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Supplementary Figures

Supplementary Figure 1: (a-b) Bright field and fluorescent micrographs of polystyrene
microspheres coated with triangular gold patch. In (b) the patch is the dark region on the
green microspheres. (c) Scanning electron micrograph of the microspheres with triangular
gold patch (light grey). Scale bar in (a-c) is 10 µm.

Supplementary Figure 2: Overlay of microscope images showing the movement of non-
patchy negatively charged particles (radius 1.0 µm) in AC-electric field (a) OFF, (b) ON
(150 V/cm, 10 kHz), and (c) OFF state. Each image is an overlay of 27 frames accumulated
in 5s, and shows the trajectory of the particle in the field OFF→ON→OFF state. Scale bar
in (a) is 50 µm.
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Supplementary Figure 3: Fluorescence microscope images showing the motion of one
particle along two different helical trajectories of opposite handedness. Here the radius of
the particle is 2.6 µm, and metal vapor deposition angle is ϕ = 10◦. The magnitude and
frequency of the applied field are 195 V/cm and 10 kHz. Scale bars in (a) and (b) are 5 µm.

Supplementary Figure 4: Images showing the rapid alignment of a particle upon ap-
plication of the external field (150 V/cm, 10 kHz).The particle radius is 2.5 µm, and the
deposition angle is ϕ = 10◦. Scale bars are 1 µm.
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Supplementary Figure 5: Fitted radius of the helical trajectory for a particle subject
to five field ON-OFF cycles (corresponding to data shown in Figure 3a). The radius is
estimated by fitting the particle trajectory during the field ON state as illustrated in Figure
2a and 2b in main article. Scale bar in inset is 3 µm.
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Supplementary Figure 6: The increase in partition coefficient KPC at t = 15 minutes,
with increasing radius of helical trajectory. The symbols are experimental data points and
the straight line is a guide to the eye. The experiments were performed at E = 260 V/cm,
10 kHz on particles of radius 1 µm, and f was varied from 0.001 to 0.05. The helix radius
of particle was obtained by digital analysis of brightfield microscopic overlay images of the
particles tunneling through the membrane as shown in Figure 6c of main article. The number
of particles in the compartments at t = 0 minute and t = 15 minutes were determined by
fluorescent imaging at bottom of compartments A and B which lie in different focal planes.
The square symbol represents the case of linearly propelled particles, and follows the linear
decrease in KPC with decreasing R. The x- and y-error bars respectively represent the
standard deviation of the experimental values of partition coefficient and helix radius of the
particles.
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Supplementary Note 1: ICEP of particles with Cs symmetry

Here, we present a more detailed analysis of the ICEP motion of particles with one plane
of mirror symmetry (Cs point group). Our analysis follows closely that of Brooks et al.;1

however, the results for the Cs particle are new. We consider the motion of a polarizable
particle immersed in an unbounded electrolyte and subject to an oscillating electric field,
Eo(t) = Eo cos(ωt)ez, with magnitude Eo and frequency ω. For sufficiently small frequencies
and field strengths, the translational and rotational velocity of the particle can be expressed
as

U =
εa

η
C : EoEo, (1)

Ω =
ε

η
D : EoEo, (2)

where ε and η are, respectively, the permittivity and the viscosity of the electrolyte, a is
the size of the particle, and C and D are dimensionless tensors, which share the symmetry
of the particle.2 In the analysis below, we scale time by the electroviscous scale η/εE2

o and
length by the particle radius a.

Supplementary Figure 7: Patchy particle with Cs symmetry showing the particle frame
(x′, y′, z′) and the lab frame (x, y, z). These coordinate systems can be related by the Euler
angles (ψ, θ, φ).3 The particle is invariant to reflections about the x′y′ plane. The field is
applied along the z direction.

Coordinate Systems. To describe the rigid-body motion of the particle, we introduce two
coordinate systems: a stationary system and a moving system, which is fixed to the particle
and participates in its motion. A vector v′ expressed in the moving system is related to
the same vector v in the stationary system as v′i = Rijvj where R is an orthogonal rotation
matrix that depends on the orientation of the particle (e.g., on the Euler angles φ, θ, ψ).
Similarly, the components of the tensors, C and D, in the stationary system are related to
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those in the moving system as

Cijk = RpiRqjRrkC
′
pqr, (3)

Dijk = RpiRqjRrkD
′
pqr. (4)

The components C ′pqr and D′pqr are independent of particle orientation and depend only on
particle shape and/or patchiness. Knowledge of these constants allows for computation of the
particle trajectory in accordance with equations (1) and (2) and the kinematics of rigid-body
motion. In general, there are 18 quantities associated with each tensor (27 components less
9 relations of the form Cijk = Cikj due to the fact that EjEk = EkEj). Particle symmetries
can be used to further simplify these tensors and thereby constrain the types of accessible
particle motions.

Particle Symmetry. Here, we consider particles with mirror symmetry about the z = 0
plane (Cs point group) as specified by the orthogonal matrix Q,

Q =

1 0 0
0 1 0
0 0 −1

 . (5)

Invariance of the particle with respect to the operation Q implies the following relationships
among the components of the shape tensors

C ′ijk = QipQjqQkrC
′
pqr, (6)

D′ijk = |Q|QipQjqQkrD
′
pqr. (7)

These symmetry relations reduce the number of independent quantities needed to specify
the tensors C ′ and D′ from 18 to 10 and 8, respectively.

Rotational Dynamics. The rotation tensor in the particle frame D′ijk can be expressed
using eight parameters:

D′ =

 0 0 D′131
0 0 D′132

D′131 D′132 0

  0 0 D′231
0 0 D′232

D′231 D′232 0

 D′311 D′321 0
D′321 D′322 0

0 0 D′333

 . (8)

Assuming Eo = Eoez, the equations governing the particle’s rotational motion can be ex-
pressed using Euler angles as

φ̇ =(a+ b cos 2φ− c sin 2φ) cos2 θ + (g + h cos 2φ+ k sin 2φ) sin2 θ, (9)

θ̇ =1
2
(d+ c cos 2φ+ b sin 2φ) sin 2θ, (10)

ψ̇ =(f − b cos 2φ+ c sin 2φ) cos θ. (11)

where the coefficients are related to the components of the rotation tensor as

a = D′333 −D′131 −D′232 c = D′132 +D′231 f = D′131 +D′232 h = 1
2
(D′322 −D′311)

b = D′131 −D′232 d = D′132 −D′231 g = 1
2
(D′311 +D′322) k = D′321
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Due to rotational symmetry about the field axis, the rates of motion depend only on the
angles φ and θ (not ψ).

Depending on the coefficients, there are three types of steady-state solutions: (1) the
particle orients its mirror plane perpendicular to the field (θo = 0), (2) the particle orients
its mirror plane parallel to the field (θ0 = π/2), and (3) the particle orients its mirror plane
oblique to the field. Here, we focus on the third scenario, corresponding to helical motions,
in which the particle evolves to a stable orientation characterized by angles φo and θo at
which φ̇ = θ̇ = 0. The angle φo satisfies the equation

0 = d+ c cos 2φo + b sin 2φo (12)

which admits solutions only when b2 + c2 > d2. Similarly, the angle θo satisfies the equation

− tan2 θo =
a+ b cos 2φo − c sin 2φo

g + h cos 2φo + k sin 2φo

< 0 (13)

which admits solutions only when the right-hand-side is negative. The equation for θo admits
four solutions on the domain (−π, π). Because tan2 θ is an even π-periodic function, a
solution θo on the domain (0, π/2) can be mapped to three other solutions: −θo, π− θo, and
θo−π. As shown below, these four stable orientations correspond to four helical trajectories
of different handedness (left or right) and direction (positive or negative z-direction). The
angular velocity of the helical trajectory is

Ω ≡ ψ̇ = (f − b cos 2φo + c sin 2φo) cos θo. (14)

The solution (12) and (13) is only stable for certain values of the rotation tensor coeffi-
cients. Linearizing equations (9) and (10) about the solution (φo, θo), we obtain[

φ̇

θ̇

]
= J

[
φ− φo

θ − θo

]
(15)

where J is the Jacobian matrix. Small disturbances from the fixed point (φo, θo) decay in
time provided that the two eigenvalues of the Jacobian matrix have negative real parts;
equivalently, both the trace and the determinant of the Jacobian matrix must satisfy the
conditions

tr(J) = 2
(
d cos2 θo + (k cos 2φo − h sin 2φo) sin2 θo

)
< 0 (16)

det(J) = sin2 2θo(b cos 2φo − c sin 2φo)(a− g + (b+ h) cos 2φo − (c+ k) sin 2φo) > 0 (17)

ICEP of Cs particles leads to stable helical trajectories provided that the coefficients of the
rotation tensor satisfy the above conditions. Figure 8 shows one possible phase portrait in
the φθ-plane.

Translational Dynamics. In general, the translation tensor of a Cs particle has ten
distinct coefficients:

C′ =

C ′111 C ′121 0
C ′121 C ′122 0

0 0 C ′133

 C ′211 C ′221 0
C ′221 C ′222 0

0 0 C ′233

  0 0 C ′331
0 0 C ′332

C ′331 C ′332 0

 . (18)

8



Supplementary Figure 8: Phase portrait for a Cs particle with rotation tensor coefficients
D′131 = −0.311, D′132 = 0, D′231 = −0.212, D′232 = 0.0516, D′311 = 0, D′321 = −0.0138,
D′322 = 0.338, D′333 = 0.0812. The colormap shows the magnitude of ψ̇; arrows show the flow
in the φθ plane. Stable fixed points are marked by white dots; here, the coefficients were
chosen such that θo = 0.25. The eigenvalues are λ+ = −0.1 and λ− = −0.3. The angular
velocity at the stable fixed points is Ω = ±0.1.

Here, the particle is oriented such that its plane of mirror symmetry is perpendicular to the
z′-axis. When there exists a stable orientation in the field (φo, θo) satisfying equations (12)
and (13), it is convenient to rotate the particle about the z′-axis such that the angle φo is
identically zero. In this frame of reference, the linear velocity of the particle is given by

ẋ = V cos Ωt, (19)

ẏ = V sin Ωt, (20)

ż = U, (21)

where the linear velocity U and the orbital velocity V are given by

U = C ′222 sin3 θo + (C ′233 + 2C ′332) sin θo cos2 θo, (22)

V 2 = (C ′133 cos2 θo + C ′122 sin2 θo)
2 +

(
(C ′222 − 2C ′332) sin2 θo cos θo + C ′233 cos3 θo

)2
. (23)

These dynamics trace a helical trajectory of radius R = V/Ω and pitch P = 2πU/Ω, which
depend only on the shape and/or patchiness of the particle as characterized by the tensors
C and D. The velocities Ω and U satisfy the following relations

Ω(−θo) = Ω(θo) Ω(π − θo) = −Ω(θo) Ω(θo − π) = −Ω(θo) (24)

U(−θo) = −U(θo) U(π − θo) = U(θo) U(θo − π) = −U(θo) (25)

9



If there exist a solution θo on the domain (0, π/2) which corresponds to an upward-moving,
right-handed helix (U > 0 and Ω > 0), then there are three other solutions: (1) θ = −θo gives
a downward-moving, left-handed helix (U < 0 and Ω > 0), (2) θ = π − θo gives a upward-
moving, left-handed helix (U > 0 and Ω < 0), and (3) θ = θo− π gives a downward-moving,
right-handed helix (U < 0 and Ω < 0). Each of these helices has the same radius and pitch;
the selection of one or another is determined by the initial orientation of the particle in the
field.
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Supplementary Note 2: ICEP of patchy spheres (κa� 1)

Thin Double-Layers

When the Debye screening length κ−1 is much smaller than the particle radius a, metalodi-
electric spheres are prohibited from rotating about the axis of the applied field and are
therefore incapable of performing helical motions. This conclusion is supported by analysis
of the following model due to Squires & Bazant4, which applies to particles with thin double
layers (κa� 1) subject to weak electric fields (aEo � kBT/e). Moreover, we assume that the
applied frequency ω is small relative to the “RC time” of the particle—that is, ωa/κD � 1,
where D is the ion diffusivity.5 Under these conditions, we can neglect temporal variations
in the ion distributions, which rapidly approach steady state.

Within the electrolyte surrounding the particle, the electric potential is governed by the
Laplace equation for steady-state Ohmic conduction

∇2Φ = 0 (in the electrolyte) (26)

Far from the sphere, we assume that the field is uniform

−∇Φ(r) = Eo for r →∞ (27)

where r2 = r ·r. At the surface of the sphere, the ionic current normal to the particle surface
vanishes such that

n · ∇Φ = 0 for r = a (28)

where n is the unit normal vector directed out from the sphere of radius a. The resulting
potential Φ and electric field −∇Φ are given by

Φ(r) = −Eo · r
(

1 +
a3

2r3

)
(29)

−∇Φ(r) = Eo −
a3

2r3
(3(Eo · r̂)r̂ −Eo) (30)

where r̂ = r/r is the unit vector in the r-direction.
At the surface of the sphere, the field acts on the field-induced surface charge to produce

a finite slip velocity tangent to the surface

us(r) =
ε

η
ζ(r)∇Φ(r) for r = a (31)

where the zeta potential is the surface potential Φs(r) less the potential Φ(r) outside the
double-layer, ζ(r) = Φs(r)−Φ(r). The linear and angular velocities of the sphere are given
by surface integrals of the slip velocity4,6

U = − 1

4πa2

∫
Sp
us(r)dS (32)

Ω = − 3

8πa4

∫
Sp
r × us(r)dS (33)
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These velocities are equivalent to those of equations (1) and (2).
Importantly, helical motions require particle rotations about the axis of the field such

that Eo · Ω 6= 0; however, the above model implies that Eo · Ω = 0 regardless of the field
induced zeta potential ζ(r). To show this, consider that

Eo ·Ω = − 3ε

8πηa4

∫
Sp
ζ(r)Eo · (r ×∇Φ(r))dS = 0 (34)

where the quantity Eo · (r×∇Φ(r)) in the integrand is identically zero at every point on the
surface. We therefore conclude that helical motions are not possible for spherical particles
with thin double layers. By contrast, the above model is perfectly capable of describing the
translation of patchy spheres as well as the rotation of non-spherical particles.
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Supplementary Note 3: ICEP of patchy spheres (κa ∼ 1)

In this Note, we present a more general model for the induced charge electrophoresis (ICEP)
of patchy spheres in an unbounded fluid subject to a homogeneous electric field Eo. The
model is based on the Poisson-Nernst-Planck-Stokes system for ion transport and fluid flow,
in which the electric potential Φ is governed by the Poisson equation, the ion concentration
c± by the Nernst-Planck equation, and the fluid velocity u and pressure p by the Stokes
equations. This model accounts for the finite thickness of the electric double-layer and
is solved numerically to determine the shape tensors C and D that characterize particle
motion in the field. We again assume that the applied field is weak (eaEo/kBT � 1) and
slow (ωa/κD � 1); however, these conditions may be violated in experiments. We leave the
treatment of stronger and/or faster fields for future work.

Model Formulation

Ion Transport

The spherical particle is surrounded by a symmetric monovalent electrolyte of bulk concen-
tration co. The concentrations c± of positive/negative ions in solution are described by the
Nernst-Planck equation

∇ · j± = ∇ ·
(
−D±∇c± ±

eD±
kBT

c±E

)
= 0 (35)

where j± is the flux of positive/negative ions. The flux includes contributions due to ion
diffusion with diffusivity D± and migration in the electric field E = −∇Φ. Transport due to
fluid convection is negligible by comparison and therefore omitted. For simplicity, we assume
a common diffusivity for positive and negative ions such that D+ = D− = D. The electric
potential Φ within the electrolyte is described by the Poisson equation

∇2Φ = −ρe
ε

with ρe = e(c+ − c−) (36)

where ρe is the charge density.
The above equations are subject to boundary conditions at the surface of the spherical

particle (r = a) and far from the particle (r →∞). Far from the sphere, the concentration
approaches its bulk value, and the potential approaches that of the applied field Eo

c±(r) = co for r →∞ (37)

Φ(r) = −r ·Eo (38)

At the surface of the sphere, there is no flux of ions normal to the particle surface

n · j±(r) = 0 for r = a (39)

The electric potential is subject to the following conditions on and off the metal patch

Φ(r) = ζ + γ ·Eo for r = a on the patch (40)

−εn · ∇Φ(r) = σ for r = a off the patch (41)
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where ζ is the surface potential on the patch in the absence of the field, and σ is the surface
charge density off the patch (independent of the field). The vector γ describes how the
potential on the patch changes in the field, so as to maintain a state of constant (equilibrium)
charge

qeq =

∫
Sp
n · (−ε∇Φ(r))dS (42)

which depends on the particle surface parameters ζ and σ but not on the applied field Eo.
The condition (41) implies that the capacitance inside the sphere is negligible compared to
that outside the sphere (i.e., the permittivity of the sphere is small: εs � ε). With this
simplification, we need not compute the potential inside the dielectric sphere.

The above equations can be solved to determine the charge density ρe and the electric
field E surrounding the particle. The product of these quantities is the electric force density,
which drives hydrodynamic flows and thereby particle motions (see below). In the far field,
the field-induced polarization of the particle and its double layer create a dipolar disturbance
to the electric potential

Φ(r) = −r ·Eo +
p · r
4πεr3

+O(r−3) (43)

The dipole moment p is related to the following integral over a bounding surface S∞ at
r →∞ as

p = −ε
∫
S∞

[nΦ− r(n · ∇Φ)] dS (44)

where the unit normal vector n is directed into the volume enclosed by the surface (n = −r̂).

Hydrodynamics

The fluid velocity u and pressure p surrounding the spherical particle are governed by the
Stokes equations for low-Reynolds number flow

∇ · u = 0 and 0 = −∇p+ η∇2u+ ρeE (45)

where η is the fluid viscosity, ρe is the electric charge density, and E is the electric field. Far
from the sphere, the fluid is stationary. At the particle surface, the no-slip condition requires
that the fluid move at the same velocity as the particle. These boundary conditions imply
that

u(r) = U + Ω× r for r = a (46)

u(r) = 0 and p(r) = 0 for r →∞ (47)

The particle’s linear velocity U and angular velocity Ω are determined by the conditions
that the net force and torque on the particle (including both electrical and hydrodynamic
contributions) are zero ∫

Sp
(σ + σe) · ndS = 0 (48)∫

Sp
r × (σ + σe) · ndS = 0 (49)
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where n is the unit normal vector directed out from the particle surface Sp, σ = −pI +
η(∇u + ∇uT ) is the hydrodynamic stress tensor, and σe = ε(EE − 1

2
E2) is the Maxwell

stress tensor.
Using the Lorentz reciprocal theorem (see derivation below), the particle velocity U and

Ω can be expressed by the following integrals of the electric force density over the volume V
surrounding the sphere

6πηaU =

∫
V
(A− I) · (ρeE)dV (50)

8πηa3Ω = p×Eo +

∫
V
(b− r)× (ρeE)dV (51)

Here, the tensor A and vector b are given by

A =
3a

4r
(I + r̂r̂) +

3a3

4r3
(
1
3
I − r̂r̂

)
and b =

a3

r3
r (52)

with r̂ = r/r. The contribution p×Eo in equation (51) describes the electric torque on the
particle’s net dipole moment p in the applied field Eo. Given the numerical solution to the
ion transport problem, we can use equations (50) and (51) to evaluate the ICEP velocity U
and Ω.

Derivation of equations (50) and (51). The Lorentz reciprocal theorem7 relates two
Stokes flows (u,σ) and (u′,σ′) on a common domain V as∫

S
[u′ · (σ · n)− u · (σ′ · n)]dS =

∫
V
[u · (∇ · σ′)− u′ · (∇ · σ)]dV (53)

Here, the fluid volume V is enclosed by the particle surface Sp at r = a and by a second
spherical surface S∞ at r →∞; the unit normal vector n is directed into this volume. The
flow (u,σ) refers to the ICEP flow; the auxiliary Stokes flow (u′,σ′) is that of a sphere
moving through a quiescent fluid with velocity U ′ and Ω′

u′(r) = U ′ ·A+ Ω′ × b (54)

The hydrodynamic force density is equal and opposite to the electric force density for the
primary flow, ∇·σ = −∇·σe, and zero for the auxiliary flow, ∇·σ′ = 0. The surface integral
over the outer surface S∞ is zero since all fluid velocities and stresses decay sufficiently fast
as r →∞. At the particle surface, the fluid velocity is equal to that of the particle. We can
therefore write equation (53) as

U ′ ·
∫
Sp

(σ · n)dS + Ω′ ·
∫
Sp
r × (σ · n)dS −U · F ′ −Ω ·L′ =

∫
V
u′ · (∇ · σe)dV (55)

where F ′ = −6πηaU ′ and L′ = −8πηa3Ω′ are the force and torque on the particle due to
the auxiliary flow. The surface integrals of the hydrodynamic stress over the particle surface
can be related to analogous integrals of the electric stress using equations (48) and (49),
which state that the total force and torque on the particle surface is zero. Additionally, as
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equation (55) is valid for any vectors U ′ and Ω′, we can separate it into two equations for
translation and rotation, respectively,

6πηaU =

∫
Sp

(σe · n)dS +

∫
V
A · (∇ · σe)dV (56)

8πηa3Ω =

∫
Sp
r × (σe · n)dS +

∫
V
b× (∇ · σe)dV (57)

The integrals over the particle surface at r = a can be related to analogous integrals over
the bounding surface at r →∞ using the relations∫

Sp
(σe · n)dS = −

∫
S∞

(σe · n)dS −
∫
V
(∇ · σe)dV (58)∫

Sp
r × (σe · n)dS = −

∫
S∞
r × (σe · n)dS −

∫
V
r × (∇ · σe)dV (59)

Substituting this result into equations (56) and (57), we obtain

6πηaU = −
∫
S∞

(σe · n)dS +

∫
V
(A− I) · (ρeE)dV (60)

8πηa3Ω = −
∫
S∞
r × (σe · n)dS +

∫
V
(b− r)× (ρeE)dV (61)

where the electric force density is now expressed in terms of the charge density and the field:
∇·σe = ρeE. The surface integral in equation (60) is zero since the net charge of the particle
and its double layer is zero; the surface integral in (61) is equal to the torque on the dipole
p in the applied field Eo.

Non-dimensionalization of the Model

To progress with the analysis, we non-dimensionalize the model outlined above using the
following characteristic scales

[r] = a [Φ] = kBT/e

[ρe] = 2eco [u] = εa(kBT/ea)2/η

[ρi] = 2co [p] = ε(kBT/ea)2/η

where ρi = c+ + c− is the total ion density. We reformulate the governing equations and
boundary conditions using these scales and discuss the various dimensionless parameters
that emerge. For simplicity of notation, we use the same symbols for dimensional and
dimensionless variables alike; the distinction should be clear from the context.

In dimensionless form, the ion transport problem for the ion density ρi, the charge density
ρe, and the potential Φ can be written as

∇ · ji = ∇ · (−∇ρi − ρe∇Φ) = 0 (62)

∇ · je = ∇ · (−∇ρe − ρi∇Φ) = 0 (63)

∇2Φ = −β2ρe (64)
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where β = κa is the ratio between the particle radius and the screening length, κ−1 =
(εkBT/2e

2co)
1/2. Far from the particle, the boundary conditions become

ρi(r) = 1 for r →∞ (65)

ρe(r) = 0 (66)

Φ(r) = −r ·Eo (67)

where Eo is the applied field (now scaled by kBT/ea). At the surface of the sphere, there is
no flux of ions

n · ji(r) = 0 for r = 1 (68)

n · je(r) = 0 (69)

The electric potential is subject to the following conditions on and off the metal patch

Φ(r) = ζ + γ ·Eo for r = 1 on the patch (70)

−n · ∇Φ(r) = σ for r = 1 off the patch (71)

where ζ describes the surface potential on the metal patch (scaled by kBT/e), and σ describes
the surface charge off the patch (scaled by εkBT/ea). The parameter γ is determined by the
condition that

qeq =

∫
Sp
n · (−∇Φ(r))dS (72)

where qeq is the equilibrium charge on the particle surface (scaled by εakBT/e).
The scaled model is characterized by four dimensionless parameters: the screening pa-

rameter β, the applied field Eo, the zeta potential ζ, and the surface charge σ. In deionized
water at 20◦C, the screening length is κ−1 = 1 µm, which is comparable to the particle radius
of a = 1 µm. The screening parameter is therefore estimated as β = 1 and increases with
increasing ion concentration (e.g., due to dissolved CO2). The applied field of 250 V/cm
corresponds to a dimensionless field strength of Eo = 1. The zeta potential of the gold patch
is estimated to be −25 mV, which corresponds to ζ = −1. Based on the measured zeta
potential of the bare particles (−40 mV), the surface charge parameter is estimated to be
σ = −3.2. we make use of these parameter estimates in the numerical analysis below, while
acknowledging that their true values are rather uncertain.

Perturbation Theory

To solve for the ICEP velocities U and Ω, we expand the ion density, the charge density,
and the electric potential in powers of the applied field

ρi(r) = ρ
(0)
i (r) + Eoρ

(1)
i (r) + E2

oρ
(2)
i (r) + . . . (73)

ρe(r) = ρ(0)e (r) + Eoρ
(1)
e (r) + E2

oρ
(2)
e (r) + . . . (74)

Φ(r) = Φ(0)(r) + EoΦ
(1)(r) + E2

oΦ(2)(r) + . . . (75)

We then substitute these expansions into the governing equations and boundary conditions,
collecting like terms in Eo.
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Zeroth Order, O(E0
o)

At zeroth order in the applied field, we obtain the following description of the equilibrium
double layer

∇ · j(0)i = ∇ ·
(
−∇ρ(0)i − ρ(0)e ∇Φ(0)

)
= 0 (76)

∇ · j(0)e = ∇ ·
(
−∇ρ(0)e − ρ

(0)
i ∇Φ(0)

)
= 0 (77)

∇2Φ(0) = −β2ρ(0)e (78)

At equilibrium, the fluxes are everywhere zero, j
(0)
i = j

(0)
e = 0, and the ion concentrations

are Boltzmann distributed such that ρ
(0)
i = cosh(Φ(0)) and ρ

(0)
e = − sinh(Φ(0)). The potential

is governed by the Poisson-Boltzmann equation

∇2Φ(0) = β2 sinh(Φ(0)) (79)

subject to boundary conditions

Φ(0)(r) = 0 for r →∞ (80)

Φ(0)(r) = ζ for r = 1 on the patch (81)

−n · ∇Φ(0)(r) = σ for r = 1 off the patch (82)

First Order, O(Eo)

At first order in the applied field, we obtain the following description of the field-induced
perturbation to the equilibrium double layer

∇ · j(1)i = ∇ ·
(
−∇ρ(1)i − ρ(0)e ∇Φ(1) − ρ(1)e ∇Φ(0)

)
= 0 (83)

∇ · j(1)e = ∇ ·
(
−∇ρ(1)e − ρ

(0)
i ∇Φ(1) − ρ(1)i ∇Φ(0)

)
= 0 (84)

∇2Φ(1) = −β2ρ(1)e (85)

These governing equations are subject to following boundary conditions

ρ
(1)
i (r) = 0 for r →∞ (86)

ρ(1)e (r) = 0 for r →∞ (87)

Φ(1)(r) = 0 for r →∞ (88)

n · j(1)i (r) = 0 for r = 1 (89)

n · j(1)e (r) = 0 for r = 1 (90)

Φ(1)(r) = γ · Êo for r = 1 on the patch (91)

−n · ∇Φ(1)(r) = 0 for r = 1 off the patch (92)

The parameter γ is determined by the condition

0 =

∫
Sp
n · (−∇Φ(1)(r))dS (93)

which states that the field does not alter the charge on the particle surface.
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Second Order, O(E2
o)

Finally, at second order in the applied field, we obtain the following description

∇ · j(2)i = ∇ ·
(
−∇ρ(2)i − ρ(1)e ∇Φ(1) − ρ(0)e ∇Φ(2) − ρ(2)e ∇Φ(0)

)
= 0 (94)

∇ · j(2)e = ∇ ·
(
−∇ρ(2)e − ρ

(1)
i ∇Φ(1) − ρ(0)i ∇Φ(2) − ρ(2)i ∇Φ(0)

)
= 0 (95)

∇2Φ(2) = −β2ρ(2)e (96)

These governing equations are subject to following boundary conditions

ρ
(2)
i (r) = 0 for r →∞ (97)

ρ(2)e (r) = 0 for r →∞ (98)

Φ(2)(r) = 0 for r →∞ (99)

n · j(2)i (r) = 0 for r = 1 (100)

n · j(2)e (r) = 0 for r = 1 (101)

Φ(2)(r) = 0 for r = 1 on the patch (102)

−n · ∇Φ(2)(r) = 0 for r = 1 off the patch (103)

ICEP Velocity

Substituting the perturbation expansions into equations (50) and (51), the ICEP velocity U
and Ω are expressed as

U =
E2

o

6π

∫
V
(A− I) · (ρ(1)e E

(1) + ρ(0)e E
(2) + ρ(2)e E

(0))dV (104)

Ω =
E2

o

8π

[
(p(1) × Êo) +

∫
V
(b− r)× (ρ(1)e E

(1) + ρ(0)e E
(2) + ρ(2)e E

(0))dV
]

(105)

Note that the zeroth order terms in the force density can be absorbed into the pressure
and do not contribute to the particle velocity. Similarly, the first order contributions to the
particle velocity (i.e., the electrophoretic velocity) cancel for time oscillating fields with zero
mean. The leading order contributions are second order in the applied field.

Numerical Results

The successive terms in the perturbation expansion are solved numerically using a commer-
cial finite element solver (COMSOL v5.3) on a spherical domain of radius R = 10 centered
on the particle. At successive orders, the electric potential at r = R is approximated by the
conditions

Φ(0)(r) = 0 for r = R (106)

r · ∇Φ(1)(r) + 2Φ(1)(r) = −3r · Êo (107)

Φ(2)(r) = 0 (108)
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The zeroth order solution decays exponentially with distance from the particle; consequently,
the approximate condition (106) above is quite accurate. The first order solution decays like
an electric dipole in a uniform field; the approximate condition (107) introduces errors of
order R−3 (that of the neglected quadrupole). The second order solution decays like an
electric quadrupole; the approximate condition (108) is also accurate to order R−3.

To compute the shape tensors C and D, we compute the linear and angular velocity
for several orientations of the applied field Êo. We then use linear regression to estimate
the unknown parameters of the shape tensors. This approach is illustrated in Figure 9 for
a patchy Cs particle with a deposition angle of 15◦. For parameters β = 1, ζ = −1, and
σ = −3.2, the components of the rotation and translation tensors are computed to be

C ′111 = −0.0233 D′131 = −0.0278

C ′121 = −0.00557 D′132 = −0.0544

C ′122 = 0.000120 D′231 = 0.0380

C ′133 = −0.00335 D′232 = 0.0221

C ′211 = −0.00174 D′311 = 0.0561

C ′221 = −0.00711 D′321 = 0.0158

C ′222 = −0.0162 D′322 = −0.0442

C ′233 = −0.00686 D′333 = −0.000194

C ′331 = −0.00987

C ′332 = −0.00936

In the computed particle trajectory, the particle aligns its mirror plane normal to the applied
field and moves along circular orbits of radius 39a. Assuming a particle radius of a = 1 µm
and field strength of Eo = 250 V/cm, the predicted particle speed is 3.4 µm/s.
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Supplementary Figure 9: (a) Model patchy particle based on line-of-sight deposition onto
a close-packed monolayer with a deposition angle of 15◦ from horizontal. The black dots
denote the different orientations of the applied field Êo used in computing the shape tensors.
(b) Angular velocities Ω predicted by the best fit rotation tensor D vs those computed
numerically. Each point is one component of the velocity (x, y, z) for one orientation of
the applied field (black dots in (a)). (c) Computed trajectory of the particle when the field
is applied along the z-direction. The dimensionless parameters are β = 1, ζ = −1, and
σ = −3.2. The particle traces a circular path of radius 39a.

Supplementary Figure 10: Computed radius R of the circular trajectory (scaled by
particle radius a) as a function of the fractional patch area f , corresponding to deposition
angles φ = 15◦, 30◦, 40◦. The dimensionless parameters are β = 1, ζ = −1, and σ = −3.2.
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Supplementary Note 4: Role of Field Gradients

Spatial gradients in the applied field introduce forces due to dielectrophoresis (DEP) and
alter the fluid flows that drive ICEP motions. For an ideally polarizable sphere in a uniform
gradient, these two effects cancel one another resulting in no net motion of the sphere.4 Here,
we consider particle motion due to DEP as compared to ICEP motion in a uniform field,
neglecting the effect of field gradients on the ICEP velocity. Field gradients can be neglected
when motions due to DEP are negligible compared to ICEP motions. The DEP velocity of
a patchy sphere is given by

UDEP =
p · ∇Eo

6πηa
(109)

where p = α · Eo is the net dipole moment induced by the applied field, and α is the
polarizability tensor. From an order of magnitude perspective, such motions can be neglected
provided that

UDEP

UICEP

� 1 or
2

3

( α

4πεa3

)(a∇Eo

Eo

)
1

C
� 1 (110)

The first term involving the polarizability is of order one as confirmed by numerical simu-
lations on patchy spheres detailed above. The second term can be expressed as a/`, where
` is a characteristic length for spatial variations in the applied field. The magnitude of the
translation tensor C can be estimated from experiment to be C = 0.008, which agrees well
with the numerical estimates detailed above. Therefore, DEP motions are negligible when
`� 100a.

The geometry of the experimental cell is illustrated in Figure 11 below. Away from the
electrodes, the applied field E is approximately uniform throughout the interior of the cham-
ber. Within this region, the characteristic length ` is estimated to be ` ∼ Eo/(∂Eo/∂x) ∼ L
where L = 2 mm is the distance between the electrodes. Therefore, we anticipate that the
condition, ` ∼ L� 100a, is most certainly satisfied, such that field gradients are negligible
except near the electrodes.
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Supplementary Figure 11: Computed electric field distribution within the experimental
chamber of height 100 µm. A voltage V is applied between two co-planar electrodes separated
by a distance L = 2 mm. On time scales shorter than L/Dκ, the aqueous electrolyte can
be treated as a dielectric with permittivity ε, which is larger than the surrounding glass by
a factor ε/εg = 20. The resulting electric field E within the electrolyte is approximately
uniform within the interior of the chamber. The plot shows the computed magnitude of the
electric field along the floor of the chamber.
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Supplementary Note 5: Gravitational Effects

In a gravitational field g, ICEP motions of a spherical particle are altered by gravitational
forces and torques as

U =
εa

η
C : EoEo +

mg

6πηa
(111)

Ω =
ε

η
D : EoEo +

m(xg − xh)× g
8πηa3

(112)

where m is the buoyant mass of the particle, xg is the gravitational center of the particle
(i.e., the center of mass), and xh hydrodynamic center of the particle (i.e., the geometric
center of the sphere). In addition to the constant sedimentation velocity in equation (111),
the gravitational field alters the orientation of the particle and thereby its ICEP motion in
the electric field.

For the experimental conditions, however, we estimate that gravitational effects are
largely negligible. In particular, we consider a 2 µm polystyrene sphere (density, 1.04 g/m3)
coated on one hemisphere by a 30 nm layer of gold (density, 19.3 g/m3) and dispersed in
water (density, 0.998 g/m3 at 20◦C). The buoyant mass of the particle is m = 1.9 × 10−15

kg, determined largely by the gold patch. Assuming line-of-sight deposition, the center of
mass of the gold patch is displaced from the center of the sphere by a distance 2a/3 in the
direction of the patch. The sedimentation velocity of the particle in water (viscosity, 0.0010
Pa s) is estimated to be 1.0 µm/s; the rate of rotation due to gravity is 0.45 rad/s (26 deg/s).
These values are smaller than the ICEP velocities observed in experiment (see Figure 2).
Furthermore, we note that the trends in Figure 2 are not expected to hold when gravitational
effects are significant.
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