Supporting information for: The domain swapping of human cystatin C induced by synchrotron radiation

Michał Taube,^{†,‡} Zuzanna Pietralik,[†] Aneta Szymańska,¶ Kosma Szutkowski,^{†,§} Daniel Clemens,^{||} Anders Grubb,[⊥] and Maciej Kozak^{*,†,‡}

†Department of Macromolecular Physics, Adam Mickiewicz University in Pozna´n, Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland

‡Joint Laboratory for SAXS Studies, Adam Mickiewicz University in Pozna´n, Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland

The Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland §NanoBioMedical Centre at Adam Mickiewicz University in Pozna´n, Wszechnicy Piastowskiej 3, 61-614 Poznań, Poland

kHelmholtz-Zentrum Berlin f¨ur Materialien und Energie Lise-Meitner-Campus Hahn-Meitner-Platz 1, 14109 Berlin, Germany

⊥Department of Clinical Chemistry, Lund University Hospital, S-22185 Lund, Sweden

E-mail: mkozak@amu.edu.pl

Figure S1: SAXS data (frames 1-20) collected for human cystatin C variants: V57N (a), V57D (b) and V57P (c). The data were shifted for clarity.

Figure S2: SVD analysis of frames 1-5 (50-250 ms) from TR-SAXS data for the wild type human cystatin C and HCC variants V57G and L68V. In each graph, first row represents four eigenvectors U_i and second its corresponding autocorrelation function ACF U_i .

Figure S3: SVD analysis of frames 1-5 (50-250 ms) from TR-SAXS data for human cystatin variants: V57N, V57D and V57P. In each graph, first row represents four eigenvectors U_i and second its corresponding autocorrelation function ACF U_i .

Figure S4: MCR-ALS analysis of SAXS data collected for wild type human cystatin C and its variants: V57G, L68V, V57N, V57D. In each plot reconstructed curves for three SVD detected species: U1-U3 are presented, together with fits of U1 to the stab1-HCC monomer structure (PDB code: 3GAX) and U2 to the structure of wt-HCC dimer (PDB code: 1TIJ). The data were shifted for clarity.

Figure S5: The fits of TR-SAXS data (expositions: 50, 100 and 150 ms), recorded for wild type human cystatin C and its variants, to the monomer (PDB code: $3GAX$) and dimer (PDB code:1TIJ) structures of human cystatin C. The fits were calculated using $\rm OLIGOMER.$ $\rm ^{S1}The$ data were shifted for clarity.

Figure S6: The signal attenuation in the 6-10 ppm region of the diffusion weighted ¹H-NMR spectra of human cystatin C variants: V57P, L68V, V57N, V57D.

Figure S7: The fits of SAXS data recorded using the laboratory GaK_{α} X-ray source for wild type human cystatin C and its variants, to the monomer (PDB code: 3GAX) and dimer (PDB code:1TIJ) structures of human cystatin C. The fits were calculated using OLIGOMER. The data were shifted for clarity.

	Cystatin C variant U1 monomer fit χ^2	U2 dimer fit χ^2
wt-HCC	1.64	1.72
V57G	2.17	1.73
L68V	1.74	1.85
V57N	2.14	1.77
V57D	2.41	2.34

Table S2: χ^2 value for the fits the structures of monomeric (PDB code: 3GAX) and dimeric (PDB code: 1TIJ) forms of human cystatin C to the reconstructed species U1 and U2 from the MCR-ALS analysis.

Table S3: Monomer and dimer fractions of HCC variants calculated using OLIGOMER for laboratory SAXS data.

Cystatin C variant	Monomer fraction	Dimer fraction	
wt - HCC	85.5%	14.5 $%$	1.02
V57G	97.9 %	2.1%	0.745
L68V	50.1%	49.9 $%$	0.83
V57N	81.2 %	18.8 %	0.86
V57D	79.9 %	20.1%	0.84
V57P	0%	100%	14.04

References

(S1) Konarev, P. V.; Volkov, V. V.; Sokolova, A. V.; Koch, M. H. J.; Svergun, D. I. J. Appl. Crystallogr. 2003, 36, 1277–1282.