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Computational details 

Generation of a-Si networks 

Constant-pressure MD simulations (NPT ensemble), driven by a general-purpose GAP for Si 
(with the unique identifier GAP_2017_6_17_60_4_3_56_165),[S1] were carried out using 
LAMMPS.[S2–5] The system size was 512 atoms per cell, and the time step was 1 fs. After initial 
mixing at 1,800 K and keeping the system in the liquid state at 1,500 K, a quench to 500 K was 
performed with a given quench rate, and a final optimization was done using a conjugate-gra-
dient (CG) minimizer. The computational protocol has been introduced and validated in a pre-
vious, more technical work;[S6] this includes comparison to the experimental structure factor 
(in particular, the inverse height of the first sharp diffraction peak) and to experimentally meas-
ured 29Si NMR chemical shifts (see [S6] and references therein). Where appropriate, structural 
data were taken from our previous study (end points of 512-atom trajectories as well as selected 
intermediate points of a 4,096-atom trajectory resembling the liquid–amorphous transition),[S6] 
but used for new and different analyses (namely, SOAP structural similarity and GAP local 
energies) in the present work.  

Furthermore, a new set of structures was generated to sample more finely spaced quench rates 
(cf. Figure 1a), adding data points at 6 × 1013 K/s, 3 × 1013 K/s, 2 × 1013 K/s, and so on. Besides 
“filling in” intermediate quench rates, we also expanded the scope of the simulations to a slow-
est rate of 1010 K/s, yielding a model with very high structural ordering (Figures 1b and 1c). A 
constant-rate quench at this rate would require 100 ns of simulation time (108 time steps, or 
several months of real time). We therefore use a variable-rate quenching scheme which was 
introduced and validated in [S6], in which the slowest quench rate (here, 1010 K/s) is only 
applied in the temperature region where it is found to be truly needed (viz. between 1,250 and 
1,050 K), and a faster rate of 1013 K/s is applied elsewhere.  

 
Local energies from GAP 

Among the key findings of this work is that local energies in amorphous and liquid phases, as 
obtained from an ML-based interatomic potential by construction, permit chemical interpreta-
tion. We review the most important aspects here for convenience; the interested reader is re-
ferred to the original literature for a more detailed derivation.[S7–9] The local energy of the i-th 
atom, εi, is obtained in the Gaussian Approximation Potential (GAP) framework as follows:[S7] 

𝜀𝜀𝑖𝑖 = �𝛼𝛼𝑗𝑗𝐾𝐾�𝐪𝐪𝑖𝑖 ,𝐪𝐪𝑗𝑗�
𝑗𝑗

≡�𝛼𝛼𝑗𝑗𝐾𝐾𝑖𝑖𝑖𝑖
𝑗𝑗

 

(where the latter is just a shorthand notation). The sum runs over a set of reference configura-
tions in the training database (index j), each described by a general descriptor vector denoted 
“𝐪𝐪”, of which each is compared to the atom in question using the kernel function K. In the case 
of SOAP, this kernel is simply a properly normalized dot product, raised to a small integer 
power for better distinction between environments (here, 𝜁𝜁 = 4).[S8] 
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Depending on the physical nature of the system, more complex formulations may be used, but 
the general idea stays the same. For example, multiple descriptors (label 𝑑𝑑) can be combined 
by forming a linear combination with appropriate scaling factors 𝛿𝛿(𝑑𝑑):[S9–11] 

𝜀𝜀𝑖𝑖 = �𝛿𝛿(𝑑𝑑) ��𝛼𝛼𝑗𝑗
(𝑑𝑑)𝐾𝐾(𝑑𝑑) �𝐪𝐪𝑖𝑖

(𝑑𝑑),𝐪𝐪𝑗𝑗
(𝑑𝑑)�

𝑗𝑗

�
𝑑𝑑

 . 

Again, the result is one atomic energy value, 𝜀𝜀𝑖𝑖. In the general-purpose silicon GAP we use, 
finally, the repulsive interaction between atoms at small distances is covered by a parametric 
two-body term (“core potential”), and the SOAP kernel is then used in the second term:[S1] 

𝜀𝜀𝑖𝑖 = �𝑉𝑉𝑖𝑖𝑖𝑖�𝑟𝑟𝑖𝑖𝑖𝑖�
𝑗𝑗

+ �𝛼𝛼𝑗𝑗𝐾𝐾�𝐪𝐪𝑖𝑖 ,𝐪𝐪𝑗𝑗�
𝑗𝑗

. 

For the sake of brevity, we have omitted the leading two-body potential term from the presen-
tation in the main text. All these formulations lead to well-defined atomic energies 𝜀𝜀𝑖𝑖, and we 
note that similar approaches can be followed with other ML-based interatomic potentials, such 
as artificial neural network potentials.[S12–14] 

The full dataset of atomic energies (cf. Figure 2 in the main text) is provided in extended XYZ 
format, which makes it easily possible to identify the value corresponding to each atom (these 
files can be directly read into programs such as ASE or quippy) and as separate csv files. For 
convenience, in Table S1, we provide percentile values.  

Table S1: Percentile values of the distribution of local energies for the 512-atom a-Si networks 
studied here (the 98-th percentile value means that 98 percent of the atoms have a local GAP 
energy below this value, etc.). 

Percentile N = 3 only N = 4 only N = 5 only All atoms 

100 (Maximum) 0.737 0.720 0.710 0.737 
98 0.722 0.418 0.623 0.486 
90 0.681 0.281 0.521 0.306 
75 0.645 0.206 0.463 0.214 
50 (Median) 0.598 0.144 0.417 0.148 
25 0.544 0.101 0.364 0.103 
10 0.494 0.070 0.332 0.071 
2 0.427 0.037 0.283 0.038 
0 (Minimum) 0.405 –0.019a 0.224 –0.019a 
aThe lowest value is slightly more negative than that of an atom in the optimized dia-
mond structure, but the difference is within the maximum expected error (page S7–8). 
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Electronic structure 

The local DOS plots shown in Figure 2e–f were obtained using an analytic projection scheme, 
as implemented in LOBSTER (www.cohp.de),[S15,16] ensuring a reliable transfer from a Γ-point 
VASP-PBE computation into a local basis of Slater-type orbitals (Si 3s 3p). The electronic 
wavefunction and the total DOS had already been computed in our previous work;[S6] here, this 
allows us to conveniently illustrate the effect of local environments. Further studies are cur-
rently underway to study more closely the electronic structure of the structural models gener-
ated here; these will be reported elsewhere. 

 
Error bars for the SOAP similarity values 

Figure 1d in the main text shows SOAP similarity values that compare NN and NNN atomic 
environments in a-Si to those in ideal c-Si. Due to the finite size of the structural models (512 
atoms per cell), it is important to ask for the variability of the results presented; in other words, 
if a similar simulation is repeated for another 512-atom structure, how strongly will the SOAP 
results differ? To assess this question, we performed five independent quenching simulations, 
employing the variable-rate scheme discussed on page S1, with 1011 K s–1 in the temperature 
range from 1,250 to 1,050 K; 1013 K s–1 otherwise. For each system, we obtained the median 
NN and NNN similarity to c-Si (corresponding to the quantities plotted in Figure 1d) and cal-
culated the standard deviation between the five systems (Table S2). In Figure 1d, we show 
error bars corresponding to three times this value (“3σ”). 

Table S2: SOAP similarity to c-Si (as in Figure 1d of the main text), but now for five a-Si 
structures that have been obtained in parallel quenching runs. Median values for the NN and 
NNN kernel are given for each cell, and below we list the averages and standard deviations 
over the five cells. 

 NN median NNN median 

Run 1 0.986968 0.870881 
Run 2 0.987224 0.869747 
Run 3 0.987886 0.864289 
Run 4 0.987775 0.872035 
Run 5 0.987576 0.870733 
Average over 5 runs 0.987486 0.869537 
Standard deviation 0.000343 0.002723 
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Implementation and visualization 

The local energies, including the predicted error, can be obtained with the freely available 
QUIP/quippy software (all required software, including the GAP prediction code, can be ob-
tained at http://www.libatoms.org). The following python script yields this information: 

 
Listing S1: A simple python script, illustrating how to use the GAP framework and quippy 
to predict local energies. As command-line arguments, this script takes (1) the coordinate file 
to be studied (extended xyz format), and (2) the GAP potential parameter file (xml format). 

#!/Users/vld24/anaconda/bin/python2 
 
from quippy import * 
import sys 
 
a = Atoms(sys.argv[1]) 
 
pot = Potential('IP GAP', param_filename=sys.argv[2]) 
 
a.set_calculator(pot) 
a.set_cutoff(5.0) 
 
a.get_potential_energies() 
 
e = farray(0.0) 
pot.calc(a, energy=e, args_str='local_gap_variance') 
 
a.write('LOCAL_E_and_error_with_'+sys.argv[2]+'_'+sys.argv[1]) 

The information is included in a copy of the structure file, which is now amended by two ad-
ditional columns in the extended XYZ format. The following is an example: 

 

Listing S2: Example file header showing how the local energies and GAP variance are written 
by the script above. In the second line of the file, two new properties are listed (highlighted in 
green and cyan, respectively). For each atom (starting in the third line), these quantities are 
then given: note that for the local energy, these values are referenced to that of an atom in 
diamond-type c-Si (evaluated with the same GAP; ε(c-Si) =  –163.17763895 eV), and that the 
errors are printed as variance (hence the square root must be taken to obtain a quantity in eV). 

512 

pbc="T T T" Lattice="21.90657164       0.00000000       0.00000000    
   -0.01012491      21.96387922       0.00000000       0.20206325     
  -0.08542605      21.79612182" Properties=species:S:1:pos:R:3:Z:I: 
1:local_energy:R:1:local_gap_variance:R:1 

Si   7.41226937   21.40807189   17.78143342   14    -163.08144625   
0.00001970 

Si   ... 

 

Visualization was done using the freely available OVITO software (https://ovito.org/), which 
offers a convenient option to color-code atoms according to atomic properties.[S17]  
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Supplementary discussion (I): Characterization of a-Si networks 

To further characterize the structural models that form the basis of this study, we provide key 
information about the most important ones in Table S3 as well as additional raw data in Table 
S4. For this analysis, the structures were further relaxed using VASP.[S18,19] This changes the 
atomic positions only slightly: the GAP model used for melt–quenching is fitted to Perdew–
Wang 91 (PW91) data, whereas the further relaxation here is done with the more widely used 
Perdew–Burke–Ernzerhof (PBE) functional[S20] for wider comparability. It does not affect the 
topological properties (connectivity, rings) of the networks.  

The analysis presented here shows that our slowest-quenched structure outperforms the WWW 
model in terms of energies while having the same density and average coordination number. 
Furthermore, the simulated structure factor, S(q), can be used as an additional measure for the 
quality of the structures because it can be compared to experimental data (Figure S1). 

All structural models are provided as separate Supporting Information file (a ZIP archive con-
taining structural data in extended XYZ and VASP POSCAR format). 

 

Table S3: Information about relevant a-Si models as relaxed by DFT-PBE computations, 
including energies as given relative to the similarly relaxed WWW structure. 

 ρ0 
(g cm–3) 

Coordination statistics (%) Navg ∆E 
(eV at.–1) 

N = 3 N = 4 N = 5 
GAP (1014 K/s) 2.28 1.4 93.4 5.3 4.040 +0.087 
GAP (1013 K/s) 2.26 1.0 96.5 2.5 4.016 +0.037 
GAP (1012 K/s) 2.25 0.4 98.4 1.2 4.007 +0.008 
GAP (1011 K/s) 2.26 0.6 98.4 1.0 4.004 –0.022 
GAP (1010 K/s) 2.26 0.6 98.8 0.6 4.000 –0.023 
WWW 2.24 – 100 – 4.000 0 (reference) 

 

Table S4: Total DFT energies (raw values); median and maximum DFT force magnitude on 
atoms for the different models, showing that all structures are well relaxed.  

 E 
(eV cell–1) 

|F|med 

(eV Å–1) 
|F|max 

(eV Å–1) 
GAP (1014 K/s) –2656.178043 0.002 0.019 
GAP (1013 K/s) –2681.359737 0.002 0.009 
GAP (1012 K/s) –2696.507605 0.003 0.010 
GAP (1011 K/s) –2711.581411 0.003 0.008 
GAP (1010 K/s) –2712.058318 0.002 0.007 
WWW –2700.479984 0.002 0.008 
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Figure S1: Static structure factors as a further means of validation for the different structure 
models. (a) Evolution of structure factors with decreasing quench rate, similar to [S6] (see there 
for a more detailed discussion on the link between structural order and features in the structure 
factors). Experimental data from Laaziri et al. (dashed black line; Ref. [S21]). (b) Structure 
factors for the newly generated 1010 K/s quenched structure (blue solid line) and the relaxed 
WWW network of similar size (dash-dotted green line), again showing experimental data from 
[S21] for comparison (dashed black line). 
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Supplementary discussion (II): Uncertainty quantification 

The analysis of local energies can be further supported by the fact that Gaussian process re-
gression makes it possible to quantify the expected error for any prediction. In other words, 
uncertainty quantification (an extremely important feature of ML models) is directly included 
in the GAP framework.[S1]  

Recall that we obtain the atomic energy by summing up, over 𝑁𝑁 reference configurations (𝑗𝑗 =
1, … ,𝑁𝑁), all pairs of fit coefficients 𝛼𝛼𝑗𝑗 and kernel values 𝐾𝐾𝑖𝑖𝑖𝑖: 

𝜀𝜀𝑖𝑖 = �𝛼𝛼𝑗𝑗𝐾𝐾�𝐪𝐪𝑖𝑖 ,𝐪𝐪𝑗𝑗�
𝑗𝑗

≡�𝛼𝛼𝑗𝑗𝐾𝐾𝑖𝑖𝑖𝑖
𝑗𝑗

 , 

This sum can be written as a dot product if we collect all entries for 𝛼𝛼𝑗𝑗 and 𝐾𝐾𝑖𝑖𝑖𝑖 (for 𝑗𝑗 = 1, … ,𝑁𝑁) 
into appropriate vectors, 𝛂𝛂 and 𝐤𝐤(𝒊𝒊): 

𝜀𝜀𝑖𝑖 = 𝛂𝛂 ∙ 𝐤𝐤(𝒊𝒊)  with   𝛂𝛂 = �
𝛼𝛼1
⋮
𝛼𝛼𝑁𝑁
�    and   𝐤𝐤(𝒊𝒊) = �

𝐾𝐾𝑖𝑖,1
⋮

𝐾𝐾𝑖𝑖,𝑁𝑁
� . 

We can then obtain the variance of the prediction (for the i-th atom) as follows:[S1] 

𝜎𝜎𝑖𝑖2 = 𝐾𝐾𝑖𝑖𝑖𝑖 − �𝐤𝐤(𝒊𝒊)�T(𝐊𝐊 + 𝜎𝜎e𝐈𝐈)−1𝐤𝐤(𝒊𝒊) 

where 𝜎𝜎e is a small regularization value (on the order of 10–4 eV; [S1]). By taking its square 
root, we obtain an error measure with a dimension of energy:[S1] 

𝜎𝜎𝑖𝑖 = �𝐾𝐾𝑖𝑖𝑖𝑖 − (𝐤𝐤(𝒊𝒊))T(𝐊𝐊 + 𝜎𝜎e𝐈𝐈)−1𝐤𝐤(𝒊𝒊) 

We refer to this as a “Gaussian process (GP) predicted error”, which we evaluated and plotted 
in Figure S2 for the two structures characterized in Figures 3b (1014 K/s quench) and Figure 
3c (1011 K/s quench), and show as a inset to Figures 2b–c in the main text. Additionally, values 
for the minimum, median, and maximum prediction errors are provided in Table S5. 

 

Table S5: Predicted errors for GAP atomic energies (in eV per atom) for the two different 
structures characterized in Figures 2b–c. 

 Fast-quenched a-Si 
(1014 K/s) 

Slow-quenched a-Si 
(1011 K/s) 

Maximum (𝜎𝜎𝑖𝑖) 0.0193 0.0109 

Median (𝜎𝜎𝑖𝑖) 0.0048 0.0037 

Minimum (𝜎𝜎𝑖𝑖) 0.0022 0.0018 
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Figure S2: Uncertainty quantification by means of the predicted error for GAP local energies. 
The left-hand side shows all individual values plotted versus the corresponding atom’s local 
energy; the right-hand side shows a kernel density estimate for a projection onto the y-axis. A 
dashed line indicates a value of 5 meV per atom that has been discussed in Ref. [S1] as a value 
indicating reliable predictions for various physical scenarios in crystalline silicon. The majority 
of data points is found below this value. 
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