Supplementary Web Appendix for:
Censoring Unbiased Regression Trees and Ensembles

References to Sections preceded by “S.” and figures, tables, theorems and equations preceded by
“S-” are internal to this supplement; all other references refer to the main paper. Example R
code implementing the CURFE— Lo algorithms in the case of the nonparametric bootstrap for the
Copenhagen Stroke study is also included in a separate file as additional supplementary material.
Other code is available upon request from Dr. Jon Steingrimsson.

The Supplementary Web Appendix is organized as follows.

1. Section S.1 describes the CURE-Ly algorithms using the Brier loss.

2. Section S.2 presents additional simulation results.

3. Section S.3 presents further details on OOB-Based variable importance measures.
4. Section S.4 gives additional results related to the data analysis section.

5. Sections S.5-S.7 give detailed proofs of results from the main paper.



S.1 The CURE—-L; Algorithm With Brier Loss

Let Lio(T, (W) = (I(T > t) — (W))? denote the (full data) Brier loss function; see Section
3.3. Minimizing this squared error loss function directly induces a simple estimator for Sy(t|1V).

The IPCW Brier loss function
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is a CUT for Lyo(T, ¢¢(W)) when G(+|-) = Go(+|-), and leads to one possible observed data estimator
for Sp(t|WW') when integrated into a tree or ensemble procedure.

Graf et al. (1999) proposed a “time-dependent” Brier loss function with censored outcome data
that also requires the specification (or estimation) of Gy(-|-). Calculations similar to Lostritto et al.

(2012) show that this loss function is constructed from terms of the form
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where O(t) = (T(t), A(t), W), T(t) = min(T(t),C') and A(t) = I(T(t) < C) and the stated equiva-
lence follows from the fact that Lo (T(t), ¥ (W)) = Ly.2(T,¢¢(W)). Similarly to L2 ipew (O, ¢ G),
straightforward calculations show that L. ipew(O(t),¥r; G) is a CUT for Lyo(T,v:(W)) when
G(+]-) = Go(-|-). The value of I(T > t) can be unambiguously determined when A(¢) = 1, which
occurs if either A = 1 or if A = 0 and T > t. As a result, L2 ipew(O(t), ¥y; G) uses more of the
available information in the data for estimating So(¢|W) when compared to L. ipew (O, ¥1; G).

Mathematically, the equivalence Ly.o(T,¢:(W)) = Lyo(T'(t),1+(W)) combined with the con-
struction of L2 ipew (O(t), ¢r; G) suggests applying (6) to the observed data structure O(t) with
L(Z, (W) = L.2(T(t),¢:(W)); simplifying the resulting expression, we obtain
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where myo(u, w; S) = Eg[(I(T > t) — e(W))2|T > u,W = w] for any proper survival func-
tion S(-|-). The leading term in (S-1) is L2 ipew(O(t), ¢1; G) and it can be shown that (S-1) and

Lio(T,¢+(W)) have equal conditional (i.e., given W) expectations if either G(-|-) = Go(-|-) or



S(-|) = So(-|-); hence, it is a doubly robust CUT for L¢.o(T,¢¢(W)). Similarly, the direct applica-
tion of (7) to O(t) combined with the equivalence Ly.o(T', 1¢(W)) = Ly.o(T'(t), (W) gives

AT 2 ) = e(W))* + (1 = A@))mua(T(2), W3 5) (S-2)

as a CUT for Lyo(T, ¢(W)) when S(-|-) = So(+]-).

We respectively refer to (S-1) and (S-2) as the doubly robust and Buckley-James Brier loss
functions, denoted respectively by Lo 4(O(t),¢; G, S) and Lyop(O(t), 4y S). Because (S-1) and
(S-2) are each CUTSs for the Brier loss function (i.e., squared error loss) and focus directly on
estimating So(t|WV), the results of Section 4.1 and Theorem 4.1 can be used to justify implementing
the corresponding CURT— Lo algorithm by applying CART with squared error loss to the imputed
dataset {(Z(0;(t); G,8),W});i=1,...,n} where Z(0;(t); G, S) = A1;(G) + B1;(G, S) — Cri(G, S)
is computed by replacing (log T}, A;) with (I(T; > t), Ay(t)). Section 4.2 gives the corresponding
recipe for implementing CURE—Ly with either (S-1) or (S-2). In both cases, the terminal node
estimators used to construct the ensemble predictor for Sy (¢|7V) in Section 5.4 are naturally induced
by the choice of loss function.

As described in Section 5.3, the estimator for Go(:|-) is modified to avoid violations of the
positivity assumption using “Method 2”7 truncation; see Steingrimsson et al. (2016) for a detailed
description of “Method 2” truncation. The doubly robust Brier loss at time ¢ automatically induces
this kind of truncation with 9 = t; hence as long as J is larger than the time-point used to calculate
the Brier loss, “Method 2” truncation has no discernible effect.

The doubly robust Brier loss function (S-1) and the Buckley-James Brier loss function (S-2)
are potentially of interest in settings that extend outside the scope of this paper. For example,

similarly to Graf et al. (1999), one may find these methods useful in validating prognostic models.

S.2 Additional Simulation Results

In this section we summarize additional simulation results that supplement those given in Section 5
in the main document. We employ CURE-Ls algorithms with the doubly robust and Buckley-James

Brier losses. We use Brier to denote the CURE-L4y algorithm with the doubly robust loss function



given by (S-1); see Section S.1. Similarly to L2 and L2-BJ, G(-|-) and S(:|-) are replaced by the
estimates described in Section 5.3 of main paper. Finally, we use Brier BJ to denote the same
algorithm as Brier, but where G(tjw) = 1 everywhere. Due to the superior or similar performance
of the RIST algorithm with at least 6 cases per terminal node compared to having at least 3 cases

per terminal node we only include the former in all results presented in the Appendix.

S.2.1 Results for 25th and 75th quantiles

Figures S-1 through S-3 show results estimating P(T > ¢|WW) with ¢ chosen as the 25th, 50th and
75th quantile of the marginal failure time distribution in simulation settings 1 — 4; these plots
augment the comparisons in Figure 1 of the main paper by including results for the Brier loss
function (i.e., Brier and Brier BJ) and considering two additional time points. See Section 5.1 of
the main paper for details regarding the simulation setup.

The trends for the CURFE— Lo algorithm are similar to the ones seen in Figure 1. The CURE— Lo
algorithms L2 and L2 BJ outperform RSF in all settings. Compared to CI, these methods are
significantly better in Settings 3 and 4 and perform similarly in Settings 1 and 2. For RIST,
performance is similar in all settings and at all quantiles. There is somewhat greater variation
in the performance comparisons for the single time point methods Brier and Brier BJ methods,
though generally speaking these methods are reasonably competitive to the others (each of which
uses information across time). The respective performance of the Buckley-James and doubly robust
CUTs is similar in all settings, though there are notable improvements using the Buckley-James
CUT (Brier BJ vs. Brier) at the 75th quantile in Settings 3 and 4. It is well known that estimators
based on IPCW weights, such as doubly robust estimators, have the disadvantage of not being
guaranteed to respect the natural range of the target parameter. Using the Brier loss function, the
target parameter is a probability and is therefore constrained to fall in [0, 1]; when the terminal
node estimators used in CURT trees that comprise the Brier predictions are truncated to fall in
that interval the performance of the modified Brier algorithm (not shown) is again comparable to

Brier BJ.
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Figure S-1: Boxplots of MSE estimated at the 25th quantile of the marginal failure time distribution
for the four simulation settings of Section 5.1. L2, L2 BJ, Brier and Brier BJ are the CURE—L4
algorithms, with BJ referring to the use of the Buckley-James CUT. RSF and CI are the default
methods for rfsrc and cforest functions. RSF Opt is the default method for rfsrc with the
nodesize parameter tuned. RIST is the recursively imputed survival trees.
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Figure S-2: Boxplots of MSE estimated at the 50th quantile of the marginal failure time distribution
for the four simulation settings described in Section 5.1. L2, L2 BJ, Brier and Brier BJ are the
CURE— Ly algorithms, with BJ referring to the use of the Buckley-James CUT, and L2 and Brier
referring to the choice of loss function. RSF and CI are the default methods for rfsrc and cforest

functions. RSF Opt is the default method for rfsrc with the nodesize parameter tuned. RIST
is the recursively imputed survival trees algorithm.
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Figure S-3: Boxplots of MSE estimated at the 75th quantile of the marginal failure time distribution
for the four simulation settings of Section 5.1. L2, L2 BJ, Brier and Brier BJ are the CURE—L4
algorithms, with BJ referring to the use of the Buckley-James CUT. RSF and CI are the default

methods for rfsrc and cforest functions. RSF Opt is the default method for rfsrc with the
nodesize parameter tuned. RIST is the recursively imputed survival trees.



S.2.2 Nonparametric versus exchangeable weighted bootstrap for ensembles

In this section we first compare the performance of the CURE— Lo algorithm implemented using the
Bayesian and the nonparametric bootstrap. Both bootstraps are implemented using the R function
randomForest in the randomForest package (Liaw and Wiener, 2002) with the Bayesian bootstrap
requiring extending the capabilities of the function to allow for arbitrary bootstrap weights. The
simulation settings used are the same as used in the main document; see Section 5.1 for further
details. The results for each CURFE algorithm are given in Figures S-4 - S-6.

From Figures S-4 - S-6 we see that the CURE— Lo algorithms are not very sensitive to the
choice of bootstrap weights. For the Brier loss function, the nonparametric bootstrap does as well
or slightly better than the Bayesian bootstrap in all settings and at all quantiles. For the Lo loss,
the relative performance of the two bootstrap procedures depends on the simulation setting and
quantile considered.

Weng (1989) shows that if the weights in the i.i.d. weighted bootstrap are simulated from a
Gamma(4,1) distribution, the bootstrap weights are second order equivalent to the nonparametric
bootstrap weights for bootstrapping the sample mean. The two weights mainly differ in that the
former puts positive weights on every observation, while the latter only includes approximately 63%
of the observations in each bootstrap sample. Figures S-7 - S-9 show simulation results comparing
the non-parametric bootstrap to the Gamma(4, 1) bootstrap for the four different settings described
in Section 5.1.

The boxplots again show that the results are not sensitive to the choice of bootstrap algorithm.
For the Lo loss, both bootstraps perform similarly and it depends on the setting and quantile
considered which performs better. For the Brier loss, the nonparametric bootstrap either performs

similarly or better compared to the Gamma(4, 1) bootstrap.
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Figure S-4: Boxplots of MSE at the 25th quantile of the marginal failure time distribution for
the four simulation settings described in Section 5.1. L2, L2 BJ, Brier and Brier BJ are the
CURE—Ly algorithms, with BJ referring to the use of the Buckley-James CUT. NB and BB
respectively indicate use of the nonparametric and Bayesian bootstrap weights.
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Figure S-5: Boxplots of MSE at the 50th quantile of the marginal failure time distribution for

the four simulation settings described in Section 5.1. L2, L2 BJ, Brier and Brier BJ are the

CURE—Ly algorithms, with BJ referring to the use of the Buckley-James CUT. NB and BB
respectively indicate use of the nonparametric and Bayesian bootstrap weights.
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Figure S-6: Boxplots of MSE at the 75th quantile of the marginal failure time distribution for

the four simulation settings described in Section 5.1.

L2, L2 BJ, Brier and Brier BJ are the

CURE—Ly algorithms, with BJ referring to the use of the Buckley-James CUT. NB and BB
respectively indicate use of the nonparametric and Bayesian bootstrap weights.
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Figure S-7: Boxplots of MSE at the 25th quantile of the marginal failure time distribution for the
four simulation settings described in Section 5.1. L2, L2 BJ, Brier and Brier BJ are the CURE— L4
algorithms, with BJ referring to the use of the Buckley-James CUT and L2 and Brier as the choice
of loss function. NB and Gamma respectively indicate use of the nonparametric bootstrap and the
i.i.d. weighted bootstrap with weights simulated using the Gamma(4, 1) distribution.
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Figure S-8: Boxplots of MSE at the 50th quantile of the marginal failure time distribution for
the four simulation settings described in Section 5.1. L2, L2 BJ, Brier and Brier BJ are the
CURE— Ly algorithms, with BJ referring to the use of the Buckley-James CUT. NB and Gamma
respectively indicate use of the nonparametric bootstrap and the i.i.d. weighted bootstrap with
weights simulated using the Gamma(4, 1) distribution.
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Figure S-9: Boxplots of MSE at the 75th quantile of the marginal failure time distribution for
the four simulation settings described in Section 5.1. L2, L2 BJ, Brier and Brier BJ are the
CURE— Ly algorithms, with BJ referring to the use of the Buckley-James CUT. NB and Gamma
respectively indicate use of the nonparametric bootstrap and the i.i.d. weighted bootstrap with
weights simulated using the Gamma(4, 1) distribution.
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S.2.3 Simulations with GG, Estimated Using a Kaplan-Meier Estimator and 5,

using an AFT Model

Figure S-10 shows simulation results for the four settings described in Section 5.1 with Go(:|)
estimated using a Kaplan-Meier estimator. To ensure that G(-|-) remains bounded away from zero
we use 10% “Method 2”7 truncation as described in Steingrimsson et al. (2016).

Figure S-11 shows simulation results when Sy(:|-) is estimated using a parametric accelerated
failure time model with an error distribution which is assumed to follow a Weibull distribution.

The results show similar trends to those summarized in Section 5.
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Figure S-10: Boxplots of MSE estimated at the 50th quantile of the marginal failure time distribu-
tion for the four simulation settings described in Section 5.1. L2, L2 BJ, Brier and Brier BJ are
the CURE— L9 algorithms, with BJ referring to the use of the Buckley-James CUT, and L2 and
Brier referring to the choice of loss function. For all the CURE— L9 algorithms, Go(-|-) is estimated
using a Kaplan-Meier estimator. RSF and CI are the default methods for rfsrc and cforest

functions. RSF Opt is the default method for rfsrc with the nodesize parameter tuned. RIST
is the recursively imputed survival trees algorithm.
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Figure S-11: Boxplots of MSE estimated at the 50th quantile of the marginal failure time distribu-
tion for the four simulation settings described in Section 5.1. L2, L2 BJ, Brier and Brier BJ are
the CURE—Ly algorithms, with BJ referring to the use of the Buckley-James CUT, and L2 and
Brier referring to the choice of loss function. For all the CURE— Ly algorithms, Sp(-|-) is estimated
using a parametric accelerated failure time model with the error distribution assumed to follow a
Weibull distribution. RSF and CI are the default methods for rfsrc and cforest functions. RSF

Opt is the default method for rfsrc with the nodesize parameter tuned. RIST is the recursively
imputed survival trees algorithm.
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S.2.4 Simulations with increased covariate dimension

Figures S-12 and S-13 show simulation results for the four settings described in Section 5.1 when the
covariate dimension is respectively increased to 50 and 100. For all four settings, the dimensionality
is increased by adding noise variables. For settings one, three, and four the covariate vector is
simulated from a multivariate normal distribution with mean zero and a covariance matrix having
element (7, 7) equal to 0.9!"=3l. For setting two, the covariate vector is constructed by simulating
ii.d. uniform random variables on the interval [0, 1].

The results show similar trends to those summarized in Section 5 with the relative performance

of the CURE— Lo algorithm becoming slightly better as the covariate dimension increases.
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Figure S-12: Boxplots of MSE estimated at the 50th quantile of the marginal failure time distri-
bution for the four simulation settings described in Section 5.1 when the covariate dimension is
equal to 50. L2, L2 BJ, Brier and Brier BJ are the CURFE—Ls algorithms, with BJ referring
to the use of the Buckley-James CUT, and L2 and Brier referring to the choice of loss function.
RSF and CI are the default methods for rfsrc and cforest functions. RSF Opt is the default

method for rfsrc with the nodesize parameter tuned. RIST is the recursively imputed survival
trees algorithm.
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Figure S-13: Boxplots of MSE estimated at the 50th quantile of the marginal failure time distri-
bution for the four simulation settings described in Section 5.1 when the covariate dimension is
equal to 100. L2, L2 BJ, Brier and Brier BJ are the CURE— Ly algorithms, with BJ referring
to the use of the Buckley-James CUT, and L2 and Brier referring to the choice of loss function.
RSF and CI are the default methods for rfsrc and cforest functions. RSF Opt is the default
method for rfsrc with the nodesize parameter tuned. RIST is the recursively imputed survival

trees algorithm.
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S.2.5 Simulations with 50% censoring rate

Figure S-14 shows simulation results for the four settings described in Section 5 when the overall
censoring rate is 50%. For setting one, the rate of the exponential censoring distribution is modified
to achieve 50% censoring. For settings two and three, the upper support of the uniform distribution
is modified to get 50% censoring. For setting four, the censoring distribution is log-normal with

mean 0.1 )Z?Zl W; and scale parameter 1.

+0.1[22, Wi

The boxplots in Figure S-14 show similar relative performance to the results shown in Figure 1

in the main paper.
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Figure S-14: Boxplots of MSE estimated at the 50th quantile of the marginal failure time distri-
bution for the four simulation settings described in Section 5.1 when the censoring rate is 50%
for all settings. L2, L2 BJ, Brier and Brier BJ are the CURE— Ly algorithms, with BJ referring
to the use of the Buckley-James CUT, and L2 and Brier referring to the choice of loss function.
RSF and CI are the default methods for rfsrc and cforest functions. RSF Opt is the default

method for rfsrc with the nodesize parameter tuned. RIST is the recursively imputed survival
trees algorithm.
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S.2.6 Revisiting the simulation study in Steingrimsson et al. (2016)

In this section, we revisit the simulation studies for survival trees conducted in Steingrimsson et al.
(2016) and compare the performance of the CURT—Ly algorithm using the Buckley-James (see
(7)) and doubly robust (see (6)) loss functions, with both being implemented using the imputation
approach described in Section 4.1. The following two subsections revisit the simulation settings

used in Steingrimsson et al. (2016) (Section S.2.6) and summarize the results (Section S.2.6).

S.1.6: Simulation Settings

Steingrimsson et al. (2016) considered two simulation settings. Both settings contain a training
set of 250 independent subjects from the observed data distribution (subject to censoring) and a
test set of 2000 independent observations from the full data distribution (with no censoring). We
simulate 1000 independent training and test set combinations. We briefly review the two settings
considered below:

Simulation Setting 1: There are five covariates Wy, ..., Ws, each of which follows a discrete
uniform distribution on the integers 1-100. The response Z = logT and survival times T" are gen-
erated from an exponential distribution with a covariate-dependent mean parameter y = al(Wp >
50 | Wo > 75) + 0.51(W; < 50 & Wy < 75). We consider “high” (a = 5), “medium” (a = 2) and
“low” (a = 1) signal settings representing different degrees of separation in the survival curves. The
censoring time C' follows an exponential distribution with mean parameter u., where p. is chosen
to (approximately) achieve a 30% marginal censoring rate, in other words, P(T > C'; u.) = 0.3.

Simulation Setting 2: This simulation setting is similar to setting D in LeBlanc and Crowley
(1992). Tt differs from Setting 1 in that the proportional hazard assumption does not hold. Assume
that covariates Wh,..., W5 are independently uniformly distributed on the interval [0,1]. Survival
times are generated from a distribution with survivor function S(¢|W) = [1 + texp(al(W; <
0.5,Ws > 0.5) + 0.367)]"!. The choices a = 2,1.5 and 1 respectively correspond to “high”,
“medium” and “low” signal settings. The censoring times C' follow a uniform distribution on

[0, b], where b is chosen to (approximately) achieve a 30% marginal censoring rate.
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S.1.6: Simulation Results

The censoring distributions in both Settings 1 and 2 are independent of covariates; each is estimated
using a Kaplan-Meier estimator. The conditional expectations required for computing the doubly
robust and Buckley-James loss functions are respectively estimated using a parametric accelerated
failure time (AFT) model with lognormal errors and also using random survival forests; see Section
3.2.2 of Steingrimsson et al. (2016) for details. The performance of the different survival trees for
Settings 1 and 2 is respectively summarized in Figures S-15 and S-16 using the mean squared error
of survival differences at the 25th, 50th and 75th quantile of the marginal failure time distribution
(MSE25, MSE50 and MSET75). Each figure contains 9 plots and summarizes the results for MSE25,
MSE50 and MSE75 under high, medium and low signal settings. The 6 boxplots in each plot
respectively correspond to the method of LeBlanc and Crowley (1992) as implemented in rpart
(EXP); the inverse probability censoring weighted Lo loss (IPCW); the doubly robust Lo loss
calculated using the parametric AFT model (DR-AFT); the doubly robust Lo loss calculated
using random survival forest predictions (DR-RF); the Buckley-James Lo loss calculated using
the parametric AFT model (BJ-AFT); and, the Buckley-James Ly loss calculated using random
survival forest predictions (BJ-RF).

Figure S-15 shows that the performance of EXP, IPCW and doubly robust survival trees with
conditional expectation estimated using either the AFT model or random survival forests are very
similar, a result entirely consistent with the results for Simulation 1 in Steingrimsson et al. (2016).
The doubly robust trees perform better than the IPCW trees in the high and medium signal setting
and show similar performance in the low signal setting; performs similarly or slightly better than
EXP in high signal setting, however, as well or slightly worse in medium and low signal settings.
The performance of Buckley-James trees is essentially the same as the doubly robust trees in nearly
all signal settings, with the Buckley-James trees fit using the AFT model having slightly smaller
MSE at the 75th quantile.

For Simulation Setting 2, Figure S-16 shows that the doubly robust and Buckley-James trees
perform noticeably better than both the IPCW trees and EXP method in the high and medium
setting; performance is comparable for all methods in the low signal setting. Each of DR-AFT, DR-
RF, BJ-AFT and BJ-RF have comparable performance in high and low signal settings; BJ-AFT
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performs best, with DR-RF being second best, in the medium signal setting.

For completeness we also looked at the performance of all survival trees in terms of prediction
error as we did in Steingrimsson et al. (2016) (results not shown here). The results for EXP, IPCW,
DR-AFT and DR-RF are consistent with those results, the pattern of prediction error agreeing
with that observed in MSE25, MSE50 and MSET75.
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Figure S-15: Boxplots of mean squared error of survival differences at the 25th, 50th and 75th
quantile of the marginal failure time distribution (MSE25, MSE50 and MSE75) using the default
method in rpart (EXP), inverse probability censoring weighted loss (IPCW), doubly robust Lo
loss with the AFT model (DR-AFT), doubly robust Ly loss with RSF' (DR-RF'), Buckley-James Lo
loss with the AFT model (BJ-AFT) and Buckley-James Ls loss with RSF (BJ-RF), respectively

for the high, medium and low signal settings in Setting 1.
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Figure S-16: Boxplots of mean squared error of survival differences at the 25th, 50th and 75th
quantile of the marginal failure time distribution (MSE25, MSE50 and MSE75) using the default
method in rpart (EXP), inverse probability censoring weighted loss (IPCW), doubly robust Lo
loss with the AFT model (DR-AFT), doubly robust Ly loss with RSF' (DR-RF'), Buckley-James Lo
loss with the AFT model (BJ-AFT) and Buckley-James Ls loss with RSF (BJ-RF), respectively
for the high, medium and low signal settings in Setting 2.
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S.3 Further Details on OOB-Based Variable Importance Measures

Consider an ensemble generated by the nonparametric bootstrap. Given a tree m from this ensem-
ble, let 1/Azm(W) be the corresponding prediction for a subject with covariate information W. Let
B, be the set of OOB data associated with the bootstrap sample used to create tree m. The Lo

OOB data prediction error for tree m is defined as
1 < .
o 1 I(z Bm L Zi; m i))s -
|Bm|; (i € Bm)La(Zi, hm(W3)) (S-3)

where |B,,| denotes the size of the OOB sample. For each i € By, let I/Vi(j ) be the covariate vector
for subject ¢ with the j-th component of the covariate permuted. Define the OOB Ls loss prediction

error using the resulting permuted OOB dataset as
LN~ )
§ I(i € Bp)La(Zi, (W), -4

The OOB prediction error VIMP proposed by Breiman (2001) is calculated as the difference between
(S-4) and (S-3), averaged over all the trees in the ensemble. That is, for covariate j the OOB

prediction error VIMP is defined as

M n 4 )
% > (,Bl | S I(i € Bu) (Lo Zi, b (W) — Lg(Zi,wm(Wi)))> . (S-5)
m=1 ml =1

This calculation assumes that (Z;, W/)’,i € By, are fully observed. The corresponding VIMP using
a CUT for the Ls loss function can simply be defined as that which is obtained by replacing the
(unobserved) Ls loss in (S-5) with its corresponding CUT as given in (8).

As the OOB prediction error VIMP is defined as the difference between two loss functions the
proof of the following theorem follows from exactly the same arguments as used to prove Theorem

4.1. For the notation used in the theorem we refer to Section 4 in main paper.

Theorem S.3.1. For each i = 1,...,n, define the loss function L2(O;,v;G,S,Q) = »(W;)? +
H(Oi; G, S)p(W;) + Q(0;; G, S) and assume max{|H(O;; G, S)|,|Q(0;; G, S)|} < oo. The OOB

prediction error VIMPs using the loss function Lo(O,1; G, S, Q) do not depend on Q(O;G,S).
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An important implication of Theorem S.3.1 is that the OOB data prediction error VIMPs using
the Ly loss in connection with doubly robust and Buckley-James CUTs can be implemented by
running standard software calculating the OOB prediction error VIMPs for fully observed responses
on the corresponding “imputed” dataset {(Z(O0;;G,S),W;);i = 1,...,n}. An easy adaptation of

this result allows O; to be replaced by O;(t),i =1,...,n.

S.4 Additional Results from Data Analysis Section

In this section, we further analyze the TRACE and Copenhagen datasets analyzed in Section 6 and
also give results for two additional publicly available datasets, the Netherlands Breast Cancer Study
and the R-Chop Study. For the both studies, the tuned version of the CURFE— Lo algorithms did not
improve upon using the default node size value; hence, those results are not presented. Currently
available software for the RIST algorithm cannot handle categorical covariates with more than two
levels. The Netherlands Breast Cancer Study includes the variable tumor grade which is ordinal
with three levels, which for the RIST method we include as a continuous variable.

Section S.4.1 provides prediction errors for the Netherlands data and the R-Chop data. Section
S.4.2 gives results on importance of variables for the four datasets. Finally, Section S.4.3 reports
prediction error plots for the four datasets when the censored data Brier score is evaluated at six

different time units.

S.4.1 Prediction Error for Netherlands and R-Chop Datasets

In this subsection, we compare the performance of the CURE-Ls algorithms L2 and L2 BJ to the

RSF and the CI algorithms using two publicly available datasets. These datasets are:

e Netherlands Breast Cancer Study Data: This dataset consists of 144 lymph node positive
breast cancer patients and is included in the R package penalized. The event of interest
is time to distant metastasis; subjects who were alive at the end of study, died from causes
other than breast cancer, had recurrence of local or regional disease, or developed a second
primary cancer were considered censored. The clinical factors measured are: number of
affected lymph nodes, age, diameter of the tumor, estrogen receptor status, and grade of the

tumor. Additionally, the dataset includes gene expression information for 70 genes that are
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used to build the prognostic model in both Van’t Veer et al. (2002) and Van De Vijver et al.

(2002). The censoring rate is 67%.

e R-Chop Study Data: This dataset consists of 233 patients with diffuse large B-cell lymphoma
undergoing R-Chop treatment and followed until death. The dataset is publicly available
in the R package bujar. The covariate vector consists of microarray data, with 3833 probe
sets preselected from a set of 54675 probe sets as described in Wang and Wang (2010). The

censoring rate is 74%.

As for the results for the TRACE and Copenhagen study presented in Section 6, we evaluate the
Brier score at 3 time units (years for the R-Chop data and months for the Netherlands study).
This corresponds to marginal survival probabilities (i.e., estimated using a Kaplan Meier curve) of
0.87 and 0.73 for the Netherlands and R-Chop datasets. Prediction errors for six other choices of
t are presented in Section S.4.3. For the CURE—Lqy algorithms we only report the results for the
default choice of nodesize (5) as tuning the nodesize as described in Section 6 did not result in
substantial improvement in prediction accuracy. As in Section 6 we do not include comparisons to

the Brier CURE algorithms.
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Figure S-17: Censored data Brier Score at ¢ = 3 time units for the Netherlands and R-Chop
datasets; lower values indicate better prediction accuracy. L2 and L2 BJ are the CURE—Lo
algorithms with Z = logT'. BJ refers to the use of the Buckley-James CUT. RSF and CI are the
default methods for the rfsrc and cforest R functions. RSF Opt refers to tuning the nodesize
parameter for the RSF method. RIST is the recursively imputed survival trees algorithm.

S.4.2 Importance of Variables for the four Datasets

Table S-1 shows the OOB prediction error variable importance measures for the two CURFE-Lo
algorithms and the RSF method for the TRACE dataset. In agreement with the results obtained
from the minimal depth variable importance measures presented in Table 1 in Section 6, Table S-1
shows that ventricular fibrillation is consistently the least important predictor across all methods
and age and CHF are consistently the two most influential variables.

The measure of prediction error used to calculate the OOB prediction error VIMPs for the RSF
algorithm is the C-index. For the CURE-Ly algorithms, the prediction error used to calculate the
OOB prediction error VIMPs uses the Ly 4(O;,1; G, S) loss function. Because of the difference in
the loss function used to calculate the OOB prediction error VIMPs, the CURE-L2 and the RSF
OOB prediction error VIMPs cannot be compared in terms of the numerical values but the ranking
is comparable between the algorithms.

Tables S-2 and S-3 show the minimal depth and OOB prediction error variable importance
measures for the 13 covariates in the Copenhagen Stroke Study. Both the CURE— Lo algorithms

for both variable importance measures identify the Scandinavian Stroke Score (a measure of stroke
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L2 L2 BJ RSF

Age 0.54 0.26 0.08
Clinical Heart Pump Failure 0.25 0.23 0.04
Diabetes 0.17 0.19 0.00
Gender 0.01 0.03 0.01
Ventricular Fibrillation -0.02 0.01 0.00

Table S-1: Out-of-bag prediction error variable importance measures for the TRACE data; higher
values indicate more influential variables. BJ refers to the Buckley-James transformation. RSF' is
the default method in the randomForestSRC package.

L2 L2BJ RSF

Scandinavian Stroke Score 0.96 0.94 1.35
Age 1.45 1.39 1.51
Cholesterol level 1.70 1.75 1.71
Atrial fibrillation 4.35 4.53 3.15
Stroke history 3.61 3.49 3.63
History of other disabling diseases 4.42 4.38 3.88
Diabetes 4.22  4.17 3.91
Hypertension 416 4.14 4.09
History of ischemic heart disease  4.47 4.27 4.10
Gender 4.50 4.43 4.32
Daily smoking status 4.57 4.55 4.38
Daily alcohol consumption 481 4.58 4.53
Hemorrhage 5.81 6.02 5.81

Table S-2: Minimal depth variable importance measures for the Copenhagen Study; lower values
indicate more influential variables. L2 and L2 BJ are the CURE Lo algorithms. BJ refers to the
Buckley-James transformation. RSF is the default method in the randomForestSRC package.

severity) as the most important predictor followed by age. Both these variables are known to impact
overall survival probabilities for stroke patients.

The Netherlands and R-Chop datasets are comparatively high dimensional and tabular displays
of variable importance are not especially informative. In the case of the Netherlands study (Van
De Vijver et al., 2002), the genes included for analysis were already selected from a much larger pool,
and one of the main conclusions in this study is that models that include these 70 gene expression
profiles provide more information than models that do not rely on that information. In Figure
S-18, we compare the prediction accuracy of the CURFE— Lo algorithms built using both clinical
information and gene expression measurements to models built using only clinical information.
Consistent with the findings in Van De Vijver et al. (2002), we see that adding gene expression

information substantially improves the prediction power of the algorithms. In the case of the
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L2 L2 BJ] RSF

Scandinavian Stroke Score 0.57 0.58 2.95 % 1072
Age 0.18 0.19 3.95 % 1072
Cholesterol level -0.01  0.01 5.93 % 1073
Daily smoking status 0.01  0.02 7.83%1074
Stroke history 0.01  0.00 3.72% 1073
Diabetes -0.01  -0.00 1.12% 1073
Hypertension 0.01  0.01 1.65% 1073
History of ischemic heart disease 0.02  0.03 8.61 %1074
Daily alcohol consumption -0.00  0.00 1.61 %1073
Gender 0.02 0.01 2.55 % 1073
History of other disabling diseases  0.01  0.02 2.94 % 1073
Atrial fibrillation -0.00 -0.01 2.43 %1073
Hemorrhage -0.00 -0.00 —3.51%1074

Table S-3: Out-of-bag prediction error variable importance measures for the Copenhagen Studys;
higher values indicate more influential variables. L2 and L2 BJ refer to the two CURE Lg al-
gorithms. BJ refers to the Buckley-James transformation. RSF is the default method in the
randomForestSRC package.

Netherlands

Brier Score

Method

Figure S-18: Prediction error for four CURE— Ly algorithms (with and without genetic information)
on the Netherlands breast cancer study data. L2 and L2 BJ are the CURE— Ly algorithms, with
BJ referring to the use of the Buckley-James CUT. No Genes refers to the model only being built
using clinical factors.
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R-Chop data, which involves 3833 probe sets, the minimal depth VIMP measures for both the
CURE—Ly algorithms and the RSF algorithm identify the same probe set as being the most
influential. This probe set corresponds to a killer cell lectin-like receptor NKG2A that is a known
natural killer (NK) cell receptor; see Brooks et al. (1997). Plonquet et al. (2007) found NK cell
counts to be an important predictor for clinical outcomes in diffuse large B-cell lymphoma. We
also calculated the OOB prediction error VIMP measures and then evaluated the degree of overlap
between the 25 most influential probe sets for both VIMPs. The number of probe sets that were in
the top 25 most influential variables for both VIMP measures was 13 and 10 for the doubly robust

and Buckley-James CURFE— Lo algorithms, respectively.

S.4.3 Prediction Error Evaluated at Different Timepoints

Figures S-19-S-22 show prediction errors for the four datasets (TRACE, Copenhagen, Netherlands,
and R-Chop) evaluated at the 10,30,40,50,60 and 70-th quantiles of the observed times in the
datasets. This corresponds to using ¢ equal to 0.8,3.6,5.7,6.3,6.6, and 6.9, for the TRACE data,
0.3,2.3,3.6,4.9,6.0, and 7.7 for the Copenhagen study, 2.4,5.4,6.5,7.2,8.3, and 9.5 for the Nether-
lands study, and 0.4,1.2,1.6,2.1,2.7, and 3.3 for the R-Chop study. For computational simplicity,
the results for the Trace data are only presented for the tuned CURFE— Lo algorithms and the RIST

algorithm is not included in the comparisons.
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Figure S-19: Censored data Brier Score evaluated at six different time units for the Trace dataset;
lower values indicate better prediction accuracy. The time units correspond to the 10, 30, 40, 50, 60
and 70th quantiles of the observed times. L2 and L2 BJ are the CURFE— Ly algorithms, with BJ
referring to the use of the Buckley-James CUT. RSF and CI are the default methods for the rfsrc
and cforest R functions. RSF Opt refers to tuning the nodesize parameter for the RSF method.
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Figure S-20: Censored data Brier Score evaluated at six different time units for the Copen-
hagen dataset; lower values indicate better prediction accuracy. The time units correspond to
the 10, 30,40, 50,60 and 70th quantiles of the observed times. L2 and L2 BJ are the CURE—Lo
algorithms, with BJ referring to the use of the Buckley-James CUT. RSF and CI are the default

methods for the rfsrc and cforest R functions. RSF Opt refers to tuning the nodesize parameter
for the RSF method.
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Figure S-21: Censored data Brier Score evaluated at six different time units for the Nether-
lands dataset; lower values indicate better prediction accuracy. The time units correspond to
the 10, 30,40, 50,60 and 70th quantiles of the observed times. L2 and L2 BJ are the CURE—Lo
algorithms, with BJ referring to the use of the Buckley-James CUT. RSF and CI are the default
methods for the rfsrc and cforest R functions. RSF Opt refers to tuning the nodesize parameter
for the RSF method.
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Figure S-22: Censored data Brier Score evaluated at six different time units for the R-Chop dataset;
lower values indicate better prediction accuracy. The time units correspond to the 10, 30, 40, 50, 60
and 70th quantiles of the observed times. L2 and L2 BJ are the CURFE— Ly algorithms, with BJ
referring to the use of the Buckley-James CUT. RSF and CI are the default methods for the rfsrc
and cforest R functions. RSF Opt refers to tuning the nodesize parameter for the RSF method.
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S.5 Proof of Theorem 3.1

S.5.1 Regularity Conditions

The conditions of Section 3.2 specify that Sy(t|w) and Go(t|w) are each continuous functions in ¢t €
R for each w x S and, in addition, that ¥g, = inf{t : Sp(t|w) = 0} and Vg, = inf{t : Go(t|w) = 0}
are independent of w € S. The conditions of Section 3.1 imply that ¢(h(u),w), (u,w) € RT x S is
a known scalar function that is continuous in u except possibly at a finite number of points and
bounded if max{|r|, |w||]} < co. Let p(w) = E[¢p(Z, W)|W = w] = [~ ¢ w)dFy(ulw) < oo
for each w € S, where Fy(u|lw) = 1 — Sp(u|w). We assume that S(t|w) and G(t|w) are each right-
continuous, non-increasing functions for ¢ > 0 that satisfy S(0lw) = G(0lw) = 1, S(tjlw) > 0
and G(tjlw) > 0 for each w € S. Below, let F(ulw) = 1 — S(ulw), G(u|lw) = 1 — G(u|w), and
Go(u|lw) =1 — Go(u|w).

The conditions imposed are weak enough to accomodate (4) as a special case of (3). For each

w € S, we further assume

= J5° o(h(u), w) GE dFy (ulw) < oo;

(C2) M =fo 5;)(5'% ng u“w)) < oo and Ma(r) = [ Gggz,;vgs?gﬁtu))) g((;u(u”w)) < oo for each r > 0;

=f ¢ w) [My(u—) — Ma(u=)] dF (u|w) < oo;

(C4) J5~ %dﬂ)(um) o0;

m2 (u,w;S =
(C5) [y° % So(u|w)dGo(u|w) < oo;

(C6) Ms(r) = [, %déo(u\w) < oo for each r > 0;
0

S.5.2  Proof that Y;(O;G,5), Y;(O;Gy,S) and Y;(O; Gy, Sy) are each CUTs for

Y =¢(Z, W)

Assume Conditions (C1)-(C3) hold. Then, calculations similar to those in Rubin and van der Laan

(2007) show that E[Y;(O;G,S)|W = w| = I; + Iz. Consider now the following cases:

e Suppose only that G(u|w) = Go(u|w) for every (u,w). Then, because Go(u|w) is continuous,
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Go(u|lw)/Go(u— |w) = 1 everywhere and it follows that

L= / S(h(), w)dFo(ulw) = p(w).

In addition, for every r > 0, we obtain

" So(u|lw) dGo(u|w) " Go(ulw) So(u|lw) dGo(u|w)
M (r — o

| _
S(ulw) Go(ulw) — Jo Go(ulw) S(ulw) Golulw) —

and hence Iy = 0. Consequently, E[Y(O;Go, S)|W = w] = I + I = p(w).

Suppose only that S(u|w) = Sp(u|w) for every (u,w). Then,

I+ I — /¢ ((u’TU))dFO ulw) /¢ w) [My (u=) — Mo (u—)] dFy(ulw)

and we see that E[Y;(O;G,So)|W = w] = I + I = p(w) provided that

Go(u|w) _
m + [My(u—) — Ma(u—)] = 1.

Under the assumption S(u|w) = Sp(u|w), the definitions of M;(-),i = 1,2 and the fact that

Go(u|w) is continuous implies that we need only show

Go(ulw) “dGo(rlw) " Golrlw) dG(r|w) _ _
Glalw) T Jo Gor—w) Jo Glrw) Gor—Tw) (S-6)

for every u > 0. Using integration by parts (e.g., Last and Brandt, 1995, Thm. A.4.6),

Go(ulw) v ol —dG(r|w) “dGo(r|lw)
a =1+ [ Gt )(G<r—|w>G<r|w>>+ ) Clr—[w)

rearranging this expression, we see

Go(u|w) v dGo(r G(rlw) B
Glalw) * Jo GHw / Gol ’“’( r|w>G<r|w>>‘1

which is exactly (S-6). This proves E[Y;(O; G, So)|W = w] = p(w).

40



The result that E[Y;(O; Go, So)|W = w] = p(w) clearly follows from either of the above arguments,

completing this part of the proof.

S.5.3 Proof that Var(Y;(O; Gy, S)|W) > Var(Y;(O; Gy, So)|W).

Let G(u|w) = Go(u|w) be continuous and consider the class of transformations

T
Y2(0;Go,) = 2A2 W) (1 Ay ) - / (ut, W)dA Gy (u] ), (8-7)

where ~v(u, W) is some specified function. The class of transformations defined by (S-7) is essen-
tially seen to be the same as that considered in Suzukawa (2004, Prop. 3; Eqn. 3.6), but general-
ized here to allow for covariates and not restricted to depend on Gy(+|-) alone. Importantly, it is
also easy to see that selecting v*(u, W) = m(u, W;S)/Go(u|W) in (S-7) gives Y (O;Go,v*) =
Y;(O; Gy, S). For continuous Go(u|w), the regularity conditions (C4)-(C6) generalize those in
Suzukawa (2004) needed to prove Propositions 3, 5 and 6 in Suzukawa (2004). In particular,
we have E[Y}(O; Gy, S)|W = w] = p(w) and, mimicking the arguments used to prove Propositions
5 and 6, that Var[Y;(O;Go, S)|W = w] = Hi(w; Go, So) + Ha(w; Go, So, S), where

o z), w)]? * So(z|w)[m(x, w; z
Hi (w; Go, So) = /0 [(bgl(f(i"w)” AP (z|w) — /0 Sola] G>(E (a:(|u,))2,50)] dGo(w|w) — ()

and
> So(x|w) (m(z, w; §) — m(z, w; So))?
Go(z|w)?

HQ(’U);G(),S(),S) :/ déo(:ﬂw)
0

This proves Var[Y;(O;Go, S)|W = w] > Var[Y;(O;Go, So)|W = w| = Hi(w, Gy, Sp), with strict
inequality when S(t|w) and Sy(t|w) differ (hence m(t,w;S) and m(t,w;Sy) differ) for ¢ in some

interval with positive length.

S.6 Proof that K(O;,G)=1foralli=1,...,n

In this section we proof that K(O;,G) = 1 for all ¢ = 1,...,n. This follows from the following

theorem upon making the identifications D = A;, t = T}, and w = W;.
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Theorem S.6.1. For each w € S, assume G(0lw) = 1, G(u|w) > 0, and that G(u|w) is a right-
continuous, non-increasing function for u > 0 with at most a finite number of discontinuities on
any finite interval. Fiz w € S, let t > 0 be finite, suppose G(t|w) > 0, and let D be any indicator

variable taking on the value 0 or 1. Then,

D (1-D)  [fdAg(ulw) _

Gllw)  Gw)  Jo Glulw)

To proof Theorem S.6.1 we require the following lemma.

Lemma S.6.2. Let x > 0 be finite. Let d be any indicator variable taking on the values 0 and 1. Let
B(s) be a right-continuous, non-decreasing function for s > 0 with B(0) = 0. Define B(s) = 1—B(s)
and H(s) = [; B~*(u—)dB(u) for any s such that H(s) exists.

Suppose B(x) > 0. Then, H(s) exists for s € [0,7] and

d 1-d ["dH(u)
Bx) " B / Blw)

There is no specific relationship assumed between x, d and B(-), hence H(-). Using notation
from both the theorem statement and Lemma S.6.2, we can make the following identifications:

B(t) = G(t|lw), H(t) = Ag(tjw), = = t, and d = D. The conditions of Theorem ensure that the

conditions of Lemma S.6.2 are satisfied; applying Lemma S.6.2 immediately gives the desired result:

D, (1-D) PG (ult)
G(tlw) ~ G(Hlw) Jo Glut)

Proof of Lemma S.6.2. Because B(z) > 0 and is non-increasing with B(0) = 1, right-continuity

implies infs<, B(s) > 0. Hence, we may write (e.g., Last and Brandt, 1995, Cor A.4.8, p. 426)

1 \_  dBw) _  dB(u _
d<B(U>>_ B(u—)B(u)  B(u—)B(u) (S-8)

Let K(-) be any right-continuous function of bounded variation on [0, z]. Then, we may write (Last

42



and Brandt, 1995, Thm. A.4.6)

Ko KOy a () [ () axco

Using (S-8) and assuming K (s) = 1 for s > 0, we obtain the identity

s () ) () 0= o = g

Observe that we may also write

using (S-9), it then follows that

+

B(z) = B(x)

from which the required identity follows immediately. O

S.7 Proof of Theorem 4.1

Considering G(+|-) and S(+|-) as fixed functions, we will for simplicity rewrite L2(O,¢(W); G, S, Q)
as Lz (0, (W); Q) = (W)2+H(O)p(W)+Q(O). Under the stated conditions, we can also assume
without loss of generality that Lo(O,¥(W);@Q) > 0. The proof of this theorem will follow if one
can show that all key decisions made by CART are invariant to the form of Q(O). The availability
of a sample Oy, ..., 0, such that H(O;) and Q(O;) satisfy the conditions of the theorem for each
i=1,...,nisassumed. Throughout this proof, it is assumed at each stage of the algorithm that one
is working with some finite partition {r;,7 =1,...,J} of S and that (W) = Z}I:1 I{W € 75},

is the corresponding piecewise constant predictor. In this case, for any subset 7,

D H{Wi € 7} Lo(05, p(Wi); Q) = Y I{W; € 73} [F + H(Oi)vh; + Q(03)]
=1 =1
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is uniquely minimized at o; = S\ —H(0;)/(2n;) for n; = 20 I{W; € 7;}.
Now we show that all three steps of the CART algorithm used in connection with Lo(O,¢(W); Q)

involve decisions that are invariant to the specification of Q(O).

S.7.1 Growing the tree

The first stage of the tree building process is to grow a very large tree. Three elements are required
to accomplish this step: (i) developing the candidate set of binary splits; (ii) specifying the node
splitting rule; and, (iii) specifying the rule to stop splitting nodes. Only step (ii) depends on the
specification of the loss function; hence, we focus on this step below. The following lemma is

critical.

Lemma S.7.1. Suppose La(O,%(W); Q) = p(W)2+H(O)(W)+Q(O) is used to evaluate the loss.
Let R(7) denote the loss within a given subset T C S; that is, R(T) = Y 1 | I{W; € 7}Ls(O;, @ZT; Q),
where 127 minimizes the loss function using the data falling into . If T is then split into L > 2
mutually exclusive subsets T1,...,7 and Tt U U ... U7 = 7, the corresponding change in total

loss is given by
n

L L
_ZR( Z {W; € 7o} |(¥5 d) )+H( )(@Z} ¢Te) )

(=1 (=1 i=1
where @ZTZ is the value which minimizes the loss function using the data from the £th subset.

Proof. We have

=Y {Wier} [123 + H(O)¥r + Q(Oi)}
i=1

and

L L n
STR(m) = 30D HWi € m} [0 + H(O)br, +Q(0)] .

(=1 (=1 i=1

Subtracting the second from the first, algebra shows that the change in total loss reduces to

L L
—S R(m) = 3N HWien} [ -42) + HO)@: — 0n,)]

(=1 (=1 i=1
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In the process of growing a tree, CART considers at each step all possible candidate splits of a
given parent node 7 into left and right child nodes, say 77, and 7g, and then chooses the (covariate,
split) combination that maximizes the decrease R(7) — R(71) — R(7r). This process continues until
the stop-splitting rule used in (iii) takes effect, generating a maximally-sized tree 7p,q,. Lemma
S.7.1 shows that the reduction in loss is independent of Q(0;),i = 1...n regardless of the stage
of partitioning; hence, all splitting decisions made while growing the tree to its maximal size are

invariant to the values of Q(O;),i=1...n.

S.7.2 Pruning

Once a maximally-sized tree T, is obtained, the second stage of the CART algorithm involves
generating a sequence of candidate trees from which a final tree can be selected. The indicated
sequence of candidate trees is generated using minimal cost-complexity pruning (Breiman et al.,
1984, Sec. 3.3, 8.5).

For a given tree T, let T and N(T) = #(T) respectively denote the set and number of terminal
nodes. Define the loss of the tree 7 as total loss in all terminal nodes: R(7) = >___+ R(7). Finally,
let the cost-complexity of a tree T be defined as R, (7T) = R(T)+aN(T), where « is a non-negative
real number called the complexity parameter.

Paraphrasing Breiman et al. (1984, Sec. 8.5), minimal cost complexity pruning generates a
decreasing sequence of subtrees Tpae = T1 = T2 = -+ = {71} and an increasing sequence of
complexity parameters a; < g < --- such that 7y, is the smallest subtree of T4, for o < o < g1
that minimizes R, (7). Breiman et al. (1984, Sec. 3.3) provide a detailed description of the process
by which the sequence of subtrees is generated. Briefly, beginning with the smallest subtree 77 of
Tmaz such that R(T1) = R(Tmaz), CART begins the pruning process by considering all nodes 7
from the tree 77 and computing
HRADO. 1o,

q1(7) = _
~+00, T€Tir

where 711,7 denotes the subtree of 7; with root node 7. The node(s) minimizing this function are
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pruned, yielding the next tree in the sequence 7T5. This process is repeated until the root node of
71 is reached.
Critically, the process for pruning any 7 and hence generating 7x11 depends on mimimizing

R()-R(T:..) -
Tt TETk

gr(T) = .
400, TE T

for each 7 € Ti. Evidently, the function gx(7) depends on the loss function only through R(7) —
R(Tk,7); applying Lemma S.7.1 shows this quantity does not depend on Q(0;),i = 1...n. As a
result, the decision made to prune away any subtree and consequently the sequence of candidate

trees generated by this process will be invariant to Q(O;),i =1...n.

S.7.3 Choosing the best candidate tree via cross-validation

Selection of the optimally sized tree from the sequence of candidate trees is done using V-fold cross
validation. Specifically, suppose a given data set O = (Oq,...,0,,) is divided into V mutually
exclusive subsets O1,...,Oy. Suppose that the procedure of Section S.7.2 generated D trees with
complexity parameters as, ..., ap using the loss function Ly (O, %(W); Q) = p(W)2+H(O)p(W)+
Q(0). Definey1 = 0,v; = \/a;a551,j = 2,..., D—1,and y7p = oo; see Breiman et al. (1984, Sec. 3.4
& 8.5.2) for discussion. For each v =1,...,V let T,,(L_,),m = 1...D be a sequence of trees built
using the learning set £_, = O — O, as follows: (i) growing a tree Tpaq,v as described in Section
S.7.1; (ii) determining the associated sequence of pruned trees using minimal cost complexity
pruning as described in Section S.7.2; and, (iii) identifying the sequence elements that correspond
to using the complexity parameters ~i,...,yp. For m = 1,...,D, let @(W;Tm(ﬁfv)) be the

prediction for a subject with covariate information W that is obtained using the tree T,,(L£_,).
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Then, the cross-validation error associated with 7, is Cp,/(nV) where

V n
Cr = 3 1(i € O)Ly(04, (Wi T (L)) Q)

v=1 i=1

V n
= DY 1€ 0,) |QUO) + H(O)B(Wii T (£-0)) + H(Wei Tl £-0))?]

v=1 i=1

V. n
= O+ YD € O) [HO)D (Wi (L)) + D(Wis Ton(£-0))°)

v=1 i=1

(S-10)

form=1,...,Dand C* = 3V 3" I(i € O,)Q(O;). The optimal tree is now given by T,,+(O),
where m* = argmin,,c 1, pyCm and Tp,, (O) is the m!" candidate tree built using the full dataset O
(i.e., that corresponding to ;). Evidently, the constant C* plays no role in selecting the member
of the sequence that minimizes Cp,,m = 1,..., D and hence selection of the optimally sized tree is

also invariant to Q(0;),i =1...n.
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