Supplementary Materials: Fusaoctaxin A, An Example of a Two-Step Mechanism for Non-Ribosomal Peptide Assembly and Maturation in Fungi

Klaus Ringsborg Westphal, Katrine Amalie Hamborg Nielsen, Rasmus Dam Wollenberg, Mathias Bonde Møllehøj, Simone Bachleitner, Lena Studt, Erik Lysøe, Henriette Giese, Reinhard Wimmer, Jens Laurids Sørensen and Teis Esben Sondergaard *

Figure 1. Synteny map of the fusaoctaxin A gene cluster. Clusters from *F. graminearum, F. pseudograminearum, F. oxysporum* and *F. avenaceum* were predicted from Antismash 3.0. An orthologue of the ankyrin-rich protein *fgm4* is present in *F. avenaceum*, but was not annotated in the original published genome sequence.

Figure 2. Southern by sequencing. Validation of mutant strains by either short-read Illumina sequencing or Oxford Nanopore long-read sequencing. The representative read-mappings are depicted as either pairedend (blue), sense strand (green) or anti-sense strand (red) reads. Only relevant annotations are highlighted. Green, yellow and blue annotations represent promotors, terminators and genes. Left (LB) and right (RB) borders indicate regions used to facilitate the targeted double homologous recombination event. A blastN analysis of contigs from a *de novo* assembly of Illumina reads and long-reads resulting from Oxford Nanopore sequencing were conducted to confirm single integration events of the *hph* (hygromycin B phosphotransferase) or *nptII* (Neomycin phosphotransferase) genes. PgpdA: glyceraldehyde-3-phosphate dehydrogenase promoter, Ptef: Translation elongation factor 1-alpha promotor.

Figure S3. HPLC-HRMS analysis of secondary metabolite extracts from OE:::*NRPS5*OE:: *NRPS9*, OE:: *NRPS9*, OE:: *NRPS9*, and wild type grown on rice agar medium. **a**, Zooms of four mass spectra from OE::*fgrA*OE::*fgrB*. Red: RT 5.17 min. showing fusapentaxin A [M+H]⁺ (m/z 474.2911) and [M+Na]⁺ (m/z 496.2714). Green: RT 6.03 min. showing fusatrixin A [M+H]⁺ (m/z 318.2381), [M+Na]⁺ (m/z 340.2197) and [M-H₂O+H]⁺ (m/z 300.2276). Orange: RT 6.26 min. showing fusatetraxin A [M+H]⁺ (m/z 417.3066), [M+Na]⁺ (m/z 439.2821) and [M-H₂O+H]⁺ (m/z 399.2957). Black: RT 7.86 min. showing fusaoctaxin A [M+H]⁺ (m/z 773.5111) and [M+Na]⁺ (m/z 795.4905). **b**, Four BPCs (blue) with EICs at m/z 474.2911 ± 0.5 Da (red), 318.2381 ± 0.5 Da (green), 417.3066 ± 0.5 Da (orange) and 773.5111 ± 0.5 Da (black).

Α				Fusaoctax	in A		
Residue	Atom	δ _c , type	Atom	δ _H (J in Hz)	δΝ	HMBC ^a	ROESY
1 GABA	С	171.06, C	NH ₂	7.62 (Brd)	117.1	_	
	Ca	31.7, CH ₂	Hα	2.22 (ddd, 2.2, 8,3)		1C ^β , 1C ^γ , 1C	2NH
	C ^β	23.0, CH ₂	H ^β	1.75 (m, 2.2, 7,2)		1C ^α , 1C ^γ , 1C	
	CY	38.5, CH₂	ΗΫ	2.80 (Brd dd, 7.2)		1C ^β	
2 L-ALA	C	172.4, C	NH	8.08 (d, 7.3)	125.8	2C ^β , 2C ^α , 1C	1H ^α , 3NH
	Cα	48.2, CH	Hα	4.41 ^b		2C ^β , 2C	3NH
	C ^β	18.5, CH₃	H ^β	1.20 (d, 7,0)		2C ^α , 2C	3NH
3 D-Ile	C	171.1, C	NH	7.845 ^b	111.2	3C ^α , 2C	2H ^α , 2H ^β , 2NH, 4NH
	Cα	55.02, CH	Hα	4.42 ^b		3C ^{γ2} ,3C ^β , 3C ^{γ1} , 3C	4NH
	C ^β	37.1, CH	Hβ	1.84 (m, 6.6)		3C ^{γ1} , 3C ^{γ2} , 3C ^δ	4NH
	C ^{Y1}	25.8, CH ₂	H ^{yia}	1.08 (m)		3C ^δ , 3C ^{γ2} , 3C ^β , 3C ^α	
			H ^{y1b}	1.30 ^b		3C ^δ , 3C ^{γ2} , 3C ^β , 3C ^α	
	C ^{Y2}	14.2, CH₃	H ^{Y2}	0.77 (d, 6.8)		3C ^{γ1} , 3C ^β , 3C ^α	
	C ^δ	11.5, CH₃	Η ^δ	0.84b		3C ^{γ1} , 3C ^β	
4 D-Ser	с	169.9, C	NH	8.01 (d, 7.5	115.4	4C ^α , 4C ^β , 3C	3H ^α , 3H ^β , 3NH, 5NH
	Cα	55.03, CH	Hα	4.38 (dd, 5.8, 7.5)		4C ^β , 4C, 3C	5NH
	C ^β	61.4, CH2	Η ^{β2,3}	3.60 (ddd, 5.6)		4C ^α , 4C	5NH
			ОН	4.89 (dd, 5.3)			
5 D-Val	С	170.6, C	NH	7.66 (d, 8.6)	115.6	5H ^α , 4NH, 6NH	4H ^α , 4H ^β , 4NH, 6NH
	Cα	57.4, CH	Hα	4.22 ^b		5C ^{γ1} ,5C ^{γ2} ,C ^β , 5C, 4C	6NH
	C ^β	30.5, CH	H ^β	2.00 (m, 6.6)		5C ^{γ1} , 5C ^{γ2} , 5C ^α , 5C	6NH
	C ^{Y1}	17.6, CH₃	Η ^{γ1}	0.82 ^b		$5C^{\gamma 2}$, $5C^{\beta}$, $5C^{\alpha}$	6NH
	C ^{Y2}	19.0, CH₃	H ^{y2}	0.85 ^b		5C ^{γ1} , 5C ^β , 5C ^α	6NH
6 D-Ser	с	169.7. C	NH	7.92 (d. 7.7)	115.2	6C ^α . 5C	5H ^α . 5H ^β . 5H ^{γ1} . 5H ^{γ2} . 5NH. 7NI
	Cα	54.6, CH	Hα	4.32 (ddd, 6.6, 7.3)		6C ^β , 6C, 5C	7NH
	C ^β	61.6. CH2	H ^{β2}	3.50 (ddd.		6C	
		· -	H ^{β3}	3.57 (ddd, 4.6, 4.8, 5.5)		6C	
			ОН	5.06 (5.5, 4.8)			
7 D-Leu	С	171.2, C	NH	7.842 ^b	120.9	7C ^α , 6C	6H ^α , 6NH, 8NH
	Cα	51.3. CH	Hα	4.23 ^b		7C ^β , 7C, 6C	8NH
	C ^β	40.6, CH ₂	H ^{β2,3}	1.42-1.50 ^b		7C ^γ , 7C ^{δ1} ,7C ^{δ2} , 7C ^α , 7C	
	CY	24.1, CH	НΥ	1.60 (m, 6.6, 7.0)		$7C^{\delta_2}, 7C^{\delta_1}, 7C^{\beta}$	
	C ^{δ1}	21.3. CH ₃	Η ^{δ1}	0.82 ^b		7C ^{δ2} , 7C ^γ , 7C ^β	
	C ^{δ2}	23.0, CH3	H ^{δ2}	0.86 ^b		7C ^{δ1} , 7C ^γ , 7C ^β	
						,	
8 L-Leucinol	с	63.8, CH ₂	H1	3.18 (ddd, 6.0)	120.5	8C ^α , 7C	7H ^α , 7NH
			H ²	3.28 ^b		8C ^β , 8C ^α ,	
	Cα	48.7, CH	Hα	3.75 (m, 4.7, 5.4)		8C ^β , 8C ^α ,	
	C ^β	39.8, CH₂	Η ^{β2,3}	1.27 ^b		8C	
	CY	24.0, CH	нγ	1.53 ^b		8C ^{δ1} , 8C ^{δ2} , 8C ^γ , 8C ^α , 8C	
	$C^{\delta 1}$	21.6, CH3	Η ^{δ1}	0.80 ^b		8C ^β	
	C ^{δ2}	23.3, CH₃	Η ^{δ2}	0.85 ^b		8C ^{δ2} , 8C ^γ , 8C ^β	
			NH	7.42 (d. 8.7)		8C ^{δ1} , 8C ^γ , 8C ^β	

⁹HMBC correlations, optimized for long range J_{CH} of 8 Hz, are from proton(s) stated to the indicated carbon. ^bSignal overlapping

b

(a)

Figure S4. NMR Spectroscopic Data (600 MHz, (CD₃)₂SO) for fusaoctaxin A. **a**, Chemical shifts from the eight residues (1-8) for carbon (δ c) including multiplicity (type), for hydrogen (δ H) including coupling constants (J) in Hz where possible and for nitrogen (δ N). HMBC correlations, optimised for long range JCH of 8 Hz, are from proton(s) stated to the indicated carbon. ¹H-¹H ROESY correlations only for inter-residue connectivities. ¹Partial or full overlapped signal. **b**, Structure of fusaoctaxin A elucidated by NMR with ¹H-¹³C HMBC (red arrows; directionality H \rightarrow C) and inter-residue ¹H-¹H ROESY (blue lines) correlations.

Figure S5. Region of TOCSY NMR spectrum of fusaoctaxin A in DMSO-d₆. Eight spin systems (1–8) of fusaoctaxin A showing correlations (dotted lines) from H^N to side chain atoms.

Figure S6. Marfey's assay for determination of absolute configuration of amino acids from fusaoctaxin A. Extracted ion chromatograms (EICs) from derivatised fusaoctaxin A aligned with EICs of derivatised L- and D- amino acid standards. L- and D- standards were analysed separately and the EICs have subsequently been overlaid. Dotted vertical lines indicate alignment from fusaoctaxin A to the respective standard. Green: EIC *m*/*z* 342.1042 ± 0.005 Da (derivatised alanine), Blue: EIC *m*/*z* 384.1514 ± 0.005 Da (derivatised isoleucine/leucine), Purple: EIC *m*/*z* 358.0993 ± 0.005 Da (derivatised serine), Red: EIC *m*/*z* 370.1357 ± 0.005 Da (derivatised valine), Brown: EIC *m*/*z* 370.1721 ± 0.005 Da (derivatised leucinol).

Figure S7. Amino acid sequence validation for compounds using 20 eV broadband Collision Induced Dissociation (bbCID) spectra from a HPLC-HRMS analysis of an OE::*NRPS5*OE::*NRPS9* metabolite extract. **a**, bbCID spectrum of fusapentaxin (RT: 5.3 min, [M+H]⁺ 474.2911 Da). The chemical structure of fusapentaxin with indicated a-, b-, y- fragmentations. **b**, bbCID spectrum of fusatrixin (RT: 6.0 min, [M+H]⁺ 318.2381 Da). The chemical structure of fusatrixin with indicated a-, b-, y- fragmentations. **c**, bbCID spectrum of fusatetraxin (RT: 6.3 min, [M+H]⁺ 417.3066 Da). The chemical structure of fusatetraxin with indicated a-, b-, y- fragmentations. **d**, Table of detected a-, b-, y- fragment ions for fusapentaxin (red), fusatrixin (green), and fusatetraxin (orange), including relative intensity (INT. %), the theoretical charged monoisotopic mass (theoretical M), and the calculated mass deviation (PPM).

Figure S8. Hierarchical clustering. **a**, Fusaoctaxin A gene cluster in *F. graminearum*. **b**, 176 *F. graminearum* microarray chips from different experiments, using 29 probes representing fusaoctaxin A gene cluster and flanking genes.

Figure S9. No phenotypic effects of fusaoctaxin A, fusapentaxin A *and* fusatrixin A in *Fusarium*. **a**, **e**, Control with 0.5% ethanol. **b**, **f**, 100 μ M fusaoctaxin A. **c**, **g**, 100 μ M fusapentaxin A. *d*, *h*, 100 μ M fusatrixin A. All experiments were performed in triplicates, scale bar is 200 μ m.

Locus Tag	Oligo	Descriptio	Sequence $(5' \rightarrow 3')$				
Locus rug	Name	n					
	O1		GGTCTTAA[U]CGACGTACAGATTACTTGCCAC				
FGSG 10982	O2	Peptidase	GGCATTAA[U]GAGACTGTTGGGGAGAGTGATA				
1000_10002	A3	КО	GGACTTAA[U]TAGATCATGCAGGTGTGCTATC				
	A4		GGGTTTAA[U]CGTAGTTATTGGTCAAGACAGG				
	O1	ABC	GGTCTTAA[U]CAGTGGCGAAGCAGTCTGAA				
ECSC 10005	O2	transportor	GGCATTAA[U]ACAGTAGCCAGTCATCGGTCAA				
FG3G_10995	A3	KO	GGACTTAA[U]TATCCAACGGCAGGCAGCTAT				
	A4	KO	GGGTTTAA[U]AGTTCGTCCTTGCCATTGACG				
	O1		GGTCTTAA[U]GGAGGCCGTTTTGTATGGTACCAG				
	\mathbf{O}		GGCATTAA[U]CAGATAGAAGAGACACAATCCAGTTGC				
FGSG_10990	02	NRPS9 KO	G				
	A3	-	GGACTTAA[U]TCTTGTCTTCAATATCGGTGCTGTCT				
	A4		GGGTTTAA[U]TTTGAACAAGGCCCCTATTCTCGAA				
	O1	_ NRPS9 OE	GGTCTTAA[U]GGAGGCCGTTTTGTATGGTACCAG				
	01		GGCATTAA[U]CAGATAGAAGAGACACAATCCAGTTGC				
FGSG_10990	02		G				
	O3		GGACTTAA[U]GGCTCCTCTTAACACTTATACGTCTACT				
	O4		GGGTTTAA[U]TCGTTGAGCTGATGGTACGTCAAATT				
	O1	NRPS5 OE	GGTCTTAA[U]GGTGTGATGTGTATAAATGAATGTGAAT				
			GTG				
	00		GGCATTAA[U]TAGATGATAACAATAGTATGGTAATGA				
FGSG_17487	02		TGTGTGTG				
	O3	-	GGACTTAA[U]GCCGCCACAAGATCATCCTA				
	O4		GGGTTTAA[U]CGAGCACGCTGGGCAATCAT				
ECCC 10000	Fw	NRPS9 OE	ATTTCCCIGGGATGGCTCCTCTTAACACT				
FGSG_10990	Rv	(tubulin)	ATTTGGICGCGCCCTATAAAACAGTAACTGTAACCTG				
		K . K KO	AACGCCAGGGTTTTCCCAGTCACGACGCACCCTTCTTG				
	5F		GATGACTCGC				
	5R		ACTTAACGTTACTGAAATCTCCAACGTGCAGGACTGC				
			AGTTGTCAAGG				
FGSG_15795	0.5	Kmt6 KO	TTCAATATCATCTTCTGTCTCCGACGTTTCCGCTAGCTC				
	3F		GAACCAGG				
	an		GGATAACAATTTCACACAGGAAACAGCTGCGTTGCGA				
	3K		GTAGAACTTGC				
hph	Fw	hygromyci	GTCGGAGACAGAAGATGATATTGAAGGAGC				
	Rv	n B	GTTGGAGATTTCAGTAACGTTAAGTGGAT				

Table S1. Primer designs for gene knockout and over-expression mutants. [U] Primers designed with 9 bp overhangs for USER friendly cloning.