Supporting information for: The domain swapping of human cystatin C induced by synchrotron radiation

Michał Taube,^{†,‡} Zuzanna Pietralik,[†] Aneta Szymańska,[¶] Kosma Szutkowski,^{†,§} Daniel Clemens,[∥] Anders Grubb,[⊥] and Maciej Kozak^{*,†,‡}

†Department of Macromolecular Physics, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland

‡Joint Laboratory for SAXS Studies, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland

¶Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland §NanoBioMedical Centre at Adam Mickiewicz University in Poznań, Wszechnicy Piastowskiej 3, 61-614 Poznań, Poland

||Helmholtz-Zentrum Berlin für Materialien und Energie Lise-Meitner-Campus Hahn-Meitner-Platz 1, 14109 Berlin, Germany

⊥Department of Clinical Chemistry, Lund University Hospital, S-22185 Lund, Sweden

E-mail: mkozak@amu.edu.pl

Figure S1: SAXS data (frames 1-20) collected for human cystatin C variants: V57N (a), V57D (b) and V57P (c). The data were shifted for clarity.

Figure S2: SVD analysis of frames 1-5 (50-250 ms) from TR-SAXS data for the wild type human cystatin C and HCC variants V57G and L68V. In each graph, first row represents four eigenvectors U_i and second its corresponding autocorrelation function ACF U_i .

Figure S3: SVD analysis of frames 1-5 (50-250 ms) from TR-SAXS data for human cystatin variants: V57N, V57D and V57P. In each graph, first row represents four eigenvectors U_i and second its corresponding autocorrelation function ACF U_i .

Figure S4: MCR-ALS analysis of SAXS data collected for wild type human cystatin C and its variants: V57G, L68V, V57N, V57D. In each plot reconstructed curves for three SVD detected species: U1-U3 are presented, together with fits of U1 to the stab1-HCC monomer structure (PDB code: 3GAX) and U2 to the structure of wt-HCC dimer (PDB code: 1TIJ). The data were shifted for clarity.

Figure S5: The fits of TR-SAXS data (expositions: 50, 100 and 150 ms), recorded for wild type human cystatin C and its variants, to the monomer (PDB code: 3GAX) and dimer (PDB code:1TIJ) structures of human cystatin C. The fits were calculated using OLIGOMER.^{S1}The data were shifted for clarity.

Figure S6: The signal attenuation in the 6-10 ppm region of the diffusion weighted ¹H-NMR spectra of human cystatin C variants: V57P, L68V, V57N, V57D.

Figure S7: The fits of SAXS data recorded using the laboratory GaK_{α} X-ray source for wild type human cystatin C and its variants, to the monomer (PDB code: 3GAX) and dimer (PDB code:1TIJ) structures of human cystatin C. The fits were calculated using OLIGOMER. The data were shifted for clarity.

350 ms	nm 6.27 nm±0.28 nm	100 m 5.6 m ± 0.17 m	n.d.	nm $5.11 \text{ nm} \pm 0.19 \text{ nm}$	nm n.d.	nm $5.03 \text{ nm} \pm 0.3 \text{ nm}$
300 ms	$5.34 \text{ nm}\pm 0.21$	$5.42 \text{ nm} \pm 0.2 \text{ n}$	n.d.	$4.75 \text{ nm}\pm0.13$	$5.55 \text{ nm}\pm0.18$	$5.05 \text{ nm} \pm 0.43$
250 ms	$4.88~\mathrm{nm}{\pm}0.14~\mathrm{nm}$	$4.54~\mathrm{nm} \pm 0.12~\mathrm{nm}$	$5.21 \text{ nm} \pm 0.21 \text{ nm}$	4.38 nm±0.11 nm	$4.81~\mathrm{nm}{\pm}0.09~\mathrm{nm}$	$5.61 \text{ nm} \pm 0.22 \text{ nm}$
200 ms	$4.08~\mathrm{nm}{\pm}0.13~\mathrm{nm}$	$4.27~\mathrm{nm}{\pm}0.1~\mathrm{nm}$	$4.82~\mathrm{nm}{\pm}0.12~\mathrm{nm}$	$4.02~\mathrm{nm}{\pm}0.06~\mathrm{nm}$	$4.39~\mathrm{nm}{\pm}0.08~\mathrm{nm}$	$4.84~\mathrm{nm}{\pm}0.21~\mathrm{nm}$
150 ms	$3.57 \text{ nm}{\pm}0.12 \text{ nm}$	$3.50 \text{ nm}\pm0.06 \text{ nm}$	$3.84 \text{ nm} \pm 0.07 \text{ nm}$	$3.48~\mathrm{nm}{\pm}0.06~\mathrm{nm}$	$3.86~\mathrm{nm}{\pm}0.06~\mathrm{nm}$	$4.70~\mathrm{nm}{\pm}0.22~\mathrm{nm}$
100 ms	$3.01 \text{ nm}\pm0.24 \text{ nm}$	2.84 nm±0.29 nm	$3.41 \text{ nm} \pm 0.22 \text{ nm}$	3.08 nm±0.33 nm	$3.00 \text{ nm}\pm0.12 \text{ nm}$	$4.76~\mathrm{nm}{\pm}0.23~\mathrm{nm}$
$50 \mathrm{ms}$	$2.16 \text{ nm} \pm 0.18 \text{ nm}$	$2.03 \text{ nm}\pm0.16 \text{nm}$	$2.45 \mathrm{nm}{\pm}0.18~\mathrm{nm}$	$2.07 \text{ nm} \pm 0.14 \text{ nm}$	$2.16 \text{ nm} \pm 0.12 \text{ nm}$	$4.63 \text{ nm} \pm 0.21 \text{ nm}$
cystatin C variant	wt-HCC	V57G	L68V	V57N	V57D	V57P

Table S1: Rg values for the wild type human cystatin C and its variants estimated on the basis of the TR-SAXS data. n.d. not determined.

Cystatin C variant	U1 monomer fit χ^2	U2 dimer fit χ^2
wt-HCC	1.64	1.72
V57G	2.17	1.73
L68V	1.74	1.85
V57N	2.14	1.77
V57D	2.41	2.34

Table S2: χ^2 value for the fits the structures of monomeric (PDB code: 3GAX) and dimeric (PDB code: 1TIJ) forms of human cystatin C to the reconstructed species U1 and U2 from the MCR-ALS analysis.

Table S3: Monomer and dimer fractions of HCC variants calculated using OLIGOMER for laboratory SAXS data.

Cystatin C variant	Monomer fraction	Dimer fraction	χ^2
wt-HCC	85.5~%	14.5~%	1.02
V57G	97.9~%	2.1 %	0.745
L68V	50.1~%	49.9~%	0.83
V57N	81.2~%	18.8 %	0.86
V57D	79.9~%	20.1~%	0.84
V57P	0 %	$100 \ \%$	14.04

References

(S1) Konarev, P. V.; Volkov, V. V.; Sokolova, A. V.; Koch, M. H. J.; Svergun, D. I. J. Appl. Crystallogr. 2003, 36, 1277–1282.