4 has been shown to specif-

ically target ERK1 and ERK2 (Guan and Butch, 1995). Our data

indicate that by diminishing ERK1/2 phosphorylation, the overex-

pressed DUSP4 attenuates the negative feedback from ERK1/2

to MEK1/2, resulting in constant activation of MEK1/2. Sub-

strates of PTPN2 are primarily membrane kinases, including

EGFR (Mattila et al., 2005). As expected, overexpression of

PTPN2 downregulated the activation of all measured signaling

proteins known to be downstream of EGFR, including MEK1/2

and ERK1/2 (Figure 5H).

To systematically classify all overexpressed phosphatases

based on the signaling dynamics, we performed shape-based

clustering on p-MEK1/2 trajectories during the 1-h time course

after EGF addition, over the expression levels of each POI (Fig-

ures S6E–S6H). Abundance-dependent prolonged MEK1/2

phosphorylation was observed with other phosphatases in

group E, including DUSP6, DUSP7, DUSP10, DUSP16, and

PTPN7, indicating that Thr202 and Tyr204 on ERK1/2 are sub-

strates of these enzymes (Figure 5H). DUSP10 and DUSP16

have been previously reported to be JNK- and p38-specific

phosphatases (Finch et al., 2012; Masuda et al., 2003). Here,

we show that DUSP10 and DUSP16, expressed at high abun-

dance, also dephosphorylate p-ERK1/2 and attenuate the

MAPK-ERK signaling, thereby likely decreasing the negative

feedback from ERK1/2 to MEK1/2 and causing sustained

MEK1/2 activation (Figures 5A and 5H).

Pairwise Overexpression Analysis Reveals that
Phosphatases Sustain Kinase-Induced MAPK-ERK
Signaling
Phosphatase overexpression is oncogenic in different tumor

types, but the signaling mechanisms remain unclear (Julien

et al., 2007, 2011). Recent work indicates that overexpressed

phosphatases increase the malignancy of cancers that have a

hyperactivated MAPK-ERK pathway (Julien et al., 2007; Low

and Zhang, 2016; De Vriendt et al., 2013). Our data suggest a

mechanism through which overexpression of ERK-specific

phosphatases sustains MEK phosphorylation levels (Figures 5F

and 5H). To assess whether an additional, secondary signaling

input that increases MAPK pathway activity could lead to

phosphatase-driven oncogenic-like signaling, we developed a

combinatorial transfection assay in which overexpression of a
Figure 6. Effect of Pairwise Overexpression of a Kinase and a Phosph

(A) Workflow of the pairwise overexpression. Two plasmids encoding an FLAG-ta

cells successively. Cells were binned into 25 groups according to their FLAG and G

computed for each bin.

(B), Kinases MAP2K2, MAPK1, and RPS6KA1 and phosphatases DUSP4, DUSP

overexpression combinations in total.

(C) In cells with overexpression of MAP2K2 and DUSP4, median phosphorylation l

stimulation time course.

(D) Signaling trajectories of p-MEK1/2 and p-ERK1/2 plotted as the medians of e

(E) Schematic illustrating the modulation of RAF-MEK-ERK cascade signaling st

(F and G) Analysis of p-ERK1/2 and p-MEK1/2 phosphorylation levels (F) and sig
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kinase and a phosphatase were detected via an FLAG-tag and

a GFP-tag, respectively, providing a two-dimensional analysis

of abundance-dependent signaling modulations on the single-

cell level (Figure 6A). Using this approach, we analyzed the

MAP2K2, MAPK1, and RPS6KA1 (also known as MEK2, ERK2,

and p90RSK1) kinases and the DUSP4, DUSP7, and PTPN2

phosphatases in 9 combinations of double overexpression

over a 1-h EGF stimulation time course (Figure 6B).

When overexpressed individually, we observed that DUSP4

overexpression sustained the phosphorylation of Ser221 on

MEK1/2 over the 1-h EGF stimulation time course, likely due to

the weakened ERK-to-MEK negative feedback (Figures 6C and

6D). MAP2K2-FLAG overexpression led to an increased MEK1/2

phosphorylation (Figure 6C). MAP2K2-FLAG and DUSP4-GFP

co-overexpression further increased the hyperactivated states

of MEK1/2 over the 1-h EGF stimulation time course compared

to the activation inducedbyMAP2K2-FLAGoverexpression alone

(Figures 6C–6E). Moreover, in cells with simultaneously overex-

pressed MAP2K2-FLAG and DUSP4-GFP, the downstream

ERK1/2 phosphorylation on Thr202 and Tyr204 were inhibited

(Figures 6C–6E). Previously, highly activated MEK1/2 was

observed to lead to ERK-independent oncogenic-like signaling

(Burgermeister and Seger, 2008; Takahashi-Yanaga et al., 2004).

The overexpression of FLAG-tagged MAPK1 (ERK2) drasti-

cally augmented ERK1/2 phosphorylation during EGF stimula-

tion (Figure 6F), increased p-ERK1/2 amplitudes, and delayed

p-ERK1/2 peak times (Figure 6G) in agreement with a previous

study of the effect of MAPK1 overexpression (Lun et al.,

2017). The simultaneous overexpression of MAPK1-FLAG and

DUSP7-GFP decreased p-ERK1/2 levels at all time points and

reduced the signaling amplitudes. Furthermore, DUSP7 overex-

pression delayed p-ERK1/2 peak times upon EGF stimulation: in

cells with the highest MAPK1 abundance and mid-level overex-

pression of DUSP7, ERK1/2 phosphorylation peaked at 30 min

after the addition of EGF (Figures 6F and 6G, purple arrows),

whereas in untransfected cells, p-ERK1/2 peaked at the 5-min

time point (Figures 6F and 6G). As expected, DUSP7 overex-

pression also resulted in constant MEK1/2 phosphorylation

(Figures 6F and 6G, green arrows). Compared to cells overex-

pressing onlyMAPK1 (ERK2), which induced strong but transient

ERK activation, the additional low-to-mid levels of DUSP7

decreased the ERK1/2 phosphorylation amplitude and partially

limited the negative feedback signal from ERK to MEK, inducing

a sustained MEK activation and a prolonged ERK signal. Thus,

our analysis indicates that overexpression of certain phospha-

tases, such as DUSP4 and DUSP7, led to sustained activation
atase on Signaling

gged kinase and a GFP-tagged phosphatase were transfected into HEK293T

FP abundances. Themedian level of eachmeasured phosphorylation site was

7, and PTPN2 were selected for the pairwise overexpression, generating nine

evels of p-MEK1/2 and p-ERK1/2 are plotted for all of the bins over the 1-h EGF

ach individual bin over the 1-h EGF stimulation time course.

ates and dynamics upon pairwise overexpression.

naling trajectories (G) on MAPK1-FLAG and DUSP7-GFP abundances.
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Figure 7. Kinase Overexpression Induces Resistance to BRAF-MEK Concurrent Inhibition in Melanoma Cells by MEK-Independent ERK

Reactivation

(A) Selected kinases were transfected into A375 cells and cultured in the inhibitor- or DMSO-containing media, and signaling states and cell viability were

assessed.

(B) Single-cell data from each sample were divided into four bins, depending on the expression level of the GFP-tagged kinase. Signed-BP-R2 analysis was

performed to quantify signaling relationships with and without vemurafenib.

(C) The proportion of cells in bin 4, cells with the highest levels of POI, for each individual overexpressed kinase in vemurafenib-treated cells and DMSO-treated

cells. (*p < 0.05; **p < 0.01; ***p < 0.001, n = 3).

(legend continued on next page)

Molecular Cell 74, 1086–1102, June 6, 2019 1097



of ERK due to the reduced negative feedback strength. This

mechanism may underlie the pro-cancer effects of phosphatase

overexpression.

Analysis of the Abundance-Dependent Signaling
Relationship Characterizes Drug-Resistance
Mechanisms
As protein overexpression has been correlated with drug resis-

tance of cancer cells (Johannessen et al., 2010, 2013; Shaffer

et al., 2017), we next sought to determine whether our kinome-

and phosphatome-wide signaling network profiles could identify

kinases or phosphatases that, when overexpressed, induce drug

resistance and could characterize underlying signaling mecha-

nisms. In melanoma cells carrying the BRAFV600E mutation, the

overexpression of certain kinases is associated with de novo

or acquired resistance to MAPK-ERK inhibition; Johannessen

et al. (2010, 2013) have identified resistance-driving candidate

genes in viability assays using melanoma A375 cells. Seventeen

of these candidates were analyzed in our screen, and the

overexpression of 14 caused abundance-dependent signaling

modulations to p-ERK1/2 (Thr202/Tyr204) in unstimulated cells

(Figure S7A). The 10-min EGF stimulation reduced relationship

strengths for each of these kinases (Figure S7B), indicating

that these overexpression-related ERK activations were ligand-

binding independent (described above with Figure 5C), which

has been previously suggested to be a drug-resistance mecha-

nism (Guo et al., 2015).

In our kinome- and phosphatome-wide study, we detected 54

POIs that activated ERK in the absence of EGF (Table S7). To

determine whether the overexpression of these proteins is

predictive of drug resistance in cells with BRAF mutations, we

transfected A375 cells, a melanoma cell line with the BRAFV600E

mutation, using vectors encoding proteins with the strongest

abundance-dependent signaling relationship to p-ERK1/2;

ABL1, BLK, FES, MAP3K2, MAP3K8, MOS, NTRK2, SRC, and

YES1. MEK1DD, a constitutively active kinase, was used as a

positive control (Johannessen et al., 2010). Cells were subse-

quently treated for 48 h with the BRAFV600E inhibitor vemurafenib

or with DMSO (Figure 7A). The strong signaling relationships

between these POIs and p-ERK1/2 were observed only in cells

treated with vemurafenib, not in control cells treated with

DMSO (Figures 7B, S7C, and S7D). This suggests that (1) the

constitutive BRAF activation caused by the BRAFV600E mutation

leads to strong MAPK-ERK activation that overrides the overex-

pression effects, and (2) POI abundance-dependent ERK

signaling is independent of RAF activity. To determine whether

overexpression of these candidate POIs reduced sensitivity to

the BRAFV600E inhibitor vemurafenib, we assigned each single

cell into one of four bins based on the abundance of GFP-tagged

POI and calculated the percentage of cells in each bin relative to

the total cell count (Figure 7B). As expected, the positive control

cells that expressed MEK1DD-GFP had significant cell enrich-

ment in the fourth bin (i.e., the bin with the highest expression
(D and E) Overexpression-induced signaling relationships to p-ERK1/2 (D) and p

(F) Illustrations of the diverse MAPK-ERK reactivation mechanisms induced by

and CI1040.

(G) Dot plot shows signed-BP-R2 between p-MEK1/2 to p-ERK1/2 for all assess
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level of the GFP-tagged POI), with vemurafenib treatment

compared to the DMSO-treated control (Figure 7C). This indi-

cates that MEK1DD overexpression contributes to cell survival.

Similarly, all nine examined kinases showed an enrichment of

cell abundance in the fourth bin; in six cases, this enrichment

was statistically significant (Figure 7C). These results reveal

that in melanoma A375 cells, the overexpression of kinases

capable of ligand-independent ERK activation reduces cellular

dependency on signaling inputs from BRAFV600E.

Three of the tested kinases, MAP3K8, MOS, and SRC, were

previously suggested to mediate MAPK-ERK inhibition resis-

tance in A375 cells (Johannessen et al., 2013). In analyzing the

cell viability data in the same study, we noted that MAP3K8

and MOS only induced resistance to RAF inhibition, whereas

SRC overexpression caused resistance to both RAF and MEK

individual inhibitions and the concurrent RAF-MEK inhibition

(Figure S7E) (Johannessen et al., 2013). We hypothesize that

the difference in drug responses are due to theMEKdependency

of the POI overexpression-induced ERK activation (i.e., an over-

expressed POI directly activating ERK will not be influenced by

upstream RAF and/or MEK inhibition). To test this, A375 cells

were transfected individually with vectors encoding ABL1,

BLK, FES, MAP3K2, MAP3K8, MOS, NTRK2, SRC, YES1, and

MEK1DD and were treated with the BRAFV600E inhibitor vemura-

fenib, MEK inhibitor CI1040, or the combination of both inhibitors

for 3 h. As expected, cells overexpressing MEK1DD were not

sensitive to vemurafenib, whereas treatment with CI1040 or the

combination treatment completely blocked ERK activation (Fig-

ures 7D and S7F). Similarly, cells that overexpressed MAP3K8,

MAP3K2, or MOS were resistant to vemurafenib but sensitive

to CI1040, suggesting that MEK activity is necessary for the

MAPK-ERK reactivation induced by these three kinases (Fig-

ure 7D, purple boxes). Other POIs, including ABL1, BLK, FES,

NTRK2, SRC, and YES1, showed abundance-dependent ERK

activation, even with the combination treatment of vemurafenib

and CI1040, indicating that these proteins activate ERK in an

MEK-independent manner (Figures 7D and S7F).

Analysis of the POI abundance-dependent p-MEK1/2 levels

confirmed that MAP3K8, MAP3K2, and MOS induced MEK1/2

activity (Figures 7E and S7F). Kinases BLK, FES, SRC, and

YES1 did not cause abundance-dependent MEK1/2 phosphory-

lation in all conditions (Figure 7E), validating that the overex-

pression of these kinases did not activate MEK (Figure S7F).

Abundances of both ABL1 and NTRK2 showed positive correla-

tions with p-MEK1/2 levels only when cells were treated simulta-

neously with CI1040 and vemurafenib (Figure 7E). This suggests

that ABL1 and NTRK2 activate both MEK and ERK. The addition

of CI1040 blocked theMEK-ERK binding (Allen et al., 2003), lead-

ing to the reduced ERK activity and the ERK-MEK negative

feedback, whereas the POI-induced signal inputs on MEK were

constant, resulting in the increased MEK phosphorylation levels

(Figure S7F). The diverse MAPK-ERK reactivation mechanisms

induced by these kinases are illustrated in Figure 7F. We note
-MEK1/2 (E) under the treatment conditions indicated by line colors.

different assessed POIs and the targets of applied inhibitors, vemurafenib

ed kinases in HEK293T cells.



that the data in our kinome and phosphatome screen with

HEK293T cells were indicative of MEK dependency in MAPK-

ERK reactivation, as the kinases MAP3K8, MOS, and MAP3K2

had high signaling relationship strength to p-MEK1/2 (Figure 7G).

Our analysis predicted potential biomarkers of MAPK-ERK reac-

tivation and identified a key mechanism for drug resistance in

melanoma cells carrying the BRAFV600E mutation. We further

classified MAPK-ERK reactivation mechanisms and revealed ki-

nases that induce resistance to BRAF-MEK combined inhibition.

DISCUSSION

The data described here are unique for the broad coverage of the

human kinome and phosphatome, the multiplexed measure-

ment of cellular phosphorylation states and dynamics at sin-

gle-cell resolution, and the wide continuous abundance range

(over three orders of magnitude) over which proteins of interest

were studied. Our analyses enabled protein abundance-deter-

mined functional classification, signaling kinetics quantification,

and the identification of potential biomarkers of drug resistance.

Protein abundance and mRNA expression levels of kinases

and phosphatases have been quantified in normal and diseased

tissues by multiple approaches (Petryszak et al., 2016; Uhlen

et al., 2017; Wang et al., 2015). Our analysis, for the first time,

characterized at kinome- and phosphatome-wide scope how

these proteins differentially modulate signaling network behav-

iors when expressed over a concentration gradient. In the over-

expression effect-based functional classification, we assigned

kinases and phosphatases into 10 clusters that partly agreed

with the kinase and phosphatase catalytic specificities, indi-

cating the dissimilar network alterations between signaling pro-

tein overexpression and activation. Functions of these signaling

proteins include non-catalytic roles such as allosteric regulation

and scaffolding (Kung and Jura, 2016). We showed that our

unique analysis is able to capture these non-catalytic effects

(Figure S3B). This finding is also highly relevant in cancer thera-

peutics in that targeting the catalytic function of a kinase may not

affect the deregulated signaling caused by abundance changes.

Future work with a kinome- and phosphatome-scale catalytically

inactive mutant library would allow global characterization of

signaling protein non-catalytic effects.

Phosphatase overexpression can drive tumor progression,

but the underlying signaling mechanisms have been unclear (Ju-

lien et al., 2011). Our data indicate that rather than directly acti-

vating a cancer-driving signaling pathway, the overexpression of

ERK-specific phosphatases modulates signaling dynamics,

resulting in a prolonged proliferative signal in cells. This supports

the suggestion that phosphatases should be considered thera-

peutic targets for cancer treatment (Bollu et al., 2017; Julien

et al., 2011; Low and Zhang, 2016).

The MAPK-ERK pathway reactivation induced by protein

overexpression is one cause of drug resistance to BRAF inhibi-

tors in melanoma (Johannessen et al., 2010). Therapies that

concurrently inhibit BRAF and MEK have been developed to

simultaneously target the active BRAF signal and the MAPK-

ERK reactivation signal. However, drug resistance still occurs

(Carlino et al., 2014; Eroglu and Ribas, 2016). In our kinome

and phosphatome analysis, we discovered a group of tyrosine
kinases, including SRC, FES, YES1, and BLK, that led to hy-

per-ERK activation independent of MEK activity, suggesting a

mechanism underlying drug resistance to the combined BRAF

and MEK inhibition in melanoma patients with BRAF mutations.

The identified kinases could be used as biomarkers to predict the

drug response to BRAF-MEK combined inhibition and to screen

for patients to be treated with alternative therapies. Compared to

previous population-based assays (Johannessen et al., 2010,

2013), our screening method is more sensitive and robust in

identifying drug resistance-related protein overexpression, as it

assesses signaling variances over a large POI range and can

be applied to highly heterogeneous samples.

Our analysis has several limitations. First, themeasured effects

of overexpression may be indirect; for example, protein overex-

pression may lead to cellular stress that activates MAPK-p38 or

MAPK-JNK cascades. However, even if indirect, these signaling

responses may be typical of such overexpression in diseased

conditions. Second, our mass-cytometry-based analysis used

antibodies targeting 30 specific phosphorylation sites. This

antibody panel does, however, cover the most critical and

informative phosphorylation sites known to be involved in the

cancer-related signaling network. Third, GFP-tag can disrupt

the localization of a kinase or phosphatase. In a previous study,

we cross-validated our results with multiple protein tagging sys-

tems and showed that perturbations on overexpression effects

due to the tag were rare (Lun et al., 2017). Fourth, the catalytic

functionality of many phosphatases requires the co-presence

of a phosphatase catalytic subunit and a phosphatase regulatory

subunit (Chen et al., 2017). Individually overexpressing one of

these subunits may not result in phosphatase activation; rather,

it may affect the kinetics of related dephosphorylating reaction

in cells, and this is what we characterized in the present study.

In summary, we demonstrated, in a human kinome- and phos-

phatome-scale analysis, how the overexpression of individual

signaling proteins modulates signaling networks in an abun-

dance-dependent manner and how the provided datasets can

reveal biological insights underlying diseased conditions. Our

data established that protein expression levels can result in

different signaling states in a population of cells treated identi-

cally. Our analysis expands the functional classification of the

human kinases and phosphatases and suggests 208 signaling

relationships that can be interrogated to improve our under-

standing of signaling causality and network structure. Our data

are also suitable for the inference of signaling pathway kinetics

using mathematical models and for the development of network

reconstruction methods.
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p-CREB/ATF1 (Ser133 of CREB/Ser63 of ATF1),

Clone J151-21

BD Biosciences Cat# 558436; RRID: AB_647204

p-STAT5 (Tyr694), Clone 47/Stat5 BD Biosciences Cat# 612567; RRID: AB_399858

p-SRC (Tyr418), Clone SC1T2M3 eBioscience Cat# 14-9034-82; RRID: AB_2572916

p-FAK (Tyr397), Polyclonal Cell Signaling Technology Cat# 3283; RRID: AB_2173659

p-MEK1/2 (Ser221), Clone 166F8 Cell Signaling Technology Cat# 2338; RRID: AB_490903

p-MAPKAPK2 (Thr334), Clone 27B7 Cell Signaling Technology Cat# 3007; RRID: AB_490936

p-p70S6K (Thr389), Clone 1A5 Cell Signaling Technology Cat# 9206; RRID: AB_2285392

p-MKK4 (Ser257/Thr261), Clone C36C11 Cell Signaling Technology Cat# 4514; RRID: AB_2140946

p-STAT1 (Ser727), Polyclonal Cell Signaling Technology Cat# 9177; RRID: AB_2197983

p-p53 (Ser15), Clone 16G8 Cell Signaling Technology Cat# 4030; RRID: AB_10694347

p-NFkB (Ser529), Clone K10-895.12.50 BD Biosciences Cat# 558393; RRID: AB_647284

p-p38 (Thr180/Tyr182), Clone 36/p38 BD Biosciences Cat# 612289; RRID: AB_399606

p-AMPKa (Thr172), Clone 40H9 Cell Signaling Technology Cat# 5256; RRID: AB_10705605

p-AKT (Ser473), Clone D9E Cell Signaling Technology Cat# 5012; RRID: AB_2224726

p-ERK1/2 (Thr202/Tyr204), Clone 20A BD Biosciences Cat# 612359; RRID: AB_399648

p-MARCKS (Ser167/170), Clone D13E4 Cell Signaling Technology Cat# 8722; RRID: AB_10999091

cyclin B1, Clone GNS-11 BD Biosciences Cat# 554178; RRID: AB_395289

p-GSK3b (Ser9), Clone D85E12 Cell Signaling Technology Cat# 5558; RRID: AB_10013750

GAPDH, Clone 6C5 Thermo Fisher Scientific Cat# AM4300; RRID: AB_2536381

p-MKK3/6 (Ser189 of MKK3/Ser207 of MKK6),

Clone D8E9

Cell Signaling Technology Cat# 12280

p-PDK1 (Ser241), Clone J66-653.44.22 BD Biosciences Cat# 558395; RRID: AB_647291

p-BTK/ITK (Tyr551 of BTK/Tyr551 of ITK), Clone

24a/BTK

BD Biosciences Cat# 558034; RRID: AB_2067823

p-p90RSK (Ser380), Clone D5D8 Cell Signaling Technology Cat# 12032

p-SMAD2/3 (Ser465/467 of SMAD2/Ser423/425 of

SMAD3), Clone D27F4

Cell Signaling Technology Cat# 8828; RRID: AB_2631089

b-catenin (Non-phospho Ser33/37/Thr41),

Clone D13A1

Cell Signaling Technology Cat# 8814; RRID: AB_11127203

p-STAT3 (Tyr705), Clone 4/P-STAT3 BD Biosciences Cat# 612356; RRID: AB_399645

p-JNK (Thr183/Tyr185), Clone G9 Cell Signaling Technology Cat# 9255; RRID: AB_2307321

p-PLCg2 (Tyr759), Clone K86-689.37 BD Biosciences Cat# 558490; RRID: AB_647226

GFP, Clone FM264G BioLegend Cat# 338002; RRID: AB_1279414

p-HH3 (Ser28), Clone HTA28 BioLegend Cat# 641002; RRID: AB_1227659

p-S6 (Ser235/Ser236), Clone N7-548 BD Biosciences Custom made

cleaved PARP, Clone F21-852 BD Biosciences Cat# 552596; RRID: AB_394437

p-mTOR (Ser2448), Clone D9C2 Cell Signaling Technology Cat# 5536; RRID: AB_10691552

p-c-RAF (Ser259), Clone Polyclonal Thermo Fisher Scientific Cat# 44-502; RRID: AB_2533669

p-RB (Ser807/811), Clone D20B12 Cell Signaling Technology Cat# 8516; RRID: AB_11178658

p-4EBP1 (Thr37/46), Clone 236B4 Cell Signaling Technology Cat# 2855; RRID: AB_560835

Chemicals, Peptides, and Recombinant Proteins

Paraformaldehyde Electron Microscopy Sciences Cat# 15710

Maleimido mono amide DOTA (mDOTA) Macrocyclics Cat# B-272
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Iridium Fluidigm Cat# 201192A

Maxpar X8 Multimetal labeling kit Fluidigm Cat# 201300

Lanthanide (III) metal isotopes as chloride salts Fluidigm N/A

jetPRIME PolyPlus Cat# 114-15

X-treme GENE HP Roche Cat# 6366236001

Recombinant Murine EGF Peprotech Cat# 315-09

vemurafenib Selleckchem Cat# S1267

CI1040 Selleckchem Cat# S1020

Deposited Data

Integrated raw data and preprocessed data This paper https://doi.org/10.17632/3kh7ypz232.1

Experimental Models: Cell Lines

HEK293T ATCC Cat# CRL-3216, RRID:CVCL_0063

A375 A gift from Dr. Lukas Sommer N/A

Recombinant DNA

The human kinase library plasmid kit Addgene Kit# 1000000014

ORFeome Human Entry Collection Phosphatase Dharmacon Cat# OHS4941

pDEST pcDNA5 FRT TO-eGFP A gift from Dr. Anne-Claude Gingras N/A

pDEST 30 Triple Flag pcDNA5 FRT TO A gift from Dr. Anne-Claude Gingras N/A

pFLAG-CMV-hErk1 (K71R) Addgene Plasmid # 49329

pCIG AKT3 (K177M) Addgene Plasmid # 73051

pMCL-HA-MAPKK1-8E (K97M) Addgene Plasmid # 40811

IRES-GFP-AXL-KD (K567R) Addgene Plasmid # 65498

FLAG.PKCepsilon.K/W (K437W) Addgene Plasmid # 10796

Software and Algorithms

Cytobank Cytobank https://www.cytobank.org/

Concatenation tool Cytobank https://support.cytobank.org/hc/en-us/articles/

206336147-FCS-file-concatenation-tool

Normalizer Finck et al., 2013 https://github.com/nolanlab/bead-

normalization/releases

Single cell debarcoder Zunder et al., 2015 https://github.com/nolanlab/single-cell-

debarcoder

BP-R2 analysis Lun et al., 2017 https://github.com/BodenmillerGroup/Adnet

t-SNE van der Maaten and Hinton, 2008 https://github.com/jkrijthe/Rtsne

STRING Szklarczyk et al., 2017 https://string-db.org/

OmniPath T€urei et al., 2016 http://omnipathdb.org/

Shape-based clustering Genolini et al., 2015 R package ‘kml’
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Bernd

Bodenmiller (bernd.bodenmiller@imls.uzh.ch).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

HEK293T cells, obtained from ATCC, were cultured in DMEM (D5671, SIGMA), supplemented with 10% FBS, 2 mM L-glutamine,

100 U/ml penicillin, and 100 mg/ml streptomycin. A375 cells, a gift from Dr. Lukas Sommer at University of Z€urich, were cultured

in RPMI Medium 1640 (21875-034, GIBCO) with 10% FBS, 100 U/ml penicillin, and 100 mg/ml streptomycin. For cell passaging or

harvesting, HEK293T cells and A375 cells were incubated with 1X TrypLE Express (Life Technologies) at 37�C for 2 min and

5 min, respectively.
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METHOD DETAILS

Cloning
The human kinase library plasmid kit, containing open reading frames (ORFs) in Gateway Entry vectors, was provided by William

Hahn and David Root (Johannessen et al., 2010; Yang et al., 2011) via Addgene (Kit # 1000000014). The human phosphatase library

was obtained from Dharmacon (OHS4941, ORFeome Human Entry Collection Phosphatase). Destination vectors, including pDEST

pcDNA5 FRT TO-eGFP and pDEST 30 Triple Flag pcDNA5 FRT TO, were kindly provided by Dr. Anne-Claude Gingras at Mount Sinai

Hospital, Toronto, Canada (Couzens et al., 2013). Expression vectors encoding the FLAG- or GFP-tagged fusion proteins were

generated via Gateway Cloning and sequenced before transfection. Vectors for kinase-dead mutants, including pFLAG-CMV-

hErk1 (K71R) (Addgene plasmid # 49329), pCIG AKT3 (K177M) (Addgene plasmid # 73051), pMCL-HA-MAPKK1-8E (K97M) (Addg-

ene plasmid # 40811), IRES-GFP-AXL-KD (K567R) (Addgene plasmid # 65498), and FLAG.PKCepsilon.K/W (K437W) (Addgene

plasmid # 10796) were gifts from Melanie Cobb, Joseph Gleeson, Natalie Ahn, Aaron Meyer, and Alex Toker, respectively (Baek

et al., 2015; Cenni et al., 2002; Meyer et al., 2015; O’Neil et al., 1990).

HEK293T cell transfection and stimulation
HEK293T cells were seeded at the density of 0.7 million per well in 6-well plates. After 24 h, cells were transfected with 2 mg plasmid

and 4 mL of jetPRIME (PolyPlus) per well with the standard protocol provided by the manufacturer. For kinase and phosphatase dou-

ble transfection experiments, cells were transfected with plasmids encoding GFP-tagged kinases and FLAG-tagged phosphatases

16 h and 24 h after seeding, respectively. Half the amounts of plasmid and jetPRIME were used in each round for co-overexpression

experiments. At 18 h after transfection, EGF (Peprotech) was added to a final concentration of 100 ng/ml. At 20 min before a given

EGF stimulation time point, 5-iodo-deoxycytidine (IdU) was added to themedium at the final concentration of 10 mM.At 2min before a

given EGF stimulation time point, mediumwas replaced by 1X TrypLE to induce cell detachment. At the time point, paraformaldehyde

(PFA, from Electron Microscopy Sciences) was added to the cell suspension to a final percentage of 1.6%, and cells were incubated

at room temperature for 10min. If EGF stimulation was not necessary in the experiment, cells were directly harvested and crosslinked

with PFA.

A375 cell transfection
A375 cells were seeded at the density of 0.15 million per well in 6-well plates. At 24 h after seeding, transfection was performed using

2 mg plasmid and 4 mL of X-treme GENE HP reagent (06 366 236 001, Roche) per well with the standard protocol provided by the

manufacturer.

Kinase inhibition with small molecules
BRAFV600E inhibitor vemurafenib andMEK inhibitor CI1040 (stock solutions of 10 mM/mL in DMSO, Selleckchem) were added to the

cells 18 h after transfection independently or in combination at final concentrations of 1 mM and 10 mM, respectively. The same vol-

ume of DMSOwas added to the control samples. Cells were treated either for 3 h or for 2 days. At the end of the treatment, cells were

labeled with IdU during 20-minute incubation and subsequently harvested by 5-minute TrypLE digestion and 10-minute PFA cross-

linking as described above.

Methanol permeabilization
Crosslinked cells were washed twice with cell stainingmedia (CSM, PBSwith 0.5%BSA). After centrifugation, ice-coldmethanol was

used to resuspend the cells, followed by 10-minute permeabilization on ice or for long-term storage at �80�C.

Antibody conjugation
TheMaxPAR antibody conjugation kit (Fluidigm) was used to generate isotope-labeled antibodies using themanufacturer’s standard

protocol. After conjugation, the antibody yield was determined based on absorbance of 280 nm. Candor PBS Antibody Stabilization

solution (Candor Bioscience GmbH) was used to dilute antibodies for long-term storage at 4�C.

Barcoding and staining protocol
Formalin-crosslinked and methanol-permeabilized cells were washed three times with CSM and once with PBS. Cells were incu-

bated in PBS containing barcoding reagents of 89Y (100 nM), 103Rh (2 mM), 105Pd (100 nM), 106Pd (100 nM), 108Pd (100 nM), 110Pd

(100 nM), 113In (200 nM), 115In (100 nM), and 209Bi (20 nM) for 30 min at room temperature and then washed three times with

CSM. Barcoded cells were then pooled and stained with the metal-conjugated antibody mix (Table S2) at room temperature for

1 h. The antibody mix was removed by washing cells three times with CSM and once with PBS. For DNA staining, iridium-containing

intercalator (Fluidigm) diluted in PBS with 1.6% PFA was incubated with the cells at 4�C overnight. On the day of the measurement,

the intercalator solution was removed, and cells were washed with CSM, PBS, and ddH2O. After the last washing step, cells were

resuspended in ddH2O and filtered through a 70-mm strainer.
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Mass cytometry analysis
EQ Four Element Calibration Beads (Fluidigm) were added to cell suspensions in a 1:10 ratio (v/v). Samples were analyzed on a

CyTOF2 (Fluidigm). The manufacturer’s standard operation procedures were used for acquisition at a cell rate of �500 cells per

second. After the acquisition, all FCS files from the same barcoded sample were concatenated (Bodenmiller et al., 2012). Data

were then normalized, and bead events were removed (Finck et al., 2013) before doublet removal and de-barcoding of cells into their

corresponding wells using a doublet-filtering scheme and single-cell deconvolution algorithm (Zunder et al., 2015). Subsequently,

data were processed using Cytobank (https://www.cytobank.org). Additional gating on the DNA channels (191Ir and 193Ir) and
139La/141Pr was used to remove remained doublets, debris and contaminating particulate.

QUANTIFICATION AND STATISTICAL ANALYSIS

Data preprocessing and BP-R2 analysis
Data preprocessing

Raw data were transformed using the inverse hyperbolic sine transform with a cofactor of 5:

data= arcsinhðdataraw=5Þ
Except where use of raw data values is specifically noted, all visualizations and analyses were performed using transformed data.

Data binning

For data binning, the range between the lower and upper 2.5% of observations was divided into ten equal bins bin1,...,bin10. The

observations in the lower and upper 2.5%were assigned to the lowest and highest bins, respectively. In order to be able to compare

expression levels between sampleswithin a time course experiment, all observations of the time coursewere pooled to determine the

binning.

BP-R2

BP-R2 analysis is described in Lun et al., 2017 (https://github.com/BodenmillerGroup/Adnet). In brief, the median of a measured

marker ð~yiÞ was calculated for each bin i. Additionally, the overall mean of the medians of all the 10 bins (m~y
) was calculated (bins

with less than 25 cells were discarded). Then, for each bin, we computed the sum of squared deviations from the bin medians

and the sum of squared deviations from the overall mean of medians. These values were summed over all bins and the BP-R2

was defined as one minus the ratio between them:

R2
BP = 1�

Pnbins
i =1

1
ni

Pni
j = 1

�
yij � ~yi

�2
Pnbins

i = 1
1
ni

Pni
j = 1

�
yij � m~y

�2
Threshold determination

Following the method described in Lun et al., 2017, we chose the maximum BP-R2 among all the 108 control samples (FLAG-GFP

overexpression and untransfected cells) as a cutoff. Relationships that had a BP-R2 higher than this threshold were considered as

sufficiently strong to be of interest.

Signed-BP-R2

The relationship strengths calculated as BP-R2 were mostly positive, with a few exceptions of negative BP-R2 values mostly from the

cell cycle marker IdU, due to bimodality. These rare and weak negative BP-R2 values were considered as negligible and were there-

fore assigned to 0. This allowed the integration of signaling relationship directionalities, determined by Spearman correlation of bin

medians (rbin), with the relationship strengths (R2
BP). The signed-BP-R2 score ðR2

signed�BPÞ was calculated as:

R2
Signed�BP =

�
R2

BP; rbin R0
�R2

BP; rbin < 0

Hierarchical clustering
Hierarchical clustering was performed for kinases and phosphatases on their abundance-dependent signaling relationships, as

signed-BP-R2, to all measured phosphorylation sites with and without 10-minute EGF stimulation. Ward’s method and Euclidean

distances (Ward, 1963) were used for the clustering, and the hierarchical tree was cut at the height of 5 to obtain 10 clusters of kinases

and phosphatases as shown in Figure S2A.

t-SNE analysis
t-SNE analysis was performed with the Package ‘Rtsne’ in R.

Functional enrichment and association analysis using STRING database
The functional enrichment and interaction enrichment analyses were performed using the STRING database v10.5 (Szklarczyk et al.,

2017). All the kinases and phosphates tested were mapped to STRING protein name-space establishing the background protein set

for the further analysis. The functional enrichment p values were corrected using Benjamini and Hochberg method (Benjamini and
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Hochberg, 1995) (the detailed description of the statistical methods can be found in Franceschini et al., 2013). To test whether the

functional signal within the clusters arises exclusively from a homology between the proteins, the homologous proteins were grouped

together into one node, and, therefore, the proteins that exhibited high or medium homology did not contribute independently to the

enrichment functional term count. In order to form the grouped representation of the STRING network the single-linkage clustering

methodwas applied to the homology relationships between the proteins in which neighbors were defined as having a self-normalized

bit score (BLAST bit score of alignment between the two proteins divided by the bit score of self-alignment of shorter of the two

proteins) equal to or higher than 0.2. For each functional term the grouped node contributed to the enrichment count when one or

more of the proteins forming the group were annotated with the term in question. This process was applied to both the clusters

and the background separately to ensure that for the groups in which proteins were shared between the cluster and the background

the functional term was counted in both sets.

Shortest signed directed path analysis using OmniPath
The pathway analysis was performed for all signaling relationships between overexpressed POIs and measured phosphorylation

sites using OmniPath (http://omnipathdb.org/), a collection of literature curated human signaling pathways integrated from 25 data-

bases (pathway databases: TRIP, SPIKE, SignaLink3, Guide2Pharma, CA1, ARN, NRF2ome,Macrophage, DeathDomain, PDZBase,

Signor; interaction databases: BioGRID, CancerCellMap, MPPI, DIP, InnateDB, MatrixDB; PTM databases: PhosphoSite, DEPOD,

LMPID, phosphoELM, ELM, DOMINO, dbPTM, HPRD-phos) (T€urei et al., 2016). The shortest path was determined based on based

on Breadth-First Search methods, computed through a Python module called pyPath (T€urei et al., 2016).

Shape-based clustering
For each signaling relationship between a phosphorylation site and an overexpressed protein, the median phosphorylation abun-

dance in each pre-defined bin was calculated using arcsinh transformed data. K-means shape-based clustering was performed

with the package ‘kml’ (Genolini et al., 2015) in R for all strong POI abundance-dependent signaling relationships after 0-1 normal-

ization on phosphorylation abundance (in Figure 1D), or for signaling trajectories over 1-hour EGF stimulation time course without

data normalization (in Figure S6). Euclidean distance was used as similarity measure.

Selection of strong signaling dynamic influencing POIs
For each pair of signaling relationships between an overexpressed POI and a measured phosphorylation site, the delta BP-R2 score

was calculated as the signed-BP-R2 value with 10-minute EGF stimulation minus the signed-BP-R2 value in unstimulated cells. We

selected the 10 POIs with the largest positive differences in signed-BP-R2, the 10 POIs with the largest negative difference in signed-

BP-R2, the 20 POIs with the most signaling relationships in the 99th percentile of the difference in signed-BP-R2, and the 10 central

signaling dynamic regulators in theMAPK/ERK and AKT pathways known from the literature (Steelman et al., 2011). Some POIs were

in more than one set, so this resulted in 39 kinases and phosphatases.

Signaling amplitudes analysis
The signaling amplitudes analysis was adapted from our previous methods (Lun et al., 2017). The fold change of median phosphor-

ylation abundance for each bin in EGF-stimulated samples over the corresponding bin of the unstimulated sample (EGF 0 min) was

calculated using the raw count. The amplitude for each bin was identified as the maximal fold change over all time points. Amplitude

ratios between the second highest and the second lowest bin amplitudes were computed for all samples, and the highest amplitude

ratio in all FLAG-GFP overexpression and untransfected controls was used to determine the cutoff for robust and strong abundance-

dependent changes.

DATA AND SOFTWARE AVAILABILITY

All raw data and pre-analyzed data are available at Mendeley Data under the following link:

https://doi.org/10.17632/3kh7ypz232.1.
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Figure S1. Kinase and phosphatase overexpression impacts cell signaling, Related to 
Figure 1 
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A, BP-R2 is a density-independent analysis that measures protein abundance-dependent 

signaling relationship strength by quantifying deviation from bin median versus the global mean 

of bin medians (Lun et al., 2017). B, BP-R2 analysis is robust in measuring the strength of 

complex signaling relationships regardless of their directionality, linearity, and average signal 

levels. C, Heat map of signaling relationship strength (as quantified by BP-R2) between 

overexpressed RPS6KA2-GFP or the control FLAG-GFP to every measured phosphorylation 

site with or without 10-minute EGF stimulation. Signaling relationships assessed with HEK293T 

cells were reproducible in four other cell lines from different origins, including a epidermoid 

carcinoma cell line A431, a colorectal adenocarcinoma cell line DLD1, a breast adenocarcinoma 

cell line MDA-MB-231, and a breast ductal carcinoma cell line T47D. D, Pie chart shows the 

number of POIs that have strong (BP-R2 > 0.13) overexpression-induced signaling relationships 

to the measured phosphorylation sites. Three-fourths of the POIs modulated one to five 

phosphorylation sites. E-F, Signaling relationships between KSR2-GFP to p-MAPKAPK2 

(Thr334) or to p-ERK1/2 (Thr202/Tyr204) with four different treatments indicated with line 

colors. KSR2 overexpression caused an exponential increase in phosphorylation levels of 

MAPKAPK2 in the absence of EGF. Upon EGF stimulation, this relationship became linear. 

MEK inhibitor CI1040 did not influence the KSR2 overexpression-dependent MAPKAPK2 

phosphorylation, although it drastically reduced the p-ERK1/2 levels, suggesting a MAPK/ERK-

independent MAPKAPK2 activation pathway that is turned on only when KSR2 is present at 

high levels. G, KSR2 abundance-dependent p-MAPKAPK2 signaling can be MAPK/ERK 

cascade-dependent (left) or MAPK/ERK cascade-independent (right). H-J, Signaling 

relationships between TEC-GFP and p-ERK1/2 or between TEC-GFP and p-MEK1/2 with four 

different treatments indicated with line colors. Increased TEC abundance led to non-monotonic 

ERK1/2 phosphorylation that could be partially diminished by MEK inhibition, indicating the 

presence of both MEK-dependent and MEK-independent pathways for the TEC overexpression-

induced ERK activation. CI1040 inhibited MEK activity and its dephosphorylating processes 

(Allen et al., 2003). Thus, the bow-like TEC to p-MEK1/2 relationship shape under the CI1040 

treatment condition indicated the reduction of signal input to MEK at high TEC expression 

levels. 
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Figure S2. Classification of kinases and phosphatases based on abundance-dependent 
effects to cancer signaling networks, Related to Figure 2 

A, Heat map shows the signed-BP-R2 of all 327 cancer signaling network-influencing POIs (i.e., 

POIs with at least one strong overexpression-induced signaling relationship, BP-R2 > 0.13) to 

every phosphorylation site with or without 10-minute EGF stimulation. Hierarchical clustering 

identified 10 groups of kinases or phosphatases with the similar network-influencing properties. 

B, Three different clustering methods, hierarchical clustering, Phenograph (Levine et al., 2015), 

and k-means clustering show similar results on kinase and phosphatase overexpression effects, 

as color-coded on t-SNE plots. C, Corresponding components between identified hierarchical 

clusters (the same cluster color code as in panel (A), and kinase/phosphatase classifications 

based on the sequence of protein catalytic domains. D, Kinases with strong network effects 

plotted on the phylogenetic tree of the human kinome, with the clusters number assigned in 

panel (A) as color-code (Illustration reproduced courtesy of Cell Signaling Technology, Inc. 

www.cellsignal.com).  
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Figure S3. Comparison of kinase and phosphatase overexpression effects to their 
catalytic functions, Related to Figure 3 
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A, Functional association analysis was performed for clusters 1, 2, 3, 4, 5, 6, 8, 9, and 10. 

Edges with confidence above 0.2 are shown in the network. Functional enrichments are color-

coded and labeled on the nodes. B, Analysis of wild-type kinases AKT3, AXL, MAPK3, PRKCE, 

MAP2K2, and kinase-dead mutants AKT3K177M, AXLK567R, MAPK3K71R, PRKCEK437W, and 

MAP2K1K97M on abundance-dependent effects to the signaling network with and without 10 min 

EGF stimulation.  
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Figure S4. Potential signaling relationships detected by the kinome and phosphatome 
screen reveal overexpression-induced AMPK activation is related to poor prognosis in 
cancer patients, Related to Figure 4 

A, Counts of strong (BP-R2 > 0.13) abundance-dependent signaling relationships with shortest 

signed directed path length of 0-5 or with infinite path length (calculated using the Omnipath 

database) for each sequenced-based kinase and phosphatase classification. B, Shortest signed 

directed path length for each identified signaling relationships shown in Circos plots for the 

clusters of 1, 2, 3, 4, 6, 7, 9, and 10. C, CPTAC proteome study on TCGA breast invasive 

carcinoma samples (Koboldt et al., 2012) shows highly correlated expression levels between 

RIOK2 and AMPK subunit β (PRKAB1, PRKAB2), γ (PRKAG1, PRKAG2), and AMPK upstream 

regulator LKB1 (STK11). D, Model of the AMPK complex. AMPK activity can be controlled by an 

upstream kinase LKB1 (STK11) and by RIOK2.  E-F, The relevance of kinase and phosphatase 

overexpression and the prognosis of breast cancer (E) and ovarian cancer (F) patients were 

assessed, and plotted against abundance-dependent signaling relationship strengths quantified 

by signed-BP-R2. Kinases with capability for overexpression-induced AMPK activation 

(annotated on the plots) were found to be associated with significantly worse patient prognosis 

in both cancer types. G-H, Survival analysis of breast cancer patients with CSNK1A1 or 

CDC25C overexpression, and ovarian cancer patients with NEK7, TLK1, or CDC25C 

overexpression. 
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Figure S5. Analysis of kinase and phosphatase overexpression-dependent signaling 
dynamics in EGF stimulation time course, Related to Figure 5 

A, Variances of signed-BP-R2 between cells with or without 10-minute EGF treatment are 

plotted for all identified clusters in the global analysis. B, Correspondence analysis shows to 

which 10 clusters as derived from the kinome and phosphatome analysis, the six dynamic 

signaling groups belong to. C, Phosphorylation levels of p-ERK1/2, p-AKT, p-SRC, p-GSK3β, p-

p38, and p-STAT3 were assessed with and without 10-minute EGF stimulation in cell lines of 

A431, DLD1, HEK293T, MDA-MB-231, T47D, and THP1. D-E, Violin plots show cell distribution 

in each of ten bins based on GFP-tagged POI expression level for (D) DUSP4-GFP to p-

p90RSK, and (E) PTPN2-GFP to p-p90RSK over the 1-hour EGF stimulation time course. 

Medians of all 10 bins are connected to indicate the shape of signaling relationships (black 

lines) with the relationship strength quantified by signed-BP-R2, as shown on top of each 

individual plot. Medians of each bin over the 1-hour EGF stimulation time course are plotted 

separately to demonstrate the POI abundance-dependent signaling trajectories. F, Schematic 

plots of amplitude analysis. The abundance levels of the overexpressed GFP-POI were split into 

ten bins (left). Median phosphorylation in each bin over the 1-hour EGF stimulation time course 

are plotted to visualize abundance dependency of signaling amplitudes (right). G-H, Heat maps 

show pairs of signaling relationships with protein abundance-influenced signaling amplitudes 

with (G) positive relationships and (H) negative relationships determined by the summed 

Spearman correlation over all time points.  
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Figure S6. POI abundance-dependent p-ERK1/2 or p-MEK1/2 signaling trajectories, 
Related to Figure 5 

A, Analyzing p-ERK1/2 signaling trajectories over the 1-hour EGF stimulation time course for 

each bin of the 39 assessed proteins using shape-based clustering (Genolini et al., 2015) 

resulted in the classification of eight trajectory types. B, Distributions of p-ERK1/2 trajectory 

types over the POI bins (expression levels) shows type D, F, G, and H only present with POI 

overexpression. C, The identification of kinases which cause abundance-dependent ERK1/2 

prolonged activation. D, The identification of kinases and phosphatases that cause abundance-

dependent ERK1/2 inactivation. E, Analyzing p-MEK1/2 signaling trajectories over the 1-hour 

EGF stimulation time course for each bin of the 39 assessed proteins using shape-based 

clustering resulted in the classification of eight trajectory types. F, Distributions of p-MEK1/2 

trajectory types over the POI bins (expression levels) shows type E, F, G, and H only present 

with POI overexpression. G, The identification of kinases and phosphatases causing 

abundance-dependent MEK1/2 prolonged activation. H, Kinases and phosphatases that cause 

abundance-dependent MEK1/2 inactivation.   
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Figure S7. Kinase overexpression induces MAPK/ERK inhibition resistance in the 
melanoma A375 cell, Related to Figure 7 

A-B, Signed-BP-R2 values of each overexpressed POI to p-ERK1/2 (A) before and (B) after 10-

minute EGF stimulation. Kinases previously shown to induce MAPK/ERK inhibition resistance in 

A375 cells (Johannessen et al., 2010, 2013) are labeled. 82.4% previously identified resistance-

driving kinases can induce strong signaling relationship to p-ERK1/2 when overexpressed. C, 

Heat map of abundance-dependent relationship strength for each overexpressed POI to p-

ERK1/2, quantified as signed-BP-R2 from three replicate experiments. D, The mean differences 

of the three replicates between vemurafenib-treated cells and DMSO-treated cells in their 

signed-BP-R2 scores with p-ERK1/2. E, Kinases of MAP3K8, MOS, and SRC were previously 

identified as candidates for MAPK/ERK inhibition resistance in A375 cells (Johannessen et al., 

2013). Viability z-scores of A375 cells under four different inhibitor treatments are plotted using 

data from Johannessen et al., 2013. F, Models indicate the MAPK/ERK cascade states when 

cells overexpressing different MAPK/ERK reactivating kinases, under vemurafenib mono-

treatment of vemurafenib-CI1040 combination. 
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