

Supplementary Material

Article Title
Evaluation of SNP calling methods for closely related bacterial isolates and a novel high-

accuracy pipeline: BactSNP

Authors

Dai Yoshimura1, Rei Kajitani1, Yasuhiro Gotoh2, Katsuyuki Katahira2, Miki Okuno1,

Yoshitoshi Ogura2, Tetsuya Hayashi2, Takehiko Itoh1

1School of Life Science and Technology, Tokyo Institute of Technology, Meguro-ku,

Tokyo 152-8550, Japan.
2Department of Bacteriology, Faculty of Medical Sciences, Kyushu University, 3-1-1

Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.

Corresponding author. Takehiko Itoh, School of Life Science and Technology, Tokyo

Institute of Technology, Meguro-ku, Tokyo 152-8550, Japan. Tel.:81 3 5734 3430; E-mail:

takehiko@bio.titech.ac.jp

Supplementary Notes
Benchmark using real complete genome pairs
For each identity case, 10 pairs of the root and reference sequences with proper identity

were randomly chosen from the completed genomes from the NCBI database [1] (Table

S1). The identity was calculated using MUMmer [2] as average identity in one-to-one

alignment regions. The commands were as follows:

1. nucmer [a.fasta] [b.fasta]

2. delta_filter -1 [out.delta] >[filtered.delta]

3. show-coords -THrcl [filtered.delta] >[filtered.coords]

4. awk '{product_sum += ($5 * $7); len += $5} END {print product_sum / len}'

[filtered.coords] >[out.identity]

delta-filter extracts one-to-one alignment by the option -1. 5th and the 7th columns in

the .coords file represent the alignment identity and alignment length, respectively.

 Next, for each reference-root pair, the genomes of 10 virtual isolates were

simulated by introducing variants to the root sequence using EvolveAGene [3]. Executed

commands were as follows:

1. mean_branch_len=$(echo "scale=7; 10 / <root_genome_size> + 0.0000001" | bc

-l)

2. evolveagene -f [root_genome.txt] -t ran -n 10 -b $mean_branch_len -i 0.1 -d

0.025

In order to simulate the situation where target isolates are closely related, EvolveAGene

was executed so that about 10 substitutions were generated per branch. Since the target

number of substitutions was exceedingly small compared to the genome size and the

number of simulated substitutions depended on random numbers (the random seed could

not be specified), the resulting average number of substitutions, s, often deviated from 10.

Therefore, we repeated EvolveAGene until the following inequality was satisfied.

 9.5 ≤ s ≤ 10.5

Indels were also simulated by the option -i and -d with the default values, which

represent the relative frequency of insertion and deletion against substitutions,

respectively. EvolveAGene only accepts a root sequence whose length is a multiple of 3

considering the codon position, and thus, the last one or two bases were deleted before

input when the root genome size was not a multiple of 3.

 Though SNP callers detect SNPs on the position of reference genome, the true

SNP positions are simulated on the root genome by EvolveAGene. In order to check

whether the detected SNP positions in the reference sequence correspond to the correct

SNP positions simulated in the root sequence, the correct SNP positions needed to be

moved to the region where the root and reference sequences were aligned in a one-to-

one manner. Therefore, we moved the correct SNP positions to random positions in

regions where nucmer generated one-to-one alignments ≥ 1 kbp in length between the

reference-root sequences and edited the simulated genomes so that they had SNPs on

the new positions by using our original program, move_snp (available at

https://github.com/IEkAdN/BactSNP/tree/master/benchmark). Executed commands

were as follows:

1. nucmer -p nucmer [root.fasta] [reference.fasta]

2. move_snp [prefix__Internal_Nodes_True_alignment.FASTA]

[prefix_True_alignment.FASTA] [nucmer.delta] [reference.fasta] [root.fasta]

[output_directory] | sort -nk2,2 >[correct_snp.tsv]

[prefix__Internal_Nodes_True_alignment.FASTA] and [prefix_True_alignment.FASTA] are

multi-fasta files containing alignment of simulated genomes output by EvolveAGene. The

output [correct_snp.tsv] contains the correct SNPs on the corresponding position of

reference genome.

 Then, illumina paired-end reads for every simulated genome were simulated by

art_illumina [4] using the following commands:

 art_illumina -i [genome.fa] -l 250 -f 40 -ss MS -m 500 -s 50 -rs <random_seed>

The options -l, -f, -ss, -m, -s, and -rs specified the read length, coverage depth, illumina

sequencing system (MS represents MiSeq), mean size of the DNA fragment, standard

deviation of the DNA fragment size, and random seed, respectively.

At last, SNP callers were executed using the simulated reads and the reference

genome. Then, it was checked whether the detected SNPs matched with the simulated

correct SNPs.

Simulated correct SNPs and reads are available at http://platanus.bio.titech.ac.jp/

bactsnp.

Common-region PPV
In order to compare PPVs among tools which mask the region where SNP calling is

difficult in different ways, we introduced ‘Common-region PPV’, i.e., PPV calculated based

on the SNPs detected in the region where all tools except Cortex [5] and CFSAN SNP

Pipeline (CFSAN) [6] determined alleles for all isolates without masking. Because Cortex

and CFSAN were not able to output information for non-variant regions, they were not

considered when calculating Common-region PPV. The average ratio of the common

region to the reference genome size is shown in Table S5.

Execution of SNP callers

Before executing each tool, low-quality regions were trimmed from reads by Platanus_trim

(version 1.0.7) [7], and mapping was performed by BWA-MEM (version 0.7.15) [8] for tools

that require mapping results as input. Duplicate reads generated by PCR duplication were

removed by Picard MarkDuplicates (version 2.18.17) [9]. The commands were as follows:

1. platanus_trim [R1.fastq] [R2.fastq]

2. bwa index [reference.fa]

3. bwa mem -M [reference.fa] [R1_trimmed.fastq] [R2_trimmed.fastq] | samtools

fixmate - - | samtools sort -o [raw.bam]

4. java -jar picard.jar MarkDuplicates REMOVE_DUPLICATES=true M=[out.log]

I=[raw.bam] O=[markduplicates.bam]

(a) Cortex

run_calls.pl script in Cortex (version 1.0.5.21) was executed as described in the section

“Comparing two strains of microbe” in its user manual

(http://cortexassembler.sourceforge.net/). The hash table required for run_calls.pl was

generated by Stampy [10]. SNPs which passed the filters in run_calls.pl and marked as

“PASS” were extracted from the resulting .vcf file and output to a .tsv file using our

original program, get_snp_cortex (available at

https://github.com/IEkAdN/BactSNP/tree/master/benchmark). The commands were as

follows:

1. stampy -G <stampy_prefix> [reference.fasta]

2. stampy -g <stampy_prefix> -H <stampy_prefix>

3. echo [reference.fasta] >[fasta_list]

4. make NUM_COLS=1 MAXK=31 cortex_var

5. make NUM_COLS=1 MAXK=63 cortex_var

6. cortex_var_31_c1 --kmer_size 31 --mem_height 17 --mem_width 100 --se_list

[fasta_list] --dump_binary k31.ctx --sample_id REF

7. cortex_var_63_c1 --kmer_size 61 --mem_height 17 --mem_width 100 --se_list

[fasta_list] --dump_binary k61.ctx --sample_id REF

8. echo [reference.fasta] >[reference.fasta_list]

9. run_calls.pl --first_kmer 31 --last_kmer 61 --kmer_step 30 --fastaq_index

[fastq_list] --auto_cleaning yes --bc yes --pd no --outdir [output_directory] -

-outvcf out --ploidy 1 --stampy_hash <stampy_prefix> --stampy_bin stampy -

-list_ref_fasta [reference.fasta_list] --refbindir [reference_directory] --

genome_size <genome_size> --qthresh 5 --mem_height 20 --mem_width 100 -

-vcftools_dir [vcftools_directory] --do_union yes --ref CoordinatesOnly --

workflow joint --logfile 01.log --apply_pop_classifier

10. get_snp_cortex

[output_directory/vcfs/out_wk_flow_J_RefCO_FINALcombined_BC_calls_at_all_k.

decomp.vcf] >[snp.tsv]

(b) Freebayes

Freebayes (version v1.2.0-2-g29c4002) [11] was executed as follows:

1. freebayes --ploidy 1 --report-monomorphic -f [reference.fasta] -L

[markduplicates.bam_list] >[raw.vcf]

2. vcffilter -f 'QUAL > 20' -f 'TYPE = snp' [raw.vcf] >[filtered.vcf]

3. get_snp_freebayes [filtered.vcf] >[snp.tsv]

SNPs with QUAL > 20 were extracted by vcffilter as described in its README [12] and

they were output to a .tsv file using our original program, get_snp_freebayes (available at

https://github.com/IEkAdN/BactSNP/tree/master/benchmark).

(c) GATK

GATK HaplotypeCaller (version 4.0.11.0) [13] and the filtering steps were executed based

on GATK Best Practices [14]. The base quality score recalibration and variant quality

score recalibration steps were not executed because there were no available SNP

databases for the isolates. Instead, we executed hard-filtering using VariantFiltration as

described in the document. SNPs which passed the filter were extracted and output to

a .tsv file using SelectVariants and our original program, get_snp_gatk (available at

https://github.com/IEkAdN/BactSNP/tree/master/benchmark). GenotypeGVCFs in

GATK version 4.0.11.0 has no option to emit information for all sites, and thus we used

version 3.8-0-ge9d806836 for GenotypeGVCFs. The commands were as follows:

1. gatk HaplotypeCaller -ERC GVCF -ploidy 1 -R [reference.fasta] -I

[markduplicates.bam] -O [out.vcf]

2. java -jar GenomeAnalysisTK.jar -T GenotypeGVCFs -allSites

-R [reference.fasta] -V [A1.vcf] -V [A2.vcf] ... -V [A10.vcf] -o [merged.vcf]

3. gatk VariantFiltration -filter-expression "QD < 2.0 || MQ < 40.0 || FS > 60.0 ||

SOR > 4.0 || MQRankSum < -12.5 || ReadPosRankSum < -8.0" --filter-name

HARD_FLT -R [reference.fasta] -V [merged.vcf] -O [filtered.vcf]

4. gatk SelectVariants --select-type-to-include SNP -R [reference.fa] -V

[filtered.vcf] -O [snp.vcf]

5. get_snp_gatk [snp.vcf] >[snp.tsv]

(d) SAMtools

SAMtools (version 1.9) [15] was executed based on the SAMtools “Workflows” document

[16] and the method described in a previous study [17], which has been referred to in

many studies that used SAMtools for SNP calling [18-20]. After mapped reads were

realigned by GATK IndelRealigner, PCR-duplicated reads were removed by

MarkDuplicates and reads with mapping quality below 30 were eliminated. The base quality

score recalibration step shown in the “Workflows” document was not executed because

there are no available SNP databases for the isolates. Filtered reads were piled up by

samtools mpileup, and the result was used as input for the bcftools call command. Called

alleles at each site with a QUAL score below 30 or supported by fewer than 75% of reads

mapped at that site were masked as ambiguous and the remaining SNPs were output to

a .tsv file using our original program, get_snp_samtools (available at

https://github.com/IEkAdN/BactSNP/tree/master/benchmark). The commands were as

follows:

1. java -jar GenomeAnalysisTK.jar -T RealignerTargetCreator -R [reference.fa] -

I [raw.bam] -o [out.intervals]

2. java -jar GenomeAnalysisTK.jar -T IndelRealigner -R [reference.fa] -I

[raw.bam] -targetIntervals [out.intervals] -o [realigned.bam]

3. java -jar picard.jar MarkDuplicates M=[out.log] I=[realigned.bam] O=[out.bam]

4. samtools view -h [out.bam] | awk '$1 ~ /^@/ || ($1 !~ /^@/ && $5 >= 30)' |

samtools view -b >[filtered.bam]

5. samtools index [filtered.bam]

6. bcftools mpileup -O u -f [reference.fa] [filtered.bam] | bcftools call --ploidy 1

-m -O v -o [isolate.vcf]

7. for isolate in $(seq 1 1 10); do echo "${isolate}\t[isolate.vcf]"; done

>[out.vcf_list]

8. get_snp_samtools [out.vcf_list] >[snp.tsv]

(e) VarScan

The output of samtools (version 1.9) mpileup was input to VarScan (version 2.4.3)

mpileup2cns [21]. SNPs among isolates shown in the output of mpileup2cns were

extracted and output to a .tsv file using our original program, get_snp_varscan (available at

https://github.com/IEkAdN/BactSNP/tree/master/benchmark) The commands were as

follows:

1. samtools mpileup -f [reference.fa] -b [markduplicates.bam_list] >[out.mpileup]

2. java -jar VarScan.jar mpileup2cns [out.mpileup] -vcf-sample-list [isolate_list]

>[out]

3. get_snp_varscan [out] >[snp.tsv]

(f) Snippy

The script generated by snippy-multi in Snippy (version 4.3.6) [22] was executed and

SNPs among target isolates were extracted from the output core.tab using our original

program, get_snp_snippy (available at

https://github.com/IEkAdN/BactSNP/tree/master/benchmark).

1. snippy-multi [fastq_list] --ref [reference.fasta] --minfrac 0.9 >[script.sh]

2. bash [script.sh]

3. get_snp_snippy <(cut --complement -f 3 [core.tab]) >[snp.tsv]

(g) CFSAN SNP Pipeline

CFSAN SNP Pipeline (version 2.0.2, CFSAN) masks high-density SNPs with the options

“--window_size 1000 125 15 --max_snp 3 2 1” by default. These parameters mean that

CFSAN filters more than 3 SNPs in 1000 bases, more than 2 SNPs in 125 bases and

more than 1 SNPs in 15 bases. This default behavior assumes that the reference genome

is closely related to the target isolates; and therefore, in addition to the default

parameters, we executed CFSAN using various --max_snp values with --window_size

1000. The --max_snp values were calculated using the following equation:

 𝑚	 = (100 − 𝑖) ⋅ 𝑟 ∙ 10

, where i, m and r represent the identity between the reference and the target isolates,

the --max_snp value, and a constant value ranging from 2 to 10 with a step size of 2,

respectively. The commands were as follows:

1. cfsan_snp_pipeline data configurationFile

2. cfsan_snp_pipeline run -m soft -c [snppipeline.conf] -s [read directory]

[reference.fasta]

3. get_snp_cfsan [snpma_preserved.vcf] >[snp.tsv]

--max_snp value in [snppipeline.conf] generated in the first command was edited as

described above before the ‘run’ command. SNPs among target isolates were extracted

from [snpma_preserved.vcf] output by the ‘run’ command and output to a .tsv file using

our original program, get_snp_cfsan (available at

https://github.com/IEkAdN/BactSNP/tree/master/benchmark). Values in Table 1 were

calculated using the results for the --max_snp value which exhibited the highest F-score

among all --max_snp values including the default one for each case.

(h) NASP

NASP (version 1.1.2) [23] was executed as described in its own paper [9]. We used BWA-

MEM (version 0.7.15) and GATK (version 3.8-0-ge9d806836) as the internal mapper and

variant caller and set 3 and 0.9 as the values for ‘minimum coverage threshold’ and

‘minimum acceptable proportion’ (i.e., minimum allele frequency), respectively. The exact

config file was generated by our original script, NASP_get_config.sh (available at

https://github.com/IEkAdN/BactSNP/tree/master/benchmark). We used GATK version

3.8, because GATK version 4.0.11.0 failed in NASP. SNPs among isolates were extracted

from the output of nasp using our original program, get_snp_nasp (available at

https://github.com/IEkAdN/BactSNP/tree/master/benchmark). The commands were as

follows:

1. NASP_get_config.sh [reference.fasta] [read_directory] [fastq_list]

[output_directory] <run name> >[config.xml]

2. nasp --config [config.xml]

3. get_snp_nasp [output_directory/matrices/bestsnp.tsv] >[snp.tsv]

(i) PHEnix

PHEnix (SHA-1 hash for the revision was 68d35c2) [24] was executed with the

parameters recommended in its document. We used BWA-MEM (version 0.7.15) and

GATK (version 3.8-0-ge9d806836) as the internal mapper and variant caller and set 10

and 0.9 as the values for ‘min_depth’ (i.e., minimum coverage depth) and ‘ad_ratio’ (i.e.,

minimum allele frequency), respectively. We used GATK version 3.8, because GATK

version 4.0.11.0 failed in PHEnix. SNPs among isolates were extracted from the output of

vcf2fasta using our original program, get_snp_phenix (available at

https://github.com/IEkAdN/BactSNP/tree/master/benchmark). The commands were as

follows:

1. phenix prepare_reference --mapper bwa --variant gatk --reference

[reference.fasta]

2. phenix run_snp_pipeline -m bwa -v gatk -r1 [R1.fastq] -r2 [R2.fastq] -r

[reference.fasta] -o . --sample-name <isolate_name> --filters

"mq_score:30,min_depth:10,ad_ratio:0.9"

3. phenix vcf2fasta -d [vcf_directory] --reference [reference.fasta] -o

[out.fasta]

4. get_snp_phenix [out.fasta] [reference.fasta] >[snp.tsv]

(j) BactSNP

BactSNP (version 1.1.0) was executed with the default parameters as follows:

1. bactsnp_release -q [fastq_list] -r [reference.fasta] -o out

2. cp out/snps_wo_ref.tsv [snp.tsv]

Effect of allele frequency filter in mapping-based SNP callers
When the copy number of one segment is larger in the sequenced genome than in the

reference genome, reads derived from distinct repetitive segments will be mapped to the

same segment in the reference, resulting in soft-clipping of the reads from the boundary

between the repetitive and unique segments in the sequenced genome (Fig. S3). If there

are mismatches between these repetitive segments in the sequenced genome, mapping-

based SNP callers sometimes call them as SNPs, even though they do not represent

polymorphisms between the reference isolate and the sequenced isolate in the

corresponding region. However, in a situation like that shown in Fig. S3, the allele

frequency of such a false-positive SNPs should be low, because only reads from one of

the repetitive segments support the alternative allele. Therefore, the allele frequency

filter is considered to be effective against such false positives.

Benchmark using TreeToReads
In order to assess the performance of SNP callers under the situation where variants

between the reference-root pair are also simulated, and structural variants (SVs) do not

exist between the pair, we carried out another supplementary benchmark using

TreeToReads (TTR) [25]. The input for TTR is a config file, and its main elements are a

phylogenetic tree and a base genome which corresponds to one isolate in the tree. TTR

simulates variants against the base genome and generates genome sequences of the

other isolates in the tree.

By TTR, we simulated a situation similar to the first benchmark, i.e., target isolates

of SNP calling were closely related and the reference isolate had about 99.9, 99, 98, or

97% identity against them. As the input base genome, we used the reference genome of

the first reference-root pair in the 99.9% case of the original benchmark (Table S1),

regardless of the target identities. The input tree was generated based on the tree

simulated by EvoleveAGene against the first reference-root pair for each species and

identity in the original benchmark. EvolveAGene outputs the simulated tree among the

target isolates in newick format where branch lengths were represented as the number of

substitutions. We converted the number of substitutions into the ratio of substitution to

the root genome size and added a branch from the root to the reference isolate to the

tree using our original script, TTR_get_newick.sh (available at

https://github.com/IEkAdN/BactSNP/blob/master/benchmark). The branch length

between the reference-root pair was calculated based on one-to-one alignments

between the reference-root pair by using MUMmer and our original script

TTR_run_paup.sh (available at

https://github.com/IEkAdN/BactSNP/blob/master/benchmark), which executes PAUP

(version 4.0a (build 164) for Unix/Linux) [26] internally. The commands were as follows:

1. nucmer [root.fasta] [reference.fasta]

2. delta_filter -1 [out.delta] >[one_to_one.delta]

3. show-aligns [one_to_one.delta] <root chromosome ID> <reference

chromosome ID> >[one_to_one.aligns]

4. TTR_run_paup.sh [paup executable] [one_to_one.aligns] <output prefix>

>[reference_root_branch_length] 2>[relative_rates_of_substitutions]

5. TTR_get_newick.sh [stdout of EvolveAGene] [root.fasta]

<reference_root_branch_length> >[newick]

The other elements of the config file for TTR are the relative rates of substitutions from

A to C, A to G, A to T, C to G, C to T, and G to T, the number of variable sites simulated

on the base genome, and the parameters for mutation distribution and indel simulation.

The relative rates of substitutions were calculated by TTR_run_paup.sh as described

above. The number of variable sites was calculated using the following command so that

the target isolates had about 99.9, 99, 98, or 97% identity against the reference genome:

echo "$reference_genome_size * (100 - $identity) / 100" | bc

>[variable_sites_number]

The parameters for mutation distribution and indel simulation were set as shown in the

example config file of TTR

(https://github.com/snacktavish/TreeToReads/blob/master/example_indels.config). The

exact config file was generated by our original script, TTR_get_config.sh (available at

https://github.com/IEkAdN/BactSNP/blob/master/benchmark), and TTR was executed

as follows:

1. TTR_get_config.sh [newick] [reference.fasta] [relative_rates_of_substitutions]

<variable sites number> [output_directory] >[config]

2. python treetoreads.py [config]

TTR outputs aligned and unaligned fasta files that contain the simulated genome

sequence of each isolate. The correct SNP data and illumina paired-end reads were

generated from these fasta files using our original script TTR_fasta2snp (available at

https://github.com/IEkAdN/BactSNP/tree/master/benchmark) and art_illumina [4],

respectively. We used the same options for art_illumina as our original benchmark. The

commands were as follows:

1. TTR_fasta2snp [base_genome_aligned.fasta]

[simulated_genome_aligned.fasta_list] >[snp.tsv]

2. art_illumina -i [simulated_genome_unaligned.fasta] -l 250 -f 40 -ss MS -m 500

-s 50 -rs <random_seed>

Simulated correct SNPs and reads are available at

http://platanus.bio.titech.ac.jp/bactsnp.

PPV and sensitivity occasionally did not show a monotonic decline with increasing

divergence, but the upticks were small in most cases (Table S6). PPV of Cortex showed a

relatively large uptick (≥ 5%) at 97% case in E. coli, but this was because the total number

of detected SNPs was small in both 97% and 98% cases. 1 out of 12 detected SNPs in the

97% case and 4 out of 16 detected SNPs in the 98% case were false-positive. PPV of

GATK also showed a relatively large uptick (≥ 5%) at the 97% case in S. aureus, but this

was because dense false positives in a region (25 false-positives in an 878 bp region)

decreased the PPV at the 98% case.

Detailed description of BactSNP algorithm

First, BactSNP trims the low-quality regions and sequence adapters from sequence reads

using Platanus_trim with the following command:

platanus_trim [R1.fastq] [R2.fastq]

Second, BactSNP de novo assembles the genome of each isolate using Platanus [27] with

the following commands:

platanus assemble -o <prefix> -f [R1.trimmed.fastq] [R2.trimmed.fastq] -u 0

The option -u is set to 0 to disable the bubble-crush function, designed for diploid

organisms. Scaffolding and gap closing are not executed, because these procedures

increase the number of mismatches between the true sequence and the assembled

sequence, causing false-positive SNPs. Assembled contigs are aligned to the reference

genome using nucmer with the following command:

nucmer [reference.fasta] [assembly.fasta]

Using the nucmer alignment, the pseudogenome is generated for each isolate using our

original program. Here, the pseudogenome means a genome sequence in which each site

corresponds to a site of the reference genome in a one-to-one manner. Insertions

against the reference are ignored, and deletions against it are reflected as ‘-‘ in the

pseudogenome (Fig. S4). Basically, each allele of the pseudogenome is determined as an

allele of the aligned contig. When multiple contigs are aligned to the same site of the

reference genome and the aligned alleles are not unique, or when a site of the

pseudogenome is near any indels, the allele is called as ‘-‘. In other words, the allele is

called as ‘-‘ if the site does not satisfy either of the following conditions:

(1) nallele = 1

(2) dindel > 5 bp,

where nallele is the number of alleles aligned at the site, and dindel is the distance from the

nearest indel to the site.

In addition to assembling the reads, BactSNP maps reads to the reference genome

by BWA-MEM and removes PCR-duplicated reads by MarkDuplicates in Picard with the

following commands:

1. bwa index -p [reference.fasta] [reference.fasta]

2. bwa mem -M [reference.fasta] [R1.trimmed.fastq] [R2.trimmed.fastq]

3. java -jar picard.jar MarkDuplicates REMOVE_DUPLICATES=true I=[in.bam]

O=[out.bam] M=[out.log}

Using the mapping results, BactSNP masks unreliable sites of the pseudogenome using

the original program. The variables call and callele represent the coverage depth of all reads

mapped to the site and that of reads supporting the allele of the pseudogenome at the

site, respectively. The corresponding allele of the pseudogenome is masked if the

reference site does not satisfy either of the following conditions:

(3) callele ≥ 10

(4) callele / call ≥ 0.9

When BactSNP calculates call, it counts all reads, even those supporting deletion against

the reference genome.

Lastly, SNPs among isolates are determined by using the pseudogenomes

generated in one-to-one manner.

When the user inputs assembled scaffolds instead of reads for some isolates,

BactSNP simulates reads from the input scaffolds using art_illumina, and uses the

simulated reads as if they were input by the user. The command of art_illumina is as

follows:

art_illumina -i [scaffolds.fa] -l 250 -f 40 -ss MSv3 -m 500 -s 50 -na -rs 1 -ef -o

<output_prefix>

BactSNP uses SAMtools [28] to parse .sam or .bam files in several steps.

Detailed description of application to real data
We downloaded the sequence data of 45 closely-related N.meningitidis isolates of

sequence type 7 that caused outbreaks in Kassena-Nankana District in Ghana from 2001

to 2005 [29]. Their accession numbers are as follows: ERS040961, ERS040967,

ERS040966, ERS040965, ERS040970, ERS040971, ERS040969, ERS040968, ERS040972,

ERS040963, ERS040964, ERS040983, ERS040973, ERS040974, ERS040978, ERS040976,

ERS040975, ERS040977, ERS040982, ERS040984, ERS041005, ERS040999, ERS040990,

ERS040987, ERS040988, ERS040997, ERS040986, ERS040991, ERS040994, ERS040995,

ERS040989, ERS040985, ERS041003, ERS041000, ERS041002, ERS040992, ERS040993,

ERS040996, ERS040998, ERS041001, ERS041008, ERS041006, ERS041009, ERS041007

and ERS041010.

SNP calling was executed using five reference genomes with various identities

from the target isolates. The accession number of each reference genome was shown

with the identity in Table S7. The identity was calculated using one isolate among the

closely-related target isolates (accession number: ERS040967) in the same way as in the

simulation benchmark.

CFSAN was executed with various values of the option --max_snp, and the result

for the case exhibiting the most constant number of SNP sites [i.e., the case exhibiting

the minimum standard deviation over the all identity values (Table S7)] is shown in Fig. 3.

Values assigned to the option --max_snp were determined in the same way as in the

simulation benchmarks.

Supplementary Figures
(a)

(b)

 0

 20

 40

 60

 80

 100

 70 75 80 85 90 95 100

PP
V

(%
)

Sensitivity (%)

�
�

�

���

�
�
�

���

����

�

�

���

�

�
�

���

�

�

�

�
�

�

������

�

�
�

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

BactSNP
PHEnix
NASP
CFSAN
Snippy
VarScan
SAMtools
GATK
Freebayes
Cortex

 99

 99.2

 99.4

 99.6

 99.8

 100

 94 95 96 97 98 99 100

PP
V

(%
)

Sensitivity (%)

�
�� ���

���
�

�

�

���

�

�

�

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

BactSNP
PHEnix
NASP
CFSAN
Snippy
VarScan
SAMtools
GATK
Freebayes
Cortex

(c)

(d)

 0

 20

 40

 60

 80

 100

 70 75 80 85 90 95 100

PP
V

(%
)

Sensitivity (%)

�

�

�

���

�

�

�

��� ���

�

�

�

���

�

�

�

���

�

�

�

�
�

�

������

�
��

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

BactSNP
PHEnix
NASP
CFSAN
Snippy
VarScan
SAMtools
GATK
Freebayes
Cortex

 99

 99.2

 99.4

 99.6

 99.8

 100

 94 95 96 97 98 99 100

PP
V

(%
)

Sensitivity (%)

� �� ����

���

�

�

���

�

�

�

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

BactSNP
PHEnix
NASP
CFSAN
Snippy
VarScan
SAMtools
GATK
Freebayes
Cortex

Fig. S1. Benchmarks using simulated sequence data. PPV and Sensitivity in Table 1 (b)

and (c) were represented graphically (Those in Table 1 (a) were represented in Fig. 2).

The value 7, 8, 9, and 9.9 in the graph represent 97, 98, 99, and 99.9 % identity between

the reference-root pair, respectively. (a) PPV and Sensitivity in N. meningitidis cases for

SNP callers that exhibited low PPV (< 99) in at least one identity. (b) PPV and Sensitivity

in N. meningitidis cases for SNP callers that exhibited high PPV (≥ 99) in all identities. (c)

PPV and Sensitivity in E. coli cases for SNP callers that exhibited low PPV (< 99) in at

least one identity. (d) PPV and Sensitivity in E. coli cases for SNP callers that exhibited

high PPV (≥ 99) in all identities.

Fig. S2. An example and definition of ‘soft-clip region’. Mapping result around a false-

positive SNP site is shown using Integrative Genomics Viewer [30]. Gray bars indicate the

mapped reads; the region in which all nucleotides are colored (i.e. adenine, bright green;

cytosine, blue; guanine, bright brown; thymine, red) indicates the unaligned part due to

soft-clipping; the dotted line in the middle indicates the position where a false-positive

SNP was called. We defined ‘soft-clip region’ as a region where five or more soft-clipped

reads were mapped in at least one isolate, as shown by the blue rectangle; unaligned

regions of reads were counted as if they were mapped adjacent to the aligned part

without indels.

2018/07/15 23:52

1/2 ページfile:///Users/dai/Desktop/15_Saureus_99_A9_388040_.svg

rmDup.bam

387,600 bp 387,700 bp 387,800 bp 387,900 bp 388,000 bp 388,100 bp 388,200 bp 388,300 bp 388,400 bp 388,500 bp

866 bp

AP009324.1

(a)

(b)

Fig. S3. Conceptual diagram of soft clipping due to copy number variation. (a) Location of

repetitive segments in the sequenced genome and corresponding sequenced reads. (b)

Location of the similar segment in the reference genome and the reads that will be

mapped there. The read color indicates from which segment in the sequenced genome

they derive, Segment 1 or 1’. The dotted lines indicate the region of reads not aligned due

to soft clipping.

Fig. S4. Algorithm to generate a pseudogenome. Each allele of the pseudogenome is

determined as an allele of the aligned contig. When multiple contigs are aligned to the

same site of the reference genome and the aligned alleles were not unique, the

pseudogenome allele is called as ‘-‘.

Sequenced(genome Segment'1 Segment'1’

Reference'genome Segment'1

reference

contigs
.......C.............G.....

pseudogenome
nnnnn.......C.............-................----------............

............A.............G......................................

.....A........................

Supplementary Tables

Table S1. Genome sequences used for the benchmarks.

(a) Staphylococcus aureus

Identity (%) Case Reference Root
1 CP001781.1 CP014064.1
2 CP009681.1 FN433596.1
3 CP002388.1 CP009361.1
4 CP012692.1 CP013953.1
5 CP016863.1 CP011526.1
6 CP001844.2 CP007454.1
7 BA000018.3 CP015173.1
8 CP010299.1 CP007539.1
9 CP012015.1 CP015447.1

10 CP009554.1 BX571856.1
1 CP015646.1 CP003194.1
2 CP015447.1 CP012978.1
3 CP010298.1 CP010526.1
4 CP013955.1 CP019563.1
5 CP010300.1 CP001781.1
6 CP006044.1 CP012756.1
7 CP006706.1 CP003166.1
8 CP009681.1 CP011528.1
9 CP016863.1 CP016856.1

10 CP017094.1 LT615218.1
1 CP012011.1 CP002110.1
2 CP012018.1 BX571856.1
3 CP019591.1 HE681097.1
4 CP020019.1 CP007659.1
5 CP016863.1 CP009828.1
6 CP010298.1 CP013137.1
7 CP016858.1 CP006630.1
8 CP015645.1 CP001996.1
9 CP009361.1 CP005288.1

10 CP016856.1 CP013182.1
1 LN854556.1 CP014791.1
2 LN854556.1 CP013218.1
3 CP002114.2 CP012756.1
4 CP009361.1 LN854556.1
5 CP006044.1 CP015817.1
6 CP019591.1 LN854556.1
7 CP002388.1 LN854556.1
8 CP020019.1 LN854556.1
9 CP006044.1 CP002114.2

10 CP003808.1 LN854556.1

99.9

99

98

97

(b) Neisseria meningitidis

Identity (%) Case Reference Root
1 CP016652.1 CP016645.1
2 CP016649.1 CP016653.1
3 CP016659.1 CP016664.1
4 CP016675.1 CP016674.1
5 CP016648.1 CP016663.1
6 CP016671.1 CP016680.1
7 CP009422.1 CP016678.1
8 CP016660.1 CP016682.1
9 CP016669.1 CP016662.1

10 CP016646.1 CP016672.1
1 CP007524.1 AL157959.1
2 CP007668.1 CP002424.1
3 CP002421.1 CP007668.1
4 CP020420.1 FR774048.1
5 FR774048.1 AL157959.1
6 CP012391.1 CP007668.1
7 CP020420.1 AL157959.1
8 CP017257.1 CP012393.1
9 CP017257.1 CP016648.1

10 CP012694.1 CP020420.1
1 CP020421.1 CP002423.1
2 CP002420.1 CP002423.1
3 CP020422.1 CP020401.1
4 CP020402.1 CP002422.1
5 CP002423.1 AE002098.2
6 CP020401.1 CP002422.1
7 CP020401.1 CP020402.1
8 CP020422.1 CP002422.1
9 CP015886.1 CP002424.1

10 CP006869.1 CP002423.1
1 CP007524.1 CP020421.1
2 CP020402.1 CP006869.1
3 CP002420.1 FR774048.1
4 CP002420.1 AM889136.1
5 AE002098.2 AL157959.1
6 CP020422.1 CP006869.1
7 CP020421.1 AL157959.1
8 CP020420.1 CP002420.1
9 CP006869.1 FR774048.1

10 CP012694.1 CP015886.1

97

98

99

99.9

(c) Escherichia coli

Identity (%) Case Reference Root
1 CP017440.1 CP018245.1
2 AP010960.1 CP021339.1
3 CP018250.1 CP017434.1
4 CP010116.1 CP018206.1
5 CP017249.1 CP008805.1
6 CP017444.1 CP001164.1
7 CP014269.1 CP000819.1
8 CP020048.1 CP018948.1
9 CP017436.1 CP018239.1

10 CP015159.1 CP015076.1
1 CP010445.1 CP000819.1
2 CP013663.1 HF572917.2
3 CP009789.1 CP006636.1
4 FN649414.1 CP019005.1
5 CP020106.1 CP003297.1
6 CP018962.1 CP017631.1
7 CP017844.1 CP010172.1
8 CP015228.1 AP010960.1
9 CP010176.1 CP006584.1

10 CP016404.1 CP021175.1
1 CP009859.1 CP018206.1
2 CP013662.1 CP018250.1
3 CP015228.1 CP017434.1
4 CP020106.1 CP015020.1
5 CP003289.1 CP018243.1
6 CP021339.1 CP008957.1
7 CP020058.1 CP016625.1
8 AP010953.1 CP015832.1
9 CU928145.2 CP017444.1

10 CP020092.1 CP017438.1
1 CP020055.1 CP012633.1
2 AM946981.2 CP000243.1
3 CP010816.1 CP016497.1
4 CP015228.1 CP005930.1
5 CP018237.1 CP015159.1
6 CP003297.1 CP015074.2
7 CP010133.1 CP021207.1
8 CP020106.1 CP014667.1
9 CP009106.2 CP007799.1

10 CP020368.1 CP002212.1

99.9

99

98

97

Table S2. Benchmark results of SNP callers for the first reference-root pair among ten

pairs in each species and identity (Table S1).

(a) Staphylococcus aureus

(b) Neisseria meningitidis

(c) Escherichia coli

Identity (%) Cortex Freebayes GATK SAMtools VarScan Snippy CFSAN NASP PHEnix BactSNP

99.9 100.00 84.21 80.82 98.33 99.44 44.36 98.88 100.00 100.00 100.00

99 96.41 37.78 25.83 71.03 83.72 7.49 96.70 100.00 100.00 100.00

98 100.00 28.98 22.39 56.43 77.49 3.25 97.60 100.00 100.00 100.00

97 94.12 38.36 26.81 57.70 78.03 2.02 93.92 100.00 98.31 100.00

99.9 97.18 99.44 100.00 100.00 99.44 100.00 100.00 99.44 100.00 100.00

99 89.44 94.44 99.44 99.44 100.00 98.89 97.78 98.89 100.00 100.00

98 82.22 91.11 100.00 100.00 99.44 98.33 90.56 97.78 100.00 99.44

97 71.51 81.01 97.21 98.32 97.21 93.85 77.65 95.53 97.77 97.77

99.9 - 88.29 94.75 63.99 95.17 93.73 - 91.74 94.33 93.17

99 - 88.13 94.22 64.00 94.09 92.07 - 91.16 93.53 92.45

98 - 81.19 86.40 59.16 85.95 82.46 - 83.18 85.37 84.34

97 - 83.68 88.93 61.30 87.94 84.06 - 85.78 87.59 86.37

PPV (%)

Sensitivity (%)

Called-sites (%)

Identity (%) Cortex Freebayes GATK SAMtools VarScan Snippy CFSAN NASP PHEnix BactSNP

99.9 95.27 95.58 97.75 100.00 100.00 39.68 99.41 100.00 100.00 100.00

99 97.67 48.71 42.86 75.73 85.85 4.98 93.48 100.00 100.00 100.00

98 93.75 31.34 24.32 60.68 78.07 2.78 94.30 100.00 100.00 100.00

97 97.69 25.46 18.10 40.43 63.33 1.95 91.28 100.00 99.42 100.00

99.9 92.53 99.43 100.00 99.43 100.00 99.43 96.55 95.40 99.43 97.13

99 91.30 92.39 99.46 98.37 98.91 97.83 93.48 95.11 97.83 97.28

98 82.87 86.74 98.90 98.90 98.34 95.03 82.32 96.69 97.79 97.24

97 72.99 87.36 99.43 98.28 98.28 93.68 78.16 95.40 98.28 97.70

99.9 - 91.72 98.30 66.55 99.72 96.04 - 88.95 97.32 92.04

99 - 89.37 95.29 65.13 96.30 91.74 - 87.28 94.08 90.20

98 - 85.72 90.72 62.53 93.67 84.46 - 81.63 88.23 85.81

97 - 84.12 88.73 61.00 88.56 81.86 - 81.66 86.52 83.67

PPV (%)

Sensitivity (%)

Called-sites (%)

Identity (%) Cortex Freebayes GATK SAMtools VarScan Snippy CFSAN NASP PHEnix BactSNP

99.9 98.33 40.04 36.17 89.27 76.25 57.37 100.00 100.00 100.00 100.00

99 97.66 45.19 42.39 87.02 90.00 5.38 98.88 100.00 100.00 100.00

98 98.01 13.48 9.75 42.51 50.29 1.76 96.13 100.00 99.43 100.00

97 99.33 25.71 17.71 70.12 87.96 1.47 90.85 99.38 100.00 100.00

99.9 96.72 98.91 100.00 100.00 100.00 100.00 99.45 97.81 98.91 98.91

99 92.27 96.13 100.00 100.00 99.45 99.45 97.24 99.45 100.00 99.45

98 85.55 82.66 99.42 100.00 99.42 97.69 86.13 95.38 100.00 99.42

97 87.13 79.53 98.83 98.83 98.25 97.66 81.29 94.15 98.83 98.83

99.9 - 89.25 95.56 64.52 97.76 92.90 - 89.14 94.20 92.21

99 - 85.38 91.18 61.88 91.29 89.44 - 89.09 90.48 89.77

98 - 79.10 84.00 57.50 83.66 81.00 - 81.10 83.03 82.04

97 - 80.52 85.58 58.79 84.99 82.50 - 83.62 84.83 83.99

PPV (%)

Sensitivity (%)

Called-sites (%)

Table S3. Benchmark results of SNP callers when “soft-clip regions” were masked as

ambiguous. This table is based on the result for the first reference-root pair among ten

pairs in each species and identity (Table S1). Results without “soft-clip regions” masking

in the same cases are shown in Table S2.

(a) Staphylococcus aureus

(b) Neisseria meningitidis

(c) Escherichia coli

Identity (%) Cortex Freebayes GATK SAMtools VarScan Snippy CFSAN NASP PHEnix BactSNP

99.9 100.00 88.44 98.87 100.00 100.00 68.90 100.00 100.00 100.00 100.00

99 96.20 51.99 90.56 98.18 100.00 26.21 100.00 100.00 100.00 100.00

98 100.00 45.18 87.50 92.77 96.25 17.55 100.00 100.00 100.00 100.00

97 94.34 57.09 93.13 96.83 100.00 11.54 99.17 100.00 100.00 100.00

99.9 96.05 99.44 98.87 98.87 98.87 98.87 98.87 98.31 98.87 98.87

99 84.44 94.44 90.56 90.00 90.56 90.56 90.00 90.00 90.56 90.56

98 72.78 91.11 85.56 85.56 85.56 85.00 83.33 85.00 85.56 85.56

97 55.87 81.01 68.16 68.16 68.16 68.16 66.48 67.04 68.16 68.16

99.9 - 88.13 93.09 62.80 93.82 92.70 - 90.61 92.79 91.93

99 - 87.81 85.20 57.66 85.79 84.94 - 84.07 85.01 84.53

98 - 80.50 70.62 47.89 71.23 70.19 - 69.57 70.30 70.12

97 - 82.48 64.55 43.97 65.05 64.26 - 63.93 64.36 64.07

PPV (%)

Sensitivity (%)

Called-sites (%)

Identity (%) Cortex Freebayes GATK SAMtools VarScan Snippy CFSAN NASP PHEnix BactSNP

99.9 95.27 97.19 98.84 100.00 100.00 94.48 100.00 100.00 100.00 100.00

99 97.47 56.11 78.05 91.38 95.81 47.75 100.00 100.00 100.00 100.00

98 91.94 39.75 66.15 83.77 92.75 20.82 100.00 100.00 100.00 100.00

97 97.94 30.40 62.01 78.57 91.67 17.35 99.06 100.00 100.00 100.00

99.9 92.53 99.43 98.28 97.70 98.28 98.28 95.98 94.25 98.28 95.98

99 83.70 92.39 86.96 86.41 86.96 86.41 85.33 84.24 86.41 85.87

98 62.98 86.74 71.27 71.27 70.72 70.17 69.06 70.17 70.72 70.17

97 54.60 87.36 63.79 63.22 63.22 63.22 60.34 62.07 63.22 63.22

99.9 - 91.69 96.39 65.17 97.73 94.48 - 87.73 95.52 90.60

99 - 89.02 78.54 53.21 79.89 77.41 - 74.17 77.94 76.13

98 - 84.98 62.85 42.78 66.61 61.23 - 58.97 61.75 61.50

97 - 83.11 52.03 35.15 53.24 51.22 - 50.32 51.46 51.05

PPV (%)

Sensitivity (%)

Called-sites (%)

Identity (%) Cortex Freebayes GATK SAMtools VarScan Snippy CFSAN NASP PHEnix BactSNP

99.9 98.30 53.71 66.92 93.68 89.45 95.70 100.00 100.00 100.00 100.00

99 97.45 54.89 72.44 90.56 95.32 18.46 100.00 100.00 100.00 100.00

98 97.66 18.50 39.39 73.44 80.57 7.28 100.00 100.00 100.00 100.00

97 99.13 41.46 76.69 96.90 96.15 5.99 100.00 99.20 100.00 100.00

99.9 94.54 98.91 97.27 97.27 97.27 97.27 97.27 95.63 96.72 96.72

99 84.53 96.13 90.06 90.06 90.06 90.06 90.06 90.06 90.06 90.06

98 72.25 82.66 81.50 81.50 81.50 81.50 78.61 79.19 81.50 81.50

97 66.67 79.53 73.10 73.10 73.10 73.10 70.76 72.51 73.10 73.10

99.9 - 89.18 93.83 63.31 95.92 91.69 - 88.18 92.65 90.97

99 - 85.17 84.20 56.95 84.61 83.64 - 82.89 83.79 83.33

98 - 78.63 67.60 46.02 67.83 66.93 - 66.35 67.24 66.86

97 - 79.93 64.42 43.90 64.65 64.15 - 63.82 64.25 63.96

Called-sites (%)

PPV (%)

Sensitivity (%)

Table S4. Benchmark results of mapping-based general SNP callers when soft-clipped

reads were filtered out from the input bam file. Only SNP callers to which users input a

bam file were evaluated. This table is based on the result for the first reference-root pair

among ten pairs in each species and identity (Table S1). Results without filtering soft-

clipped reads in the same cases were shown in Table S2.

(a) Staphylococcus aureus

(b) Neisseria meningitidis

(c) Escherichia coli

Identity (%) Freebayes GATK SAMtools VarScan

99.9 88.44 89.39 95.68 97.24

99 51.99 40.68 66.54 84.51

98 45.18 38.79 58.25 83.10

97 57.09 45.17 63.54 77.58

99.9 99.44 100.00 100.00 99.44

99 94.44 99.44 99.44 100.00

98 91.11 100.00 100.00 98.33

97 81.01 96.65 98.32 96.65

99.9 88.13 94.46 63.89 94.74

99 87.81 93.54 64.07 92.77

98 80.50 85.04 59.27 83.22

97 82.48 86.70 61.42 84.42

PPV (%)

Sensitivity (%)

Called-sites (%)

Identity (%) Freebayes GATK SAMtools VarScan

99.9 97.19 98.31 99.43 98.86

99 56.11 47.77 73.88 80.18

98 39.75 30.07 60.96 78.22

97 30.40 26.15 40.71 63.64

99.9 99.43 100.00 99.43 100.00

99 92.39 98.91 98.37 98.91

98 86.74 98.34 98.34 97.24

97 87.36 98.28 98.28 96.55

99.9 91.69 98.24 66.59 99.51

99 89.02 94.65 65.45 94.63

98 84.98 89.57 63.03 90.72

97 83.11 87.06 61.63 84.33

PPV (%)

Sensitivity (%)

Called-sites (%)

Identity (%) Freebayes GATK SAMtools VarScan

99.9 53.71 46.92 82.06 75.62

99 54.89 46.17 83.41 85.71

98 18.50 14.65 40.66 54.84

97 41.46 30.78 67.06 79.25

99.9 98.91 100.00 100.00 100.00

99 96.13 100.00 100.00 99.45

98 82.66 99.42 99.42 98.27

97 79.53 98.83 98.83 98.25

99.9 89.18 95.48 64.50 97.49

99 85.17 90.81 61.97 90.41

98 78.63 83.25 57.79 82.12

97 79.93 84.42 59.13 82.80

Called-sites (%)

PPV (%)

Sensitivity (%)

Table S5. Average ratio of the common region to the reference genome size when

calculating Common-region PPV.

Table S6. Benchmarks using TreeToReads.

(a) Staphylococcus aureus

(b) Neisseria meningitidis

Identity (%) S. aureus N. meningitidis E. coli

99.9 58.52 56.07 57.40

99 54.23 53.28 53.25

98 52.82 49.65 48.04

97 50.97 46.17 45.49

Identity (%) Cortex Freebayes GATK SAMtools VarScan Snippy CFSAN NASP PHEnix BactSNP

99.9 98.66 98.88 100.00 100.00 100.00 91.19 100.00 100.00 100.00 100.00

99 100.00 94.65 96.46 97.44 100.00 11.90 99.47 100.00 100.00 100.00

98 90.00 83.80 85.25 86.85 99.46 3.21 96.08 100.00 97.87 100.00

97 86.67 83.98 90.63 81.45 98.54 1.58 79.31 98.45 96.71 100.00

99.9 82.12 98.32 98.88 98.88 98.32 98.32 98.32 92.74 98.32 96.09

99 30.57 91.71 98.96 98.45 98.96 98.45 96.89 95.34 99.48 95.85

98 9.23 76.92 94.87 94.87 93.85 92.82 75.38 87.18 94.36 89.23

97 6.25 73.08 97.60 97.12 97.12 96.15 22.12 91.35 99.04 91.83

99.9 - 92.60 99.29 67.03 99.89 98.62 - 95.06 98.84 97.23

99 - 92.57 98.70 67.13 98.92 97.49 - 94.18 98.26 95.20

98 - 92.40 97.95 67.21 97.68 95.77 - 93.00 97.53 92.62

97 - 92.21 97.29 67.35 96.50 93.98 - 91.88 96.86 90.22

PPV (%)

Sensitivity (%)

Called-sites (%)

Identity (%) Cortex Freebayes GATK SAMtools VarScan Snippy CFSAN NASP PHEnix BactSNP

99.9 97.04 99.51 99.52 100.00 100.00 93.93 100.00 100.00 100.00 100.00

99 98.08 96.86 97.24 97.27 98.33 16.10 98.31 100.00 97.80 100.00

98 96.15 90.24 98.41 91.30 96.88 4.90 94.48 100.00 97.92 100.00

97 100.00 83.54 92.71 85.29 97.73 2.09 93.22 99.39 98.31 100.00

99.9 78.85 97.12 99.04 99.04 98.56 96.63 97.12 89.42 98.56 92.31

99 28.18 85.08 97.24 98.34 97.79 96.69 96.13 90.61 98.34 92.27

98 13.02 77.08 96.88 98.44 96.88 93.75 71.35 83.85 97.92 92.71

97 4.35 74.46 96.74 94.57 93.48 88.04 29.89 88.04 95.11 86.41

99.9 - 91.81 98.41 66.60 99.87 96.28 - 89.01 97.45 91.98

99 - 91.69 97.73 66.71 98.82 95.02 - 88.13 96.78 89.95

98 - 91.76 97.20 66.83 97.86 93.75 - 87.26 96.29 88.27

97 - 91.54 96.45 67.09 96.68 91.75 - 86.26 95.59 86.18

Called-sites (%)

PPV (%)

Sensitivity (%)

(c) Escherichia coli

Table S7. Number of detected SNP sites in real sequence data analysis. The relationship

between the identity between the reference and the target isolates and the number of

detected SNP sites among the target isolates is shown. Accession denotes the accession

number of the used reference genome; SD, the standard deviation of the number of

detected SNP sites over all cases; the value of r, the constant value used to calculate --

max_snp parameter values in CFSAN. (a) Results for all SNP callers including CFSAN with

--max_snp parameter value which exhibited the least SD. (b) Results for CFSAN with all -
-max_snp parameter values.

(a)

(b)

Supplementary References

1. National Center for Biotechnology Information. NCBI. [Internet]. [cited 30 December

2018]. Available from: https://www.ncbi.nlm.nih.gov/

2. Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M et al. Versatile and open

software for comparing large genomes. Genome Biol 2004;5:R12

3. Hall BG. Simulating DNA coding sequence evolution with EvolveAGene 3. Mol Biol
Evol 2008;25:688–695

4. Huang W, Li L, Myers JR, Marth GT. ART: A next-generation sequencing read

Identity (%) Cortex Freebayes GATK SAMtools VarScan Snippy CFSAN NASP PHEnix BactSNP

99.9 98.68 99.43 99.44 100.00 100.00 92.11 100.00 100.00 100.00 100.00

99 94.59 91.51 93.29 96.68 96.27 11.00 99.60 100.00 99.23 100.00

98 75.00 76.92 78.61 80.56 95.36 1.73 91.30 99.24 95.42 100.00

97 91.67 67.98 72.60 75.76 90.41 1.13 77.78 99.45 94.04 100.00

99.9 79.26 93.09 95.21 95.21 93.62 93.09 92.02 88.30 93.62 92.02

99 26.12 88.43 98.51 97.76 96.27 93.28 92.54 88.81 95.90 89.93

98 7.79 77.92 95.45 94.16 93.51 88.96 68.18 84.42 94.81 85.71

97 5.16 72.77 95.77 93.90 92.96 90.14 29.58 84.98 96.24 84.98

99.9 - 91.01 97.52 65.91 99.88 94.75 - 89.95 96.12 93.20

99 - 90.93 96.89 66.00 98.88 93.60 - 89.10 95.53 90.98

98 - 90.86 96.28 66.15 97.80 92.11 - 88.17 94.88 88.82

97 - 90.72 95.64 66.37 96.66 90.44 - 87.19 94.25 86.67

PPV (%)

Sensitivity (%)

Called-sites (%)

Accession Identity (%) Cortex Freebayes GATK Samtools VarScan Snippy CFSAN NASP PHEnix BactSNP
NZ_CP007524.1 99.92 160 327 425 352 292 203 222 183 245 208

NC_017512.1 99.77 153 332 424 363 291 224 294 181 237 204
NC_003116.1 98.99 148 538 693 479 293 332 325 175 215 191

NZ_CP016672.1 97.56 133 917 1,251 784 306 482 391 179 187 173
NZ_CP006869.1 97.29 135 871 1,202 601 297 504 336 173 193 169

10.38 254.59 362.89 161.69 5.49 125.65 55.49 3.71 23.03 15.79SD

Accession Identity (%) default r =2 r =4 r =6 r =8 r =10
NZ_CP007524.1 99.92 156 127 161 192 207 222

NC_017512.1 99.77 141 181 215 232 269 294
NC_003116.1 98.99 92 240 319 325 325 325

NZ_CP016672.1 97.56 12 391 391 391 391 391
NZ_CP006869.1 97.29 2 336 336 336 336 336

63.79 97.10 83.98 72.63 62.70 55.49SD

simulator. Bioinformatics 2012;28:593–594

5. Iqbal Z, Caccamo M, Turner I, Flicek P, McVean G. De novo assembly and genotyping

of variants using colored de Bruijn graphs. Nat Genet 2012;44:226–232

6. Davis S, Pettengill JB, Luo, Y, Payne J, Shpuntoff A et al. CFSAN SNP Pipeline: an

automated method for constructing SNP matrices from next-generation sequence

data. PeerJ Comput Sci 2015;1:e20

7. Itoh Laboratory, Tokyo Institute of Technology. Platanus [Internet]. [cited 13 July

2018]. Available from: http://platanus.bio.titech.ac.jp/

8. Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM.

arXiv preprint arXiv 2013;1303.3997

9. Broad Institute. Picard [Internet]. [cited 13 July 2018]. Available from:

http://broadinstitute.github.io/picard/

10. Lunter G, Goodson M. Stampy: a statistical algorithm for sensitive and fast mapping

of Illumina sequence reads. Genome Res 2011;21.6:936-939

11. Garrison E, Marth G. Haplotype-based variant detection from short-read sequencing.

arXiv preprint arXiv 2012;1207.3907

12. Garrison E. freebayes [Internet]. [cited 30 December 2018]. Available from:

https://github.com/ekg/freebayes

13. DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR et al. A framework for

variation discovery and genotyping using next-generation DNA sequencing data. Nat
Genet 2011;43:491–498

14. Broad Institute. GATK Best Practices [Internet]. [cited 30 December 2018]. Available

from: https://software.broadinstitute.org/gatk/best-practices/

15. Li H. A statistical framework for SNP calling, mutation discovery, association mapping

and population genetical parameter estimation from sequencing data. Bioinformatics
2011;27(21):2987–2993

16. Genome Research Limited. Samtools Workflows [Internet]. [cited 17 July 2018].

Available from: http://www.htslib.org/workflow/

17. Harris SR, Feil EJ, Holden MT, Quail MA, Nickerson EK et al. Evolution of MRSA

During Hospital Transmission and Intercontinental Spread. Science 2010;327:469–474.

18. David S, Rusniok C, Mentasti M, Gomez-Valero L, Harris SR et al. Multiple major

disease-associated clones of Legionella pneumophila have emerged recently and

independently. Genome Res 2016;26:1555-1564

19. Moradigaravand D, Martin V, Peacock SJ, Parkhill J. Evolution and epidemiology of

multidrug-resistant Klebsiella pneumoniae in the United Kingdom and Ireland. MBio

2017;8:e01976-16

20. Sealey KL, Harris SR, Fry NK, Hurst LD, Gorringe AR et al. Genomic analysis of

isolates from the United Kingdom 2012 pertussis outbreak reveals that vaccine

antigen genes are unusually fast evolving. J Infect Dis 2015;212:294–301

21. Koboldt DC, Zhang Q, Larson DE, Shen D, McLellan MD et al. VarScan 2: Somatic

mutation and copy number alteration discovery in cancer by exome sequencing.

Genome Res 2012;22:568-576

22. snippy: fast bacterial variant calling from NGS reads. Seemann T. [Internet]. [cited 30

December 2018]. Available from: https://github.com/tseemann/snippy

23. Sahl JW, Lemmer D, Travis J, Schupp JM, Gillece JD et al. NASP: an accurate, rapid

method for the identification of SNPs in WGS datasets that supports flexible input

and output formats. Microb Genom, 2016;2:8

24. PHEnix. PHE Bioinformatics Unit. [Internet]. [cited 30 December 2018]. Available

from: https://github.com/phe-bioinformatics/PHEnix

25. McTavish EJ, Pettengill J, Davis S, Rand H, Strain E et al. TreeToReads-a pipeline

for simulating raw reads from phylogenies. BMC bioinformatics 2017;18(1):178.

26. Swofford DL. PAUP*. Phylogenetic analysis using parsimony and other methods.

Version 4. Sinauer Associates, Sunderland, Massachusetts 2003

27. Kajitani R, Toshimoto K, Noguchi H, Toyoda A, Ogura Y et al. Efficient de novo

assembly of highly heterozygous genomes from whole-genome shotgun short reads.

Genome Res 2014;24:1384–1395

28. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J et al. The Sequence Alignment/Map

format and SAMtools. Bioinformatics 2009;25:2078–2079

29. Lamelas A, Harris SR, Röltgen K, Dangy JP, Hauser J et al. Emergence of a new

epidemic Neisseria meningitidis serogroup A clone in the African meningitis belt: high-

resolution picture of genomic changes that mediate immune evasion. MBio

2014;5(5):e01974–14

30. Robinson JT, Thorvaldsdóttir H, Winckler W, Guttman M, Lander ES et al. Integrative

genomics viewer. Nature biotech 2011;29(1):24.

