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Supplementary Notes 
Benchmark using real complete genome pairs 
For each identity case, 10 pairs of the root and reference sequences with proper identity 

were randomly chosen from the completed genomes from the NCBI database [1] (Table 

S1). The identity was calculated using MUMmer [2] as average identity in one-to-one 

alignment regions. The commands were as follows: 

  

1.   nucmer [a.fasta] [b.fasta] 

2.   delta_filter -1 [out.delta] >[filtered.delta] 

3.   show-coords -THrcl [filtered.delta] >[filtered.coords] 

4.   awk '{product_sum += ($5 * $7); len += $5} END {print product_sum / len}' 

[filtered.coords] >[out.identity] 

 

delta-filter extracts one-to-one alignment by the option -1. 5th and the 7th columns in 

the .coords file represent the alignment identity and alignment length, respectively. 

 Next, for each reference-root pair, the genomes of 10 virtual isolates were 

simulated by introducing variants to the root sequence using EvolveAGene [3]. Executed 

commands were as follows: 

 

1.   mean_branch_len=$(echo "scale=7; 10 / <root_genome_size> + 0.0000001" | bc 

-l) 

2.   evolveagene -f [root_genome.txt] -t ran -n 10 -b $mean_branch_len -i 0.1 -d 

0.025 

 

In order to simulate the situation where target isolates are closely related, EvolveAGene 

was executed so that about 10 substitutions were generated per branch. Since the target 

number of substitutions was exceedingly small compared to the genome size and the 

number of simulated substitutions depended on random numbers (the random seed could 

not be specified), the resulting average number of substitutions, s, often deviated from 10. 

Therefore, we repeated EvolveAGene until the following inequality was satisfied. 

 

 9.5 ≤ s ≤ 10.5 

 

Indels were also simulated by the option -i and -d with the default values, which 

represent the relative frequency of insertion and deletion against substitutions, 

respectively. EvolveAGene only accepts a root sequence whose length is a multiple of 3 

considering the codon position, and thus, the last one or two bases were deleted before 

input when the root genome size was not a multiple of 3. 

 Though SNP callers detect SNPs on the position of reference genome, the true 

SNP positions are simulated on the root genome by EvolveAGene. In order to check 

whether the detected SNP positions in the reference sequence correspond to the correct 

SNP positions simulated in the root sequence, the correct SNP positions needed to be 



moved to the region where the root and reference sequences were aligned in a one-to-

one manner. Therefore, we moved the correct SNP positions to random positions in 

regions where nucmer generated one-to-one alignments ≥ 1 kbp in length between the 

reference-root sequences and edited the simulated genomes so that they had SNPs on 

the new positions by using our original program, move_snp (available at 

https://github.com/IEkAdN/BactSNP/tree/master/benchmark). Executed commands 

were as follows: 

 

1.   nucmer -p nucmer [root.fasta] [reference.fasta] 

2.   move_snp [prefix__Internal_Nodes_True_alignment.FASTA] 

[prefix_True_alignment.FASTA] [nucmer.delta] [reference.fasta] [root.fasta] 

[output_directory] | sort -nk2,2 >[correct_snp.tsv] 

 

[prefix__Internal_Nodes_True_alignment.FASTA] and [prefix_True_alignment.FASTA] are 

multi-fasta files containing alignment of simulated genomes output by EvolveAGene. The 

output [correct_snp.tsv] contains the correct SNPs on the corresponding position of 

reference genome. 

 

 Then, illumina paired-end reads for every simulated genome were simulated by 

art_illumina [4] using the following commands: 

 

 art_illumina -i [genome.fa] -l 250 -f 40 -ss MS -m 500 -s 50 -rs <random_seed> 

 

The options -l, -f, -ss, -m, -s, and -rs specified the read length, coverage depth, illumina 

sequencing system (MS represents MiSeq), mean size of the DNA fragment, standard 

deviation of the DNA fragment size, and random seed, respectively. 

At last, SNP callers were executed using the simulated reads and the reference 

genome. Then, it was checked whether the detected SNPs matched with the simulated 

correct SNPs. 

Simulated correct SNPs and reads are available at http://platanus.bio.titech.ac.jp/

bactsnp. 

 

Common-region PPV 
In order to compare PPVs among tools which mask the region where SNP calling is 

difficult in different ways, we introduced ‘Common-region PPV’, i.e., PPV calculated based 

on the SNPs detected in the region where all tools except Cortex [5] and CFSAN SNP 

Pipeline (CFSAN) [6] determined alleles for all isolates without masking. Because Cortex 

and CFSAN were not able to output information for non-variant regions, they were not 

considered when calculating Common-region PPV. The average ratio of the common 

region to the reference genome size is shown in Table S5. 

 

Execution of SNP callers 

Before executing each tool, low-quality regions were trimmed from reads by Platanus_trim 



(version 1.0.7) [7], and mapping was performed by BWA-MEM (version 0.7.15) [8] for tools 

that require mapping results as input. Duplicate reads generated by PCR duplication were 

removed by Picard MarkDuplicates (version 2.18.17) [9]. The commands were as follows: 

 

1.   platanus_trim [R1.fastq] [R2.fastq] 

2.   bwa index [reference.fa] 

3.   bwa mem -M [reference.fa] [R1_trimmed.fastq] [R2_trimmed.fastq] | samtools 

fixmate - - | samtools sort -o [raw.bam] 

4.   java -jar picard.jar MarkDuplicates REMOVE_DUPLICATES=true M=[out.log] 

I=[raw.bam] O=[markduplicates.bam] 

 

(a) Cortex 

run_calls.pl script in Cortex (version 1.0.5.21) was executed as described in the section 

“Comparing two strains of microbe” in its user manual 

(http://cortexassembler.sourceforge.net/). The hash table required for run_calls.pl was 

generated by Stampy [10]. SNPs which passed the filters in run_calls.pl and marked as 

“PASS” were extracted from the resulting .vcf file and output to a .tsv file using our 

original program, get_snp_cortex (available at 

https://github.com/IEkAdN/BactSNP/tree/master/benchmark). The commands were as 

follows: 

 

1.   stampy -G <stampy_prefix> [reference.fasta] 

2.   stampy -g <stampy_prefix> -H <stampy_prefix> 

3.   echo [reference.fasta] >[fasta_list] 

4.   make NUM_COLS=1 MAXK=31 cortex_var 

5.   make NUM_COLS=1 MAXK=63 cortex_var 

6.   cortex_var_31_c1 --kmer_size 31 --mem_height 17 --mem_width 100 --se_list 

[fasta_list] --dump_binary k31.ctx --sample_id REF 

7.   cortex_var_63_c1 --kmer_size 61 --mem_height 17 --mem_width 100 --se_list 

[fasta_list] --dump_binary k61.ctx --sample_id REF 

8.   echo [reference.fasta] >[reference.fasta_list] 

9.   run_calls.pl --first_kmer 31 --last_kmer 61 --kmer_step 30 --fastaq_index 

[fastq_list] --auto_cleaning yes --bc yes --pd no --outdir [output_directory] -

-outvcf out --ploidy 1 --stampy_hash <stampy_prefix> --stampy_bin stampy -

-list_ref_fasta [reference.fasta_list] --refbindir [reference_directory] --

genome_size <genome_size> --qthresh 5 --mem_height 20 --mem_width 100 -

-vcftools_dir [vcftools_directory] --do_union yes --ref CoordinatesOnly --

workflow joint --logfile 01.log --apply_pop_classifier 

10.   get_snp_cortex 



[output_directory/vcfs/out_wk_flow_J_RefCO_FINALcombined_BC_calls_at_all_k.

decomp.vcf] >[snp.tsv] 

 

(b) Freebayes 

Freebayes (version v1.2.0-2-g29c4002) [11] was executed as follows: 

 

1.   freebayes --ploidy 1 --report-monomorphic -f [reference.fasta] -L 

[markduplicates.bam_list] >[raw.vcf] 

2.   vcffilter -f 'QUAL > 20' -f 'TYPE = snp' [raw.vcf] >[filtered.vcf] 

3.   get_snp_freebayes [filtered.vcf] >[snp.tsv] 

 

SNPs with QUAL > 20 were extracted by vcffilter as described in its README [12] and 

they were output to a .tsv file using our original program, get_snp_freebayes (available at 

https://github.com/IEkAdN/BactSNP/tree/master/benchmark). 

 

(c) GATK 

GATK HaplotypeCaller (version 4.0.11.0) [13] and the filtering steps were executed based 

on GATK Best Practices [14]. The base quality score recalibration and variant quality 

score recalibration steps were not executed because there were no available SNP 

databases for the isolates. Instead, we executed hard-filtering using VariantFiltration as 

described in the document. SNPs which passed the filter were extracted and output to 

a .tsv file using SelectVariants and our original program, get_snp_gatk (available at 

https://github.com/IEkAdN/BactSNP/tree/master/benchmark). GenotypeGVCFs in 

GATK version 4.0.11.0 has no option to emit information for all sites, and thus we used 

version 3.8-0-ge9d806836 for GenotypeGVCFs. The commands were as follows: 

 

1.   gatk HaplotypeCaller -ERC GVCF -ploidy 1 -R [reference.fasta] -I 

[markduplicates.bam] -O [out.vcf] 

2.   java -jar GenomeAnalysisTK.jar -T GenotypeGVCFs -allSites                                        

-R [reference.fasta] -V [A1.vcf] -V [A2.vcf] ... -V [A10.vcf] -o [merged.vcf] 

3.   gatk VariantFiltration -filter-expression "QD < 2.0 || MQ < 40.0 || FS > 60.0 || 

SOR > 4.0 || MQRankSum < -12.5 || ReadPosRankSum < -8.0" --filter-name 

HARD_FLT -R [reference.fasta] -V [merged.vcf] -O [filtered.vcf] 

4.   gatk SelectVariants --select-type-to-include SNP -R [reference.fa] -V 

[filtered.vcf] -O [snp.vcf] 

5.   get_snp_gatk [snp.vcf] >[snp.tsv] 

 

(d) SAMtools 

SAMtools (version 1.9) [15] was executed based on the SAMtools “Workflows” document 

[16] and the method described in a previous study [17], which has been referred to in 

many studies that used SAMtools for SNP calling [18-20]. After mapped reads were 



realigned by GATK IndelRealigner, PCR-duplicated reads were removed by 

MarkDuplicates and reads with mapping quality below 30 were eliminated. The base quality 

score recalibration step shown in the “Workflows” document was not executed because 

there are no available SNP databases for the isolates. Filtered reads were piled up by 

samtools mpileup, and the result was used as input for the bcftools call command. Called 

alleles at each site with a QUAL score below 30 or supported by fewer than 75% of reads 

mapped at that site were masked as ambiguous and the remaining SNPs were output to 

a .tsv file using our original program, get_snp_samtools (available at 

https://github.com/IEkAdN/BactSNP/tree/master/benchmark). The commands were as 

follows: 

 

1.   java -jar GenomeAnalysisTK.jar -T RealignerTargetCreator -R [reference.fa] -

I [raw.bam] -o [out.intervals] 

2.   java -jar GenomeAnalysisTK.jar -T IndelRealigner -R [reference.fa] -I 

[raw.bam] -targetIntervals [out.intervals] -o [realigned.bam] 

3.   java -jar picard.jar MarkDuplicates M=[out.log] I=[realigned.bam] O=[out.bam] 

4.   samtools view -h [out.bam] | awk '$1 ~ /^@/ || ($1 !~ /^@/ && $5 >= 30)' | 

samtools view -b >[filtered.bam] 

5.   samtools index [filtered.bam] 

6.   bcftools mpileup -O u -f [reference.fa] [filtered.bam] | bcftools call --ploidy 1 

-m -O v -o [isolate.vcf] 

7.   for isolate in $(seq 1 1 10); do echo "${isolate}\t[isolate.vcf]"; done 

>[out.vcf_list] 

8.   get_snp_samtools [out.vcf_list] >[snp.tsv]  

 

(e) VarScan 

The output of samtools (version 1.9) mpileup was input to VarScan (version 2.4.3) 

mpileup2cns [21]. SNPs among isolates shown in the output of mpileup2cns were 

extracted and output to a .tsv file using our original program, get_snp_varscan (available at 

https://github.com/IEkAdN/BactSNP/tree/master/benchmark) The commands were as 

follows: 

 

1.   samtools mpileup -f [reference.fa] -b [markduplicates.bam_list] >[out.mpileup] 

2.   java -jar VarScan.jar mpileup2cns [out.mpileup] -vcf-sample-list [isolate_list] 

>[out] 

3.   get_snp_varscan [out] >[snp.tsv] 

 

(f) Snippy 

The script generated by snippy-multi in Snippy (version 4.3.6) [22] was executed and 

SNPs among target isolates were extracted from the output core.tab using our original 



program, get_snp_snippy (available at 

https://github.com/IEkAdN/BactSNP/tree/master/benchmark). 

 

1.   snippy-multi [fastq_list] --ref [reference.fasta] --minfrac 0.9 >[script.sh] 

2.   bash [script.sh] 

3.   get_snp_snippy <(cut --complement -f 3 [core.tab]) >[snp.tsv] 

 

(g) CFSAN SNP Pipeline 

CFSAN SNP Pipeline (version 2.0.2, CFSAN) masks high-density SNPs with the options 

“--window_size 1000 125 15 --max_snp 3 2 1” by default. These parameters mean that 

CFSAN filters more than 3 SNPs in 1000 bases, more than 2 SNPs in 125 bases and 

more than 1 SNPs in 15 bases. This default behavior assumes that the reference genome 

is closely related to the target isolates; and therefore, in addition to the default 

parameters, we executed CFSAN using various --max_snp values with --window_size 

1000. The --max_snp values were calculated using the following equation: 

 
 𝑚	   = (100 − 𝑖) ⋅ 𝑟 ∙ 10 
 

, where i, m and r represent the identity between the reference and the target isolates, 

the --max_snp value, and a constant value ranging from 2 to 10 with a step size of 2, 

respectively. The commands were as follows: 

 

1.   cfsan_snp_pipeline data configurationFile 

2.   cfsan_snp_pipeline run -m soft -c [snppipeline.conf] -s [read directory] 

[reference.fasta] 

3.   get_snp_cfsan [snpma_preserved.vcf] >[snp.tsv] 

 

--max_snp value in [snppipeline.conf] generated in the first command was edited as 

described above before the ‘run’ command. SNPs among target isolates were extracted 

from [snpma_preserved.vcf] output by the ‘run’ command and output to a .tsv file using 

our original program, get_snp_cfsan (available at 

https://github.com/IEkAdN/BactSNP/tree/master/benchmark). Values in Table 1 were 

calculated using the results for the --max_snp value which exhibited the highest F-score 

among all --max_snp values including the default one for each case. 

 

(h) NASP 

NASP (version 1.1.2) [23] was executed as described in its own paper [9]. We used BWA-

MEM (version 0.7.15) and GATK (version 3.8-0-ge9d806836) as the internal mapper and 

variant caller and set 3 and 0.9 as the values for ‘minimum coverage threshold’ and 

‘minimum acceptable proportion’ (i.e., minimum allele frequency), respectively. The exact 

config file was generated by our original script, NASP_get_config.sh (available at 

https://github.com/IEkAdN/BactSNP/tree/master/benchmark). We used GATK version 

3.8, because GATK version 4.0.11.0 failed in NASP. SNPs among isolates were extracted 



from the output of nasp using our original program, get_snp_nasp (available at 

https://github.com/IEkAdN/BactSNP/tree/master/benchmark). The commands were as 

follows: 

 

1.   NASP_get_config.sh [reference.fasta] [read_directory] [fastq_list] 

[output_directory] <run name> >[config.xml]  

2.   nasp --config [config.xml] 

3.   get_snp_nasp [output_directory/matrices/bestsnp.tsv] >[snp.tsv] 

 

(i) PHEnix 

PHEnix (SHA-1 hash for the revision was 68d35c2) [24] was executed with the 

parameters recommended in its document. We used BWA-MEM (version 0.7.15) and 

GATK (version 3.8-0-ge9d806836) as the internal mapper and variant caller and set 10 

and 0.9 as the values for ‘min_depth’ (i.e., minimum coverage depth) and ‘ad_ratio’ (i.e., 

minimum allele frequency), respectively. We used GATK version 3.8, because GATK 

version 4.0.11.0 failed in PHEnix. SNPs among isolates were extracted from the output of 

vcf2fasta using our original program, get_snp_phenix (available at 

https://github.com/IEkAdN/BactSNP/tree/master/benchmark). The commands were as 

follows: 

 

1.   phenix prepare_reference --mapper bwa --variant gatk --reference 

[reference.fasta] 

2.   phenix run_snp_pipeline -m bwa -v gatk -r1 [R1.fastq] -r2 [R2.fastq] -r 

[reference.fasta] -o . --sample-name <isolate_name> --filters 

"mq_score:30,min_depth:10,ad_ratio:0.9"  

3.   phenix vcf2fasta -d [vcf_directory] --reference [reference.fasta] -o 

[out.fasta] 

4.   get_snp_phenix [out.fasta] [reference.fasta] >[snp.tsv] 

 

(j) BactSNP 

BactSNP (version 1.1.0) was executed with the default parameters as follows: 

 

1.   bactsnp_release -q [fastq_list] -r [reference.fasta] -o out 

2.   cp out/snps_wo_ref.tsv [snp.tsv] 

 

Effect of allele frequency filter in mapping-based SNP callers 
When the copy number of one segment is larger in the sequenced genome than in the 

reference genome, reads derived from distinct repetitive segments will be mapped to the 

same segment in the reference, resulting in soft-clipping of the reads from the boundary 

between the repetitive and unique segments in the sequenced genome (Fig. S3). If there 

are mismatches between these repetitive segments in the sequenced genome, mapping-



based SNP callers sometimes call them as SNPs, even though they do not represent 

polymorphisms between the reference isolate and the sequenced isolate in the 

corresponding region. However, in a situation like that shown in Fig. S3, the allele 

frequency of such a false-positive SNPs should be low, because only reads from one of 

the repetitive segments support the alternative allele. Therefore, the allele frequency 

filter is considered to be effective against such false positives.  

 

Benchmark using TreeToReads 
In order to assess the performance of SNP callers under the situation where variants 

between the reference-root pair are also simulated, and structural variants (SVs) do not 

exist between the pair, we carried out another supplementary benchmark using 

TreeToReads (TTR) [25]. The input for TTR is a config file, and its main elements are a 

phylogenetic tree and a base genome which corresponds to one isolate in the tree. TTR 

simulates variants against the base genome and generates genome sequences of the 

other isolates in the tree. 

By TTR, we simulated a situation similar to the first benchmark, i.e., target isolates 

of SNP calling were closely related and the reference isolate had about 99.9, 99, 98, or 

97% identity against them. As the input base genome, we used the reference genome of 

the first reference-root pair in the 99.9% case of the original benchmark (Table S1), 

regardless of the target identities. The input tree was generated based on the tree 

simulated by EvoleveAGene against the first reference-root pair for each species and 

identity in the original benchmark. EvolveAGene outputs the simulated tree among the 

target isolates in newick format where branch lengths were represented as the number of 

substitutions. We converted the number of substitutions into the ratio of substitution to 

the root genome size and added a branch from the root to the reference isolate to the 

tree using our original script, TTR_get_newick.sh (available at 

https://github.com/IEkAdN/BactSNP/blob/master/benchmark). The branch length 

between the reference-root pair was calculated based on one-to-one alignments 

between the reference-root pair by using MUMmer and our original script 

TTR_run_paup.sh (available at 

https://github.com/IEkAdN/BactSNP/blob/master/benchmark), which executes PAUP 

(version 4.0a (build 164) for Unix/Linux) [26] internally. The commands were as follows: 

 

1.   nucmer [root.fasta] [reference.fasta] 

2.   delta_filter -1 [out.delta] >[one_to_one.delta] 

3.   show-aligns [one_to_one.delta] <root chromosome ID> <reference 

chromosome ID> >[one_to_one.aligns] 

4.   TTR_run_paup.sh [paup executable] [one_to_one.aligns] <output prefix> 

>[reference_root_branch_length] 2>[relative_rates_of_substitutions] 

5.   TTR_get_newick.sh [stdout of EvolveAGene] [root.fasta] 

<reference_root_branch_length> >[newick] 

 

The other elements of the config file for TTR are the relative rates of substitutions from 

A to C, A to G, A to T, C to G, C to T, and G to T, the number of variable sites simulated 



on the base genome, and the parameters for mutation distribution and indel simulation. 

The relative rates of substitutions were calculated by TTR_run_paup.sh as described 

above. The number of variable sites was calculated using the following command so that 

the target isolates had about 99.9, 99, 98, or 97% identity against the reference genome: 

 

echo "$reference_genome_size * (100 - $identity) / 100" | bc 

>[variable_sites_number] 

 

The parameters for mutation distribution and indel simulation were set as shown in the 

example config file of TTR 

(https://github.com/snacktavish/TreeToReads/blob/master/example_indels.config). The 

exact config file was generated by our original script, TTR_get_config.sh (available at 

https://github.com/IEkAdN/BactSNP/blob/master/benchmark), and TTR was executed 

as follows: 

 

1.   TTR_get_config.sh [newick] [reference.fasta] [relative_rates_of_substitutions] 

<variable sites number> [output_directory] >[config] 

2.   python treetoreads.py [config] 

 

TTR outputs aligned and unaligned fasta files that contain the simulated genome 

sequence of each isolate. The correct SNP data and illumina paired-end reads were 

generated from these fasta files using our original script TTR_fasta2snp (available at 

https://github.com/IEkAdN/BactSNP/tree/master/benchmark) and art_illumina [4], 

respectively. We used the same options for art_illumina as our original benchmark. The 

commands were as follows: 

  

1.   TTR_fasta2snp [base_genome_aligned.fasta] 

[simulated_genome_aligned.fasta_list] >[snp.tsv] 

2.   art_illumina -i [simulated_genome_unaligned.fasta] -l 250 -f 40 -ss MS -m 500 

-s 50 -rs <random_seed> 

  

Simulated correct SNPs and reads are available at 

http://platanus.bio.titech.ac.jp/bactsnp. 

PPV and sensitivity occasionally did not show a monotonic decline with increasing 

divergence, but the upticks were small in most cases (Table S6). PPV of Cortex showed a 

relatively large uptick (≥ 5%) at 97% case in E. coli, but this was because the total number 

of detected SNPs was small in both 97% and 98% cases. 1 out of 12 detected SNPs in the 

97% case and 4 out of 16 detected SNPs in the 98% case were false-positive. PPV of 

GATK also showed a relatively large uptick (≥ 5%) at the 97% case in S. aureus, but this 

was because dense false positives in a region (25 false-positives in an 878 bp region) 

decreased the PPV at the 98% case. 

 

Detailed description of BactSNP algorithm 



First, BactSNP trims the low-quality regions and sequence adapters from sequence reads 

using Platanus_trim with the following command: 

 

platanus_trim [R1.fastq] [R2.fastq] 

 

Second, BactSNP de novo assembles the genome of each isolate using Platanus [27] with 

the following commands: 

 

platanus assemble -o <prefix> -f [R1.trimmed.fastq] [R2.trimmed.fastq] -u 0 

 

The option -u is set to 0 to disable the bubble-crush function, designed for diploid 

organisms. Scaffolding and gap closing are not executed, because these procedures 

increase the number of mismatches between the true sequence and the assembled 

sequence, causing false-positive SNPs. Assembled contigs are aligned to the reference 

genome using nucmer with the following command: 

 

nucmer [reference.fasta] [assembly.fasta] 

 

Using the nucmer alignment, the pseudogenome is generated for each isolate using our 

original program. Here, the pseudogenome means a genome sequence in which each site 

corresponds to a site of the reference genome in a one-to-one manner. Insertions 

against the reference are ignored, and deletions against it are reflected as ‘-‘ in the 

pseudogenome (Fig. S4). Basically, each allele of the pseudogenome is determined as an 

allele of the aligned contig. When multiple contigs are aligned to the same site of the 

reference genome and the aligned alleles are not unique, or when a site of the 

pseudogenome is near any indels, the allele is called as ‘-‘. In other words, the allele is 

called as ‘-‘ if the site does not satisfy either of the following conditions: 

 

(1) nallele = 1 

(2) dindel > 5 bp, 

 

where nallele is the number of alleles aligned at the site, and dindel is the distance from the 

nearest indel to the site. 

In addition to assembling the reads, BactSNP maps reads to the reference genome 

by BWA-MEM and removes PCR-duplicated reads by MarkDuplicates in Picard with the 

following commands: 

 

1.   bwa index -p [reference.fasta] [reference.fasta] 

2.   bwa mem -M [reference.fasta] [R1.trimmed.fastq] [R2.trimmed.fastq] 

3.   java -jar picard.jar MarkDuplicates REMOVE_DUPLICATES=true I=[in.bam] 

O=[out.bam] M=[out.log} 

 

Using the mapping results, BactSNP masks unreliable sites of the pseudogenome using 



the original program. The variables call and callele represent the coverage depth of all reads 

mapped to the site and that of reads supporting the allele of the pseudogenome at the 

site, respectively. The corresponding allele of the pseudogenome is masked if the 

reference site does not satisfy either of the following conditions: 

 

(3) callele ≥  10 

(4) callele / call ≥ 0.9 

 

When BactSNP calculates call, it counts all reads, even those supporting deletion against 

the reference genome. 

Lastly, SNPs among isolates are determined by using the pseudogenomes 

generated in one-to-one manner. 

When the user inputs assembled scaffolds instead of reads for some isolates, 

BactSNP simulates reads from the input scaffolds using art_illumina, and uses the 

simulated reads as if they were input by the user. The command of art_illumina is as 

follows: 

 

art_illumina -i [scaffolds.fa] -l 250 -f 40 -ss MSv3 -m 500 -s 50 -na -rs 1 -ef -o 

<output_prefix> 

 

BactSNP uses SAMtools [28] to parse .sam or .bam files in several steps. 

 

Detailed description of application to real data 
We downloaded the sequence data of 45 closely-related N.meningitidis isolates of 

sequence type 7 that caused outbreaks in Kassena-Nankana District in Ghana from 2001 

to 2005 [29]. Their accession numbers are as follows: ERS040961, ERS040967, 

ERS040966, ERS040965, ERS040970, ERS040971, ERS040969, ERS040968, ERS040972, 

ERS040963, ERS040964, ERS040983, ERS040973, ERS040974, ERS040978, ERS040976, 

ERS040975, ERS040977, ERS040982, ERS040984, ERS041005, ERS040999, ERS040990, 

ERS040987, ERS040988, ERS040997, ERS040986, ERS040991, ERS040994, ERS040995, 

ERS040989, ERS040985, ERS041003, ERS041000, ERS041002, ERS040992, ERS040993, 

ERS040996, ERS040998, ERS041001, ERS041008, ERS041006, ERS041009, ERS041007 

and ERS041010. 

SNP calling was executed using five reference genomes with various identities 

from the target isolates. The accession number of each reference genome was shown 

with the identity in Table S7. The identity was calculated using one isolate among the 

closely-related target isolates (accession number: ERS040967) in the same way as in the 

simulation benchmark. 

CFSAN was executed with various values of the option --max_snp, and the result 

for the case exhibiting the most constant number of SNP sites [i.e., the case exhibiting 

the minimum standard deviation over the all identity values (Table S7)] is shown in Fig. 3. 

Values assigned to the option --max_snp were determined in the same way as in the 

simulation benchmarks. 
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Fig. S1. Benchmarks using simulated sequence data. PPV and Sensitivity in Table 1 (b) 

and (c) were represented graphically (Those in Table 1 (a) were represented in Fig. 2). 

The value 7, 8, 9, and 9.9 in the graph represent 97, 98, 99, and 99.9 % identity between 

the reference-root pair, respectively. (a) PPV and Sensitivity in N. meningitidis cases for 

SNP callers that exhibited low PPV (< 99) in at least one identity. (b) PPV and Sensitivity 

in N. meningitidis cases for SNP callers that exhibited high PPV (≥ 99) in all identities. (c) 

PPV and Sensitivity in E. coli cases for SNP callers that exhibited low PPV (< 99) in at 

least one identity. (d) PPV and Sensitivity in E. coli cases for SNP callers that exhibited 

high PPV (≥ 99) in all identities. 

 

 

Fig. S2. An example and definition of ‘soft-clip region’. Mapping result around a false-

positive SNP site is shown using Integrative Genomics Viewer [30]. Gray bars indicate the 

mapped reads; the region in which all nucleotides are colored (i.e. adenine, bright green; 

cytosine, blue; guanine, bright brown; thymine, red) indicates the unaligned part due to 

soft-clipping; the dotted line in the middle indicates the position where a false-positive 

SNP was called. We defined ‘soft-clip region’ as a region where five or more soft-clipped 

reads were mapped in at least one isolate, as shown by the blue rectangle; unaligned 

regions of reads were counted as if they were mapped adjacent to the aligned part 

without indels. 
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Fig. S3. Conceptual diagram of soft clipping due to copy number variation. (a) Location of 

repetitive segments in the sequenced genome and corresponding sequenced reads. (b) 

Location of the similar segment in the reference genome and the reads that will be 

mapped there. The read color indicates from which segment in the sequenced genome 

they derive, Segment 1 or 1’. The dotted lines indicate the region of reads not aligned due 

to soft clipping. 

 

 
 

Fig. S4. Algorithm to generate a pseudogenome. Each allele of the pseudogenome is 

determined as an allele of the aligned contig. When multiple contigs are aligned to the 

same site of the reference genome and the aligned alleles were not unique, the 

pseudogenome allele is called as ‘-‘. 
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Supplementary Tables 

Table S1. Genome sequences used for the benchmarks.  

 

(a) Staphylococcus aureus 

 
  

Identity (%) Case Reference Root
1 CP001781.1 CP014064.1
2 CP009681.1 FN433596.1
3 CP002388.1 CP009361.1
4 CP012692.1 CP013953.1
5 CP016863.1 CP011526.1
6 CP001844.2 CP007454.1
7 BA000018.3 CP015173.1
8 CP010299.1 CP007539.1
9 CP012015.1 CP015447.1

10 CP009554.1 BX571856.1
1 CP015646.1 CP003194.1
2 CP015447.1 CP012978.1
3 CP010298.1 CP010526.1
4 CP013955.1 CP019563.1
5 CP010300.1 CP001781.1
6 CP006044.1 CP012756.1
7 CP006706.1 CP003166.1
8 CP009681.1 CP011528.1
9 CP016863.1 CP016856.1

10 CP017094.1 LT615218.1
1 CP012011.1 CP002110.1
2 CP012018.1 BX571856.1
3 CP019591.1 HE681097.1
4 CP020019.1 CP007659.1
5 CP016863.1 CP009828.1
6 CP010298.1 CP013137.1
7 CP016858.1 CP006630.1
8 CP015645.1 CP001996.1
9 CP009361.1 CP005288.1

10 CP016856.1 CP013182.1
1 LN854556.1 CP014791.1
2 LN854556.1 CP013218.1
3 CP002114.2 CP012756.1
4 CP009361.1 LN854556.1
5 CP006044.1 CP015817.1
6 CP019591.1 LN854556.1
7 CP002388.1 LN854556.1
8 CP020019.1 LN854556.1
9 CP006044.1 CP002114.2

10 CP003808.1 LN854556.1

99.9

99

98

97



(b) Neisseria meningitidis 

 
  

Identity (%) Case Reference Root
1 CP016652.1 CP016645.1
2 CP016649.1 CP016653.1
3 CP016659.1 CP016664.1
4 CP016675.1 CP016674.1
5 CP016648.1 CP016663.1
6 CP016671.1 CP016680.1
7 CP009422.1 CP016678.1
8 CP016660.1 CP016682.1
9 CP016669.1 CP016662.1

10 CP016646.1 CP016672.1
1 CP007524.1 AL157959.1
2 CP007668.1 CP002424.1
3 CP002421.1 CP007668.1
4 CP020420.1 FR774048.1
5 FR774048.1 AL157959.1
6 CP012391.1 CP007668.1
7 CP020420.1 AL157959.1
8 CP017257.1 CP012393.1
9 CP017257.1 CP016648.1

10 CP012694.1 CP020420.1
1 CP020421.1 CP002423.1
2 CP002420.1 CP002423.1
3 CP020422.1 CP020401.1
4 CP020402.1 CP002422.1
5 CP002423.1 AE002098.2
6 CP020401.1 CP002422.1
7 CP020401.1 CP020402.1
8 CP020422.1 CP002422.1
9 CP015886.1 CP002424.1

10 CP006869.1 CP002423.1
1 CP007524.1 CP020421.1
2 CP020402.1 CP006869.1
3 CP002420.1 FR774048.1
4 CP002420.1 AM889136.1
5 AE002098.2 AL157959.1
6 CP020422.1 CP006869.1
7 CP020421.1 AL157959.1
8 CP020420.1 CP002420.1
9 CP006869.1 FR774048.1

10 CP012694.1 CP015886.1

97

98

99

99.9



(c) Escherichia coli 

 
  

Identity (%) Case Reference Root
1 CP017440.1 CP018245.1
2 AP010960.1 CP021339.1
3 CP018250.1 CP017434.1
4 CP010116.1 CP018206.1
5 CP017249.1 CP008805.1
6 CP017444.1 CP001164.1
7 CP014269.1 CP000819.1
8 CP020048.1 CP018948.1
9 CP017436.1 CP018239.1

10 CP015159.1 CP015076.1
1 CP010445.1 CP000819.1
2 CP013663.1 HF572917.2
3 CP009789.1 CP006636.1
4 FN649414.1 CP019005.1
5 CP020106.1 CP003297.1
6 CP018962.1 CP017631.1
7 CP017844.1 CP010172.1
8 CP015228.1 AP010960.1
9 CP010176.1 CP006584.1

10 CP016404.1 CP021175.1
1 CP009859.1 CP018206.1
2 CP013662.1 CP018250.1
3 CP015228.1 CP017434.1
4 CP020106.1 CP015020.1
5 CP003289.1 CP018243.1
6 CP021339.1 CP008957.1
7 CP020058.1 CP016625.1
8 AP010953.1 CP015832.1
9 CU928145.2 CP017444.1

10 CP020092.1 CP017438.1
1 CP020055.1 CP012633.1
2 AM946981.2 CP000243.1
3 CP010816.1 CP016497.1
4 CP015228.1 CP005930.1
5 CP018237.1 CP015159.1
6 CP003297.1 CP015074.2
7 CP010133.1 CP021207.1
8 CP020106.1 CP014667.1
9 CP009106.2 CP007799.1

10 CP020368.1 CP002212.1

99.9

99

98

97



Table S2. Benchmark results of SNP callers for the first reference-root pair among ten 

pairs in each species and identity (Table S1). 

 

(a) Staphylococcus aureus 

 
(b) Neisseria meningitidis 

 
(c) Escherichia coli 

 
  

Identity (%) Cortex Freebayes GATK SAMtools VarScan Snippy CFSAN NASP PHEnix BactSNP

99.9 100.00 84.21 80.82 98.33 99.44 44.36 98.88 100.00 100.00 100.00

99 96.41 37.78 25.83 71.03 83.72 7.49 96.70 100.00 100.00 100.00

98 100.00 28.98 22.39 56.43 77.49 3.25 97.60 100.00 100.00 100.00

97 94.12 38.36 26.81 57.70 78.03 2.02 93.92 100.00 98.31 100.00

99.9 97.18 99.44 100.00 100.00 99.44 100.00 100.00 99.44 100.00 100.00

99 89.44 94.44 99.44 99.44 100.00 98.89 97.78 98.89 100.00 100.00

98 82.22 91.11 100.00 100.00 99.44 98.33 90.56 97.78 100.00 99.44

97 71.51 81.01 97.21 98.32 97.21 93.85 77.65 95.53 97.77 97.77

99.9 - 88.29 94.75 63.99 95.17 93.73 - 91.74 94.33 93.17

99 - 88.13 94.22 64.00 94.09 92.07 - 91.16 93.53 92.45

98 - 81.19 86.40 59.16 85.95 82.46 - 83.18 85.37 84.34

97 - 83.68 88.93 61.30 87.94 84.06 - 85.78 87.59 86.37

PPV (%)

Sensitivity (%)

Called-sites (%)

Identity (%) Cortex Freebayes GATK SAMtools VarScan Snippy CFSAN NASP PHEnix BactSNP

99.9 95.27 95.58 97.75 100.00 100.00 39.68 99.41 100.00 100.00 100.00

99 97.67 48.71 42.86 75.73 85.85 4.98 93.48 100.00 100.00 100.00

98 93.75 31.34 24.32 60.68 78.07 2.78 94.30 100.00 100.00 100.00

97 97.69 25.46 18.10 40.43 63.33 1.95 91.28 100.00 99.42 100.00

99.9 92.53 99.43 100.00 99.43 100.00 99.43 96.55 95.40 99.43 97.13

99 91.30 92.39 99.46 98.37 98.91 97.83 93.48 95.11 97.83 97.28

98 82.87 86.74 98.90 98.90 98.34 95.03 82.32 96.69 97.79 97.24

97 72.99 87.36 99.43 98.28 98.28 93.68 78.16 95.40 98.28 97.70

99.9 - 91.72 98.30 66.55 99.72 96.04 - 88.95 97.32 92.04

99 - 89.37 95.29 65.13 96.30 91.74 - 87.28 94.08 90.20

98 - 85.72 90.72 62.53 93.67 84.46 - 81.63 88.23 85.81

97 - 84.12 88.73 61.00 88.56 81.86 - 81.66 86.52 83.67

PPV (%)

Sensitivity (%)

Called-sites (%)

Identity (%) Cortex Freebayes GATK SAMtools VarScan Snippy CFSAN NASP PHEnix BactSNP

99.9 98.33 40.04 36.17 89.27 76.25 57.37 100.00 100.00 100.00 100.00

99 97.66 45.19 42.39 87.02 90.00 5.38 98.88 100.00 100.00 100.00

98 98.01 13.48 9.75 42.51 50.29 1.76 96.13 100.00 99.43 100.00

97 99.33 25.71 17.71 70.12 87.96 1.47 90.85 99.38 100.00 100.00

99.9 96.72 98.91 100.00 100.00 100.00 100.00 99.45 97.81 98.91 98.91

99 92.27 96.13 100.00 100.00 99.45 99.45 97.24 99.45 100.00 99.45

98 85.55 82.66 99.42 100.00 99.42 97.69 86.13 95.38 100.00 99.42

97 87.13 79.53 98.83 98.83 98.25 97.66 81.29 94.15 98.83 98.83

99.9 - 89.25 95.56 64.52 97.76 92.90 - 89.14 94.20 92.21

99 - 85.38 91.18 61.88 91.29 89.44 - 89.09 90.48 89.77

98 - 79.10 84.00 57.50 83.66 81.00 - 81.10 83.03 82.04

97 - 80.52 85.58 58.79 84.99 82.50 - 83.62 84.83 83.99

PPV (%)

Sensitivity (%)

Called-sites (%)



Table S3. Benchmark results of SNP callers when “soft-clip regions” were masked as 

ambiguous. This table is based on the result for the first reference-root pair among ten 

pairs in each species and identity (Table S1). Results without “soft-clip regions” masking 

in the same cases are shown in Table S2. 

 

(a) Staphylococcus aureus 

 
(b) Neisseria meningitidis 

 
(c) Escherichia coli 

 
  

Identity (%) Cortex Freebayes GATK SAMtools VarScan Snippy CFSAN NASP PHEnix BactSNP

99.9 100.00 88.44 98.87 100.00 100.00 68.90 100.00 100.00 100.00 100.00

99 96.20 51.99 90.56 98.18 100.00 26.21 100.00 100.00 100.00 100.00

98 100.00 45.18 87.50 92.77 96.25 17.55 100.00 100.00 100.00 100.00

97 94.34 57.09 93.13 96.83 100.00 11.54 99.17 100.00 100.00 100.00

99.9 96.05 99.44 98.87 98.87 98.87 98.87 98.87 98.31 98.87 98.87

99 84.44 94.44 90.56 90.00 90.56 90.56 90.00 90.00 90.56 90.56

98 72.78 91.11 85.56 85.56 85.56 85.00 83.33 85.00 85.56 85.56

97 55.87 81.01 68.16 68.16 68.16 68.16 66.48 67.04 68.16 68.16

99.9 - 88.13 93.09 62.80 93.82 92.70 - 90.61 92.79 91.93

99 - 87.81 85.20 57.66 85.79 84.94 - 84.07 85.01 84.53

98 - 80.50 70.62 47.89 71.23 70.19 - 69.57 70.30 70.12

97 - 82.48 64.55 43.97 65.05 64.26 - 63.93 64.36 64.07

PPV (%)

Sensitivity (%)

Called-sites (%)

Identity (%) Cortex Freebayes GATK SAMtools VarScan Snippy CFSAN NASP PHEnix BactSNP

99.9 95.27 97.19 98.84 100.00 100.00 94.48 100.00 100.00 100.00 100.00

99 97.47 56.11 78.05 91.38 95.81 47.75 100.00 100.00 100.00 100.00

98 91.94 39.75 66.15 83.77 92.75 20.82 100.00 100.00 100.00 100.00

97 97.94 30.40 62.01 78.57 91.67 17.35 99.06 100.00 100.00 100.00

99.9 92.53 99.43 98.28 97.70 98.28 98.28 95.98 94.25 98.28 95.98

99 83.70 92.39 86.96 86.41 86.96 86.41 85.33 84.24 86.41 85.87

98 62.98 86.74 71.27 71.27 70.72 70.17 69.06 70.17 70.72 70.17

97 54.60 87.36 63.79 63.22 63.22 63.22 60.34 62.07 63.22 63.22

99.9 - 91.69 96.39 65.17 97.73 94.48 - 87.73 95.52 90.60

99 - 89.02 78.54 53.21 79.89 77.41 - 74.17 77.94 76.13

98 - 84.98 62.85 42.78 66.61 61.23 - 58.97 61.75 61.50

97 - 83.11 52.03 35.15 53.24 51.22 - 50.32 51.46 51.05

PPV (%)

Sensitivity (%)

Called-sites (%)

Identity (%) Cortex Freebayes GATK SAMtools VarScan Snippy CFSAN NASP PHEnix BactSNP

99.9 98.30 53.71 66.92 93.68 89.45 95.70 100.00 100.00 100.00 100.00

99 97.45 54.89 72.44 90.56 95.32 18.46 100.00 100.00 100.00 100.00

98 97.66 18.50 39.39 73.44 80.57 7.28 100.00 100.00 100.00 100.00

97 99.13 41.46 76.69 96.90 96.15 5.99 100.00 99.20 100.00 100.00

99.9 94.54 98.91 97.27 97.27 97.27 97.27 97.27 95.63 96.72 96.72

99 84.53 96.13 90.06 90.06 90.06 90.06 90.06 90.06 90.06 90.06

98 72.25 82.66 81.50 81.50 81.50 81.50 78.61 79.19 81.50 81.50

97 66.67 79.53 73.10 73.10 73.10 73.10 70.76 72.51 73.10 73.10

99.9 - 89.18 93.83 63.31 95.92 91.69 - 88.18 92.65 90.97

99 - 85.17 84.20 56.95 84.61 83.64 - 82.89 83.79 83.33

98 - 78.63 67.60 46.02 67.83 66.93 - 66.35 67.24 66.86

97 - 79.93 64.42 43.90 64.65 64.15 - 63.82 64.25 63.96

Called-sites (%)

PPV (%)

Sensitivity (%)



Table S4. Benchmark results of mapping-based general SNP callers when soft-clipped 

reads were filtered out from the input bam file. Only SNP callers to which users input a 

bam file were evaluated. This table is based on the result for the first reference-root pair 

among ten pairs in each species and identity (Table S1). Results without filtering soft-

clipped reads in the same cases were shown in Table S2. 

 

(a) Staphylococcus aureus 

 
(b) Neisseria meningitidis 

 
(c) Escherichia coli 

 

Identity (%) Freebayes GATK SAMtools VarScan

99.9 88.44 89.39 95.68 97.24

99 51.99 40.68 66.54 84.51

98 45.18 38.79 58.25 83.10

97 57.09 45.17 63.54 77.58

99.9 99.44 100.00 100.00 99.44

99 94.44 99.44 99.44 100.00

98 91.11 100.00 100.00 98.33

97 81.01 96.65 98.32 96.65

99.9 88.13 94.46 63.89 94.74

99 87.81 93.54 64.07 92.77

98 80.50 85.04 59.27 83.22

97 82.48 86.70 61.42 84.42

PPV (%)

Sensitivity (%)

Called-sites (%)

Identity (%) Freebayes GATK SAMtools VarScan

99.9 97.19 98.31 99.43 98.86

99 56.11 47.77 73.88 80.18

98 39.75 30.07 60.96 78.22

97 30.40 26.15 40.71 63.64

99.9 99.43 100.00 99.43 100.00

99 92.39 98.91 98.37 98.91

98 86.74 98.34 98.34 97.24

97 87.36 98.28 98.28 96.55

99.9 91.69 98.24 66.59 99.51

99 89.02 94.65 65.45 94.63

98 84.98 89.57 63.03 90.72

97 83.11 87.06 61.63 84.33

PPV (%)

Sensitivity (%)

Called-sites (%)

Identity (%) Freebayes GATK SAMtools VarScan

99.9 53.71 46.92 82.06 75.62

99 54.89 46.17 83.41 85.71

98 18.50 14.65 40.66 54.84

97 41.46 30.78 67.06 79.25

99.9 98.91 100.00 100.00 100.00

99 96.13 100.00 100.00 99.45

98 82.66 99.42 99.42 98.27

97 79.53 98.83 98.83 98.25

99.9 89.18 95.48 64.50 97.49

99 85.17 90.81 61.97 90.41

98 78.63 83.25 57.79 82.12

97 79.93 84.42 59.13 82.80

Called-sites (%)

PPV (%)

Sensitivity (%)



Table S5. Average ratio of the common region to the reference genome size when 

calculating Common-region PPV.  

 

 
 

Table S6. Benchmarks using TreeToReads.  

 

(a) Staphylococcus aureus 

 
(b) Neisseria meningitidis 

 
  

Identity (%) S. aureus N. meningitidis E. coli

99.9 58.52 56.07 57.40

99 54.23 53.28 53.25

98 52.82 49.65 48.04

97 50.97 46.17 45.49

Identity (%) Cortex Freebayes GATK SAMtools VarScan Snippy CFSAN NASP PHEnix BactSNP

99.9 98.66 98.88 100.00 100.00 100.00 91.19 100.00 100.00 100.00 100.00

99 100.00 94.65 96.46 97.44 100.00 11.90 99.47 100.00 100.00 100.00

98 90.00 83.80 85.25 86.85 99.46 3.21 96.08 100.00 97.87 100.00

97 86.67 83.98 90.63 81.45 98.54 1.58 79.31 98.45 96.71 100.00

99.9 82.12 98.32 98.88 98.88 98.32 98.32 98.32 92.74 98.32 96.09

99 30.57 91.71 98.96 98.45 98.96 98.45 96.89 95.34 99.48 95.85

98 9.23 76.92 94.87 94.87 93.85 92.82 75.38 87.18 94.36 89.23

97 6.25 73.08 97.60 97.12 97.12 96.15 22.12 91.35 99.04 91.83

99.9 - 92.60 99.29 67.03 99.89 98.62 - 95.06 98.84 97.23

99 - 92.57 98.70 67.13 98.92 97.49 - 94.18 98.26 95.20

98 - 92.40 97.95 67.21 97.68 95.77 - 93.00 97.53 92.62

97 - 92.21 97.29 67.35 96.50 93.98 - 91.88 96.86 90.22

PPV (%)

Sensitivity (%)

Called-sites (%)

Identity (%) Cortex Freebayes GATK SAMtools VarScan Snippy CFSAN NASP PHEnix BactSNP

99.9 97.04 99.51 99.52 100.00 100.00 93.93 100.00 100.00 100.00 100.00

99 98.08 96.86 97.24 97.27 98.33 16.10 98.31 100.00 97.80 100.00

98 96.15 90.24 98.41 91.30 96.88 4.90 94.48 100.00 97.92 100.00

97 100.00 83.54 92.71 85.29 97.73 2.09 93.22 99.39 98.31 100.00

99.9 78.85 97.12 99.04 99.04 98.56 96.63 97.12 89.42 98.56 92.31

99 28.18 85.08 97.24 98.34 97.79 96.69 96.13 90.61 98.34 92.27

98 13.02 77.08 96.88 98.44 96.88 93.75 71.35 83.85 97.92 92.71

97 4.35 74.46 96.74 94.57 93.48 88.04 29.89 88.04 95.11 86.41

99.9 - 91.81 98.41 66.60 99.87 96.28 - 89.01 97.45 91.98

99 - 91.69 97.73 66.71 98.82 95.02 - 88.13 96.78 89.95

98 - 91.76 97.20 66.83 97.86 93.75 - 87.26 96.29 88.27

97 - 91.54 96.45 67.09 96.68 91.75 - 86.26 95.59 86.18

Called-sites (%)

PPV (%)

Sensitivity (%)



(c) Escherichia coli 

 
 

Table S7. Number of detected SNP sites in real sequence data analysis. The relationship 

between the identity between the reference and the target isolates and the number of 

detected SNP sites among the target isolates is shown. Accession denotes the accession 

number of the used reference genome; SD, the standard deviation of the number of 

detected SNP sites over all cases; the value of r, the constant value used to calculate --

max_snp parameter values in CFSAN. (a) Results for all SNP callers including CFSAN with 

--max_snp parameter value which exhibited the least SD. (b) Results for CFSAN with all -
-max_snp parameter values. 

 

(a) 

 
(b) 
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