

Article

Acidification is an Essential Process of Cold Atmospheric Plasma and Promotes the Anti-Cancer Effect on Malignant Melanoma Cells

Christin Schneider, Lisa Gebhardt, Stephanie Arndt, Sigrid Karrer, Julia L. Zimmermann, Michael J.M. Fischer and Anja-Katrin Bosserhoff

Supplementary Material

Figure S1. The CAP-induced intracellular Ca²⁺ influx is pH dependent. (**A**) PH measurement of 120 s CAP treated pbECS – Ca²⁺ (#7) and 3x buffered pbECS – Ca²⁺ (#8). (**B–D**) Analysis of 30 s CAP-induced Ca²⁺ influx in Mel Im ((**B–C**), n = 225-464) and Mel Juso ((**B,D**), n = 357-427) cells by using pbECS – Ca²⁺ (#7) and 3x buffered pbECS – Ca²⁺ (#8).

Figure S2. CAP-produced reactive species vary in different media. (**A**) Fluorescence spectroscopic analysis of CAP-induced species production in $7 \times 20 \ \mu$ L drops of pbECS (#4), DPBS, DMEM and RPMI, by using DHR 123 (**A**), Fluorimetic Hydrogen Peroxide Assay Kit (**B**), Singlet Oxygen Sensor Green Reagent (**C**) and DAF-2 (**D**). Data are mean ±SEM.

Figure S3. The CAP-induced acidification could be inhibited by NaN₃. PH measurement of ECS (#2, 7 × 20 μ L drops) solutions, supplemented with histidine (3 mM), cPTIO (100 μ M) or NaN₃ (5 mM), after 120 s CAP-treatment.

Figure S4. Application of H₂O₂ onto melanoma cells causes a minor Ca²⁺ influx. H₂O₂ (6 μ M), solved in pbECS (#4) pH 6 or pH 7.4, was added onto Mel Im ((**A**), *n* = 334–343) and Mel Juso ((**B**), *n* = 299–370) cells, which were pretreated for 5 min with the same solution without H₂O₂.

Figure S5. Whole blots of the Western Blot analysis of CAP-induced protein nitration after direct CAP treatment of Mel Im and Mel Juso cells, shown in Figure 4F. Ctrl* (120 s without medium) was used for the densitometric measurement.

Figure 4F Pixel Intensity	Ctrl*	10 s CAP	30 s CAP	60 s CAP	120 s CAP
<u>Mel Im</u>					
3-nitrotyrosine	14	6	32	52	43
Poncau S	23	24	26	26	26
<u>Mel Juso</u>					
3-nitrotyrosine	13	12	29	48	53
Poncau S	20	20	20	19	20
Figure 4G Pixel Intensity	Ctrl	120 s CAP	120 s CAP + NaOH	120 s CAP + NaOH + HCl	
<u>Mel Im</u>					
3-nitrotyrosine	14	24	16	30	
Poncau S	64	56	69	69	
<u>Mel Juso</u>					
3-nitrotyrosine	17	25	14	28	
Poncau S	81	73	72	82	

Table 1. Densitometric evaluation of the Western Blot analysis shown in Figure 4F,G. Values represent the mean pixel intensity per lane (n = 3, arbitrary unit, values × 10⁶).

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).