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S1 Clusterings421

Throughout this work, we focus on the grouping of elements (i.e. data points or vertices) into clusters (the groups). The422

set of clusters is called a clustering. Specifically, given a set of N distinct elements V = {v1, . . . ,vN}, a clustering is423

a set C = {C1, . . . ,CKC
} of KC non-empty subsets of V such that every element vi in V is in at least one cluster Cβ :424

∀vi ∈V ∃Cβ s.t. vi ∈Cβ .425

We consider three classes of clusterings. A partition, or disjoint clustering, is a clustering in which all elements are426

members of one, and only one, cluster. An overlapping clustering allows elements to be members of multiple clusters.427

Hierarchical clusterings capture the nested organization of clusters at different scales and are accompanied by a directed428

acyclic graph (or dendrogram) showing the hierarchical relationships between clusters.429

S2 Existing measures of clustering similarity430

Here, we focus on ten of the most prominent measures from the clustering literature: the Rand index, the adjusted Rand431

index, the Omega index, the Jaccard index, the F measure, the Fowlkes Mallows index, percentage matching (PM),432

normalized mutual information (NMI), overlapping normalized mutual information (ONMI), variation of information433

(VI). All of these measures are implemented in the CluSim python package1.434

S2.1 Rand Index435

The Rand index2 counts the number of element pairs which are either members of the same cluster, or members of436

different clusters in both clusterings. The most common formulation of the Rand index focuses on the following four437

sets of the
(N

2

)
element pairs: N11 the number of element pairs which are grouped in the same cluster in both clusterings,438

N10 the number of element pairs which are grouped in the same cluster by A but in different clusters by B, N01 the439

number of element pairs which are grouped in the same cluster by B but in different clusters by A , and N00 the number440

of element pairs which are grouped in different clusters by both A and B. Intuitively, N11 and N00 are indicators of the441

agreement between the two clusterings, while N10 and N01 reflect the disagreement between the clusterings.442

The aforementioned pair counts are identified from the contingency table T between two clusterings, shown in443

Table S1, by the following set of equations:444

N11 =
KA ,KB

∑
k,m=1

(
nkm

2

)
=

1
2

(
KA ,KB

∑
k,m=1

n2
km−N

)
(S1)445
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∑
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)
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N01 =
KB

∑
m=1

(
bm
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−N11 =

1
2
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KB
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N00 =

(
N
2

)
−N11−N10−N01.448

449

A /B B1 B2 . . . BKB
Sums

A1 n11 n12 . . . n1KB
a1

A2 n21 n22 . . . n2KB
a2

...
...

...
. . .

...
...

AKA
nKA 1 nKA 2 . . . nKA KB

aKA

Sums b1 b2 . . . bKB ∑i j ni j = N

Table S1. The contingency table T for two clusterings A = {A1, . . . ,AKA
} and B = {B1, . . . ,BKB

} of N elements,
where ni j = |Ai∩B j| are the number of elements in both cluster Ai ∈A and cluster B j ∈B.
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The Rand index between clusterings A and B, RI(A ,B) is then given by the function:450

RI(AAA,BBB) =
N11 +N00(N

2

) . (S2)451

452

It lies between 0 and 1, where 1 indicates the clusterings are identical and 0 occurs for clusters which do not share a453

single pair of elements (this only happens when one clustering is the full set of elements and the other clustering groups454

each element into its own singleton cluster). As the number of elements being clustered becomes large, the measure455

becomes dominated by the number of pairs which were classified into different clusters (N00), resulting in decreased456

sensitivity to co-occurring element pairs3.457

S2.2 Adjusted Rand index (ARI)458

A popular extension of the Rand index, called the adjusted Rand index (ARI), considers the average of the measure459

in the context of the permutation model for random clusterings4–6. In the permutation model the number and size460

of clusters within a clustering are fixed; all random clusterings are generated by shuffling the elements between the461

fixed clusters. The expectation of the Rand index with respect to the permutation model follows from the fact that the462

entries in Table S1 follow a generalized hypergeometric distribution. Taking QA = ∑
KA
k=1

(ak
2

)
and QB = ∑

KB
m=1

(bm
2

)
, the463

expectation Eperm[RI(A ,B)] of the Rand index with respect to the permutation model for the cluster size sequences of464

clusterings A and B is given by:465

Eperm[RI(A ,B)] =
QA QB−

(N
2

)(
QA +QB

)
+
(N

2

)2

(N
2

)2 (S3)466

467

(see Fowlkes and Mallows3, Hubert and Arabie4, or Albatineh and Niewiadomska-Bugaj5 for the full derivation).468

Finally, the ARI between clusterings A and B is given by:469

ARI(A ,B) =
R(A ,B)−Eperm[RI(A ,B)]

1−Eperm[RI(A ,B)]
(S4)470

471

S2.3 Omega index472

The Omega index extends the adjusted Rand index to compare overlapping clusterings7. To formulate the extension,473

notice that in the presence of overlaps, element pairs can repeatedly occur within the same cluster. We consider t j(A )474

the set of node pairs which co-occur exactly j times in clustering A . The unadjusted Omega index between two475

overlapping clusterings is then:476

ωu(A ,B) =
1(N
2

)∑
j
|t(A )∩ t(B)|, (S5)477

while the expectation of this measure with respect to the permutation model on the number of element pair overlaps is:478

Eperm[ωu(A ,B)] =
1(N
2

)2 ∑
j
|t(A )| · |t(B)| (S6)479

Finally, the Omega index between two overlapping partitions is given by:480

Ω(A ,B) =
ωu(A ,B)−Eperm[ωu(A ,B)]

1−Eperm[ωu(A ,B)]
. (S7)481

Note that for partitions the Omega index is equivalent to the adjusted Rand index.482
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S2.4 Jaccard index483

Another popular clustering similarity measure which utilizes pair-wise co-occurrence between the elements is the484

Jaccard index or Jaccard similarity coefficient8. Originally proposed to compare regional floras9, the Jaccard index485

is a similarity measure for finite sets. It is defined as the number of element pairs which are grouped in the same486

cluster in both clusterings divided by the number of element pairs which are grouped in the cluster in at least one of the487

clusterings. Thus, it ignores the number of element pairs that are grouped into different clusters by both clusterings.488

One minus the Jaccard index is a metric on the collection of finite sets10. Using the above notation from the contingency489

table Table S1, the Jaccard index between clusterings A and B takes the form:490

J(A ,B) =
N11

N11 +N10 +N01
(S8)491

492

S2.5 F measure493

The F measure has a long history of use in clustering validation, natural language processing, information retrieval, and494

machine learning. It is based off of two asymmetric measures (sometimes called Dice’s asymmetric coefficients), that495

count the proportion of element pairs which are correctly co-assigned to the same cluster in one of the clusterings using496

the other clustering as a baseline. When one of these clusterings is considered to be a ground-truth clustering, these497

asymmetric measures are known as precision and recall. The F measure is the harmonic mean of the precision and498

recall. Specifically, the F measure between clusterings A and B is given by:499

F(A ,B) =
2N11

2N11 +N10 +N01
(S9)500

501

The F measure F and Jaccard index J are related by J = F/(2−F).502

S2.6 Fowlkes-Mallows index503

The Fowlkes-Mallows index was first introduced to facilitate the comparison of hierarchical dendrograms3. The idea is504

to cut the dendrogram at each merger and compare the induced flat clusterings. Like the previous five measures, the505

Fowlkes-Mallows index is based on counting the pair-wise co-occurrence between the elements in the two clusterings:506

FM(A ,B) =
N11√

(N11 +N10)(N11 +N01)
. (S10)507

Applying this index to each cut k of two dendrograms produces a curve of comparisons between two clusterings each508

with k clusters.509

S2.7 Percentage Matching510

The Percentage Matching is based on the idea that each cluster should be compared to only one other cluster, its “best511

match”11. Specifically, let Kmin = min(KA ,KB), then the percentage matching index is defined using the contingency512

table:513

PM(A ,B) = 1− 1
N

Kmin

∑
k=1

max
π

nk,π . (S11)514

where the notation maxπ denotes finding the cluster π with the largest overlap to cluster k. The percentage matching is515

equal to one minus the Purity Index, another common measure of the distance between clusterings.516

S2.8 Normalized mutual information (NMI)517

Another family of approaches for finding the similarity of two cluster coverings is based on the amount of information518

in each covering and the amount of information one covering contains about the other. These quantities can also be519

calculated from the contingency Table S1. The entropy H of a clustering A is given by520

H(A ) =−
KA

∑
k=1

ak

N
log

ak

N
(S12)521
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Figure S1. NMI’s bias towards the number of clusters is independent of normalization term. The three scenarios from
the main text, for different normalization terms of NMI: the minimum of cluster entropies (min), the average of the
cluster entropies (sum), the geometric mean of the cluster entropies (sqrt), and the maximum of the cluster entropies
(max). See Section S2.8 for the measure details.

and, using the entries nkm from the contingency table S1, the joint entropy between two clusterings A and B is522

H(A ,B) =−
KA ,KB

∑
k,m=1

nkm

N
log

nkm

N
(S13)523

Thus, the mutual information between two clusterings is given by:524

MI(A ,B) = H(A )+H(B)−H(A ,B)525

=
KA ,KB

∑
k,m=1

nkm

N
log

nkmN
akbm

. (S14)526

527

The mutual information can be interpreted as an inverse measure of independence between the clusterings, or a measure528

of the amount of information each clustering has about the other. As it can vary in the range [0,min{H(A ),H(B)}], to529

facilitate comparisons, it is desirable to normalize it to the range [0,1]. There are at least six proposals in the literature530

for this upper bound, each with different advantages and drawbacks;531

min{H(A ),H(B)} ≤
√

H(A )H(B)≤ H(A )+H(B)

2
(S15)532

≤max{H(A ),H(B)} ≤max{logKA , logKB} ≤ logN.533
534

The resulting measures are all known as normalized mutual information (NMI). Here, we always use the average of the535

two clustering entropies 1
2 (H(A )+H(B)). Although some results have been shown to depend on the normalization536

term used for NMI, Figure S1demonstrates that NMI behaves un-intuitively regardless of the normalization term.537

Due to the known bias of NMI towards clusterings with more clusters, several modifications have been proposed.538

The NMI can be adjusted for chance according to an appropriate random model6, 12, but this induces the problem539

of selecting a random model for the clusterings, and does not remove the issue of selecting a normalization term.540

Alternatively, the NMI can be re-scaled by an exponential factor reflecting the difference in number of clusters between541

the two clusterings, but this scaling factor forces the researcher to prioritize one clustering as the ’ground-truth’ and542

breaks the symmetry of the original measure13.543
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S2.9 Overlapping NMI (ONMI)544

The NMI has been modified to account for clusterings with overlapping clusters14. Consider a clustering A with KA545

possibly overlapping clusters A1, . . . ,AKA
. For each cluster Ak, we can consider a binary random variable Xk which546

represents the probability that a randomly selected node is a member of that cluster with distribution547

P(Xk = 1) =
ak

N
, P(Xk = 0) = 1− ak

N
(S16)548

The same holds for a second clustering B with KB possibly overlapping clusters B1, . . . ,BKB
and random variables Ym.549

We can then define the joint probability distribution P(Xk,Ym):550

P(Xk = 1,Ym = 1) =
nkm

N
551

P(Xk = 0,Ym = 0) = 1− nkm

N
(S17)552

P(Xk = 1,Ym = 0) =
ak−nkm

N
553

P(Xk = 0,Ym = 1) =
bm−nkm

N
554
555

Given a particular cluster Ak ∈ A , the amount of information it has about another cluster Bm ∈B is found by the556

conditional entropy557

H(Xk|Ym) = H(Xk,Ym)−H(Ym). (S18)558

In the case of overlapping clusters, there are many possible candidates for the best match between two clusters. The559

best match is the one with the minimal conditional entropy. Thus, the conditional entropy of Xk with respect to all of560

the clusters in B is561

H(Xk|YYY ) = min
m∈{1,...,M}

H(Xk|Ym). (S19)562

However, in minimizing the entropy it may be the case that the optimal B∗m is the complement of Ak, thus we have to563

add the following constraint to insure the above minimization identities the best matching cluster:564

h[P(1,1)]+h[P(0,0)]> h[P(0,1)]+h[P(1,0)]. (S20)565

This entropy is normalized by the entropy of Xk and averaged over all Xk to give the normalized conditional entropy of566

XXX with respect to YYY567

H(XXX |YYY )norm =
1
K

K

∑
k=1

H(Xk|YYY )
H(Xk)

. (S21)568

Finally, the overlapping normalized mutual information ONMI is given by569

ONMI(A ,B) = 1− 1
2
[H(XXX |YYY )norm +H(YYY |XXX)norm]. (S22)570

It is interesting to note that when A and B are partitions, the NMI(A ,B) and ONMI(A ,B) do not necessarily571

agree. Although there have been several attempts to reformulate ONMI so that it agrees with NMI, the above formulation572

is pervasive in the literature15–17.573

S2.10 Variation of Information VI574

Another popular clustering comparison measure based on information theory is the Variation of Information (VI). Unlike575

the similarity measures discussed above, the VI is a metric on the lattice of partitions18. Thus, it is a measure of distance576

between clusterings instead of a similarity between the clusterings; it attains its minimum at 0 when the clusterings are577
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Figure S2. VI unintuitive behavior as the cluster sizes become more skewed and as the number of clusters is increased.
Note that because the VI is a distance measure, the intuitive behavior is opposite that presented for similarity measures.

identical, and attains positive values for clusterings which differ. Using the entropy and mutual information between578

clusterings defined in Section S2.8, the VI is given by:579

V I(A ,B) = H(A )+H(B)−2MI(A ,B)580

= 2H(A ,B)−H(A )−H(B). (S23)581
582

Since the VI is a distance measure, the intuitive behavior is opposite that presented for the similarity measures583

discussed in this paper, and presented in the main text, Figure 2. None-the-less, we can demonstrate that the VI suffers584

from unintuitive behavior in two scenarios: the skewed cluster sizes and the number of clusters (Figure S2).585

S2.11 Information Theoretic Intuition586

A second intuition that could be used to evaluate clustering similarity measures is based on concepts drawn from587

information theory. Under this intuition, the appropriate question to ask is: “Given a random element, how much588

uncertainty remains about its membership in Clustering B if I know its membership in Clustering A ?” The clusters589

are now considered as an alphabet and the contingency table is considered as a discrete probability distribution over590

this alphabet. For example, the variation of information considers the difference in conditional entropies reflecting the591

amount of information we loose about the original cluster assignment, and the amount of information we have to gain to592

recover the new cluster assignment when going from one clustering to the other18. The resulting intuition suggests that593

two clusterings are similar if one doesn’t loose much information (presence of equally sized clusters) or one doesn’t594

have to gain much information (presence of very small clusters). Consequently, in Figure S2, we notice that the VI595

decreases (more similar) as the cluster entropy decreases, and displays a parabolic shape (more similar, to less similar,596

to more similar) as the number of clusters approaches the number of elements.597

Our main objection to the information theoretic intuition is that it tends to suggest measures cannot differentiate the598

influence of alphabet size (here, number of clusters) from the distribution of alphabet usage (here, sizes of the clusters).599

Furthermore, the primary justification for these measures is typically stated with respect to the alignment to the lattice600

of partitions19, yet, it is not immediately clear if the lattice of partitions is the appropriate space to compare clustering601

similarity measures since many applications do not align to the lattice (i.e. evaluation of k-means clustering fixes the602

number of clusters).603

S3 Datasets604

S3.1 Point clusters605

5,000 points were random formed into clusters in an algorithm akin to the process for constructing benchmark graphs20.606

Cluster sizes were randomly drawn from a powerlaw distribution with a minimum cluster size of 10, a maximum cluster607

size of 1000, and an exponent of 1.0. The center of those clusters was uniformly selected from points in a 40× 40608

box. The standard deviation (or spread) of each cluster was also drawn from a powerlaw distribution with a minimum609
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of 0.2, a maximum of 2.0, and an exponent of 1.0. Next, the type of each cluster was uniformly selected from four610

options. The first option is the 2-D Gaussian blob with mean given by the cluster center and standard deviation given by611

the cluster standard deviation. The second option is the 2-D Anisotropic blob with a mean given by the cluster center,612

standard deviation given by the cluster standard deviation, and transformation given by the rotational matrix:613 [
acos(θ) −asin(θ)
bsin(θ) bcos(θ)

]
, (S24)614

where a,b randomly drawn from the unit interval and θ was randomly drawn from the range [0,π]. The third option is615

the circle centered at the cluster center with radius given by the cluster standard deviation; the points were uniformly616

spread along the circle and Gaussian noise with mean 0 and standard deviation 0.2 was added to all points. The617

forth option is the spiral with points uniformly spread in the range [0,10], converted to circular coordinates by618

(x,y)→ (σ
√

xcos(x),σ
√

ycos(y)), where σ is the cluster standard deviation, randomly rotated by the rotation matrix619

of equation (S24) with a = b = 1 and θ randomly drawn from the range [0,π], and Gaussian noise with mean 0 and620

standard deviation 0.2 was added to all points.621

The sci-kit learn21 implementation of K-means clustering was initialized with K = 19 clusters and random initial622

centroids. The identification method was then run from 100 random centroid initializations. Clustering agreement was623

calculated by comparing all 100 uncovered clusterings with the ground-truth clustering using the element-wise similarity624

vector was found for each comparison and then averaged over the uncovered clusterings. Clustering frustration was625

calculated from all pair-wise comparisons between the 100 uncovered clusterings using the element-wise similarity626

vector was found for each comparison and then averaged over each comparison.627

S3.2 Handwriting digits628

The digits data set, originally assembled by Alimoglu and Alpaydin22, is bundled with the21 source code. It consists of629

1797 images of 8×8 gray level pixels for handwritten digits distributed across 10 clusters corresponding to the true630

digit. To provide a visualization, the data was projected to 2-d using the t-Distributed Stochastic Neighbor Embedding631

(t-SNE) dimensionality reduction method23 initialized from the pca decomposition.632

The sci-kit learn21 implementation of K-means clustering was initialized with K = 10 clusters and random initial633

centroids. The identification method was then run from 100 random centroid initializations. Clustering agreement was634

calculated by comparing all 100 uncovered clusterings with the ground-truth clustering using the element-wise similarity635

vector was found for each comparison and then averaged over the uncovered clusterings. Clustering frustration was636

calculated from all pair-wise comparisons between the 100 uncovered clusterings using the element-wise similarity637

vector was found for each comparison and then averaged over each comparison.638

S3.3 Brain networks639

The dataset used here was originally analyzed in Cheng et al.24; please refer to that work for specific details of the data640

acquisition and pre-processing, here we only provide a brief overview.641

Data was acquired from 19 individuals diagnosed with schizophrenia (6 female, mean age 33.1±10.9 years) and642

29 healthy controls (15 female, mean age 28.1±8.4 years). Diagnosis of schizophrenia was based on the Structured643

Clinical Interview for the DSM-IV Axis I Disorders (SCID-I)25 and medical chart review. All subjects were scanned644

on a Siemens TIM Trio 3 T MRI scanner using a 32-channel head coil. The high anatomical scan had a resolution645

of 1 mm3. A total of 200 volumes of resting state fMRI data were acquired with EPI sequences for 8 min and 20s.646

During the resting state fMRI scan, the subjects were at rest with eyes closed and instructed not to think of anything in647

particular. All functional data were motion corrected in FSL.648

In conjunction with the anatomical image, the functional images were parcellated using a parcellation scheme649

proposed by Shen et al.26. This parcellation divides the cerebral cortex into 278 regions of interest (ROIs), and was650

derived from resting state functional data of the healthy subjects by maximizing functional homogeneity within each651

ROI. After regressing out head motion, the time signal was band-pass filtered between 0.01−0.10 Hz and the time652

courses were extracted from the 278 brain ROIs as the average over voxels.653

The functional network was computed from the wavelet coherence between all pair-wise combinations of ROIs,654

giving rise to a square symmetric matrix (278×278). The resulting functional connectivity matrix has only positive655

edges. In order to identify a backbone network structure, the multiscale network backbone27 was extracted using an656
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alpha of α = 0.2. Technically, the multiscale backbone is a directed network, however, since our original graph was657

undirected, we convert the mutliscale backbone back into an undirected network. The network was not corrected to658

insure a single connected component.659

Overlapping and hierarchically structured clusterings were derived using Order Statistics Local Optimization660

Method (OSLOM) network community detection28 with the following parameters: weighted, undirected edges, p = 0.1,661

100 runs for the detection at the bottom of the hierarchy and 1000 runs for the detection at the top of the hierarchy. All662

singlet communities were kept in the clusterings. Due to the variability in clustering structure between runs of the663

algorithm, 10 clusterings were extracted for each patient.664

The subject similarity matrix was then constructed as follows. The similarity of each diagonal entry is 1.0. Each665

off-diagonal entry in the (48×48) subject similarity matrix is the average element-centric similarity similarity of all666

comparisons 10×10 = 100 between the 10 OSLOM communities uncovered for each subject. For all comparisons, we667

set α = 0.9 and r = 8.0. Our choice of the scaling parameter, r = 8.0, was grounded in the explorations of synthetic668

binary hierarchies of equivalent height. The dis-similarity matrix is one minus the similarity matrix. Six additional669

matrices were found by using the community structure found by slicing each OSLOM community dendrogram and670

retaining only the bottom or top communities and performing all pair-wise comparisons with either our element-centric671

similarity measure, ONMI or the Omega index. Note that we use only these three measure of similarity because the672

communities contain many overlapping structures.673

Given a dis-similarity matrix, a distance weighted k-Nearest Neighbors (kNN) classifier was trained using nested674

and stratified 10-fold validation29. Specifically, the data was randomly split into 10 groups such that the proportions of675

each class were kept relatively equal in each group. Each group in turn was then used as the testing set, while the other676

9 groups formed the training set. For each training set, we first find the best k for the kNN classifier using a grid search677

for k between 1 and 15 and another stratified 10-fold validation. The classifier was then retrained on the entire training678

set for the specified k. Finally, the accuracy of the trained classifier was found on the testing set. In the paper, we report679

the average accuracy identified in 100 random initializations of the nested 10-fold validation technique30, 31.680
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