

ENERGY & MATERIALS

Supporting Information

A Prospective Life Cycle Assessment (LCA) of Monomer Synthesis: Comparison of Biocatalytic and Oxidative Chemistry

Marie A. F. Delgove,^[a] Achille-B. Laurent,^[a] John M. Woodley,^[b] Stefaan M. A. De Wildeman,^{*[a]} Katrien V. Bernaerts,^[a] and Yvonne van der Meer^[a]

cssc_201900007_sm_miscellaneous_information.pdf

Content of the supplementary information:

Table S1. Details of the electricity consumption for each synthesis step.

 Table S2. Pedigree matrix.

Table S3. Impact category values and uncertainty values for the chemical and enzymatic syntheses.

Figure S1. Contribution of chemicals to the GWP of the synthesis of the product when no recycling of chemicals is considered with a) chemical synthesis, and b) the enzymatic synthesis.

Figure S2. Alternative process flowsheet for the enzymatic synthesis of the product TMCL with recycling of the enzyme with (4)' whole-cells in fermentation broth, and (4)'' whole-cells in buffer.

Figure S3. Alternative process flowsheet for the chemical synthesis of the product TMCL using peracetic acid as oxidant.

Figure S4. Conversion of the enzymatic reaction followed by GC-FID.

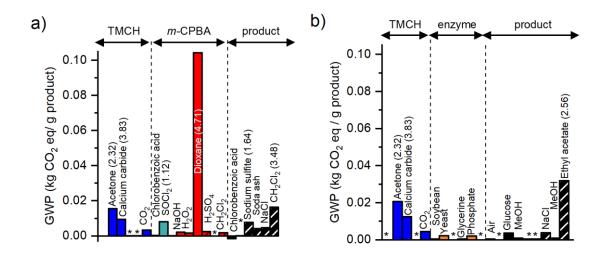
References

Synthesis	Operation	Electricity		
-		consumption		
(1) Synthesis of	Stirring of the reaction	2.002 kWh		
TMCH	Reaction under pressure in autoclave	0.002 kWh		
(2) Synthesis of	Stirring and heating	0.606 kWh		
<i>m</i> -CPBA	Removal of solvent by rotary evaporation	0.018 kWh		
(3) Chemical	Stirring of the reaction	$E_1 = 17.150 \text{ kWh}$		
synthesis of	Filtration of side-product with a vacuum pump	$E_2 = 0.017 \text{ kWh}$		
TMCL	Removal of solvent by rotary evaporation	$E_3 = 0.399 \text{ kWh}$		
(4) Preparation	Pre-incubation	E_1 '' = 3.154 kWh		
of enzymes	Incubation	E_2 '' = 2.456 kWh		
	Cell separation by centrifugation	$E_3'' = 0.277 \text{ kWh}$		
	Cell sonication	E_4 ''= 0.007 kWh		
	Enzyme separation by centrifugation	$E_5'' = 0.832 \text{ kWh}$		
(5) Enzymatic	Temperature and pH control, stirring of the reaction,	$E_1' = 2.575 \text{ kWh}$		
synthesis of	continuous addition of substrate			
TMCL	Removal of solvent by rotary evaporation	$E_2' = 0.083 \text{ kWh}$		
	Removal of protein by centrifugation	$E_3' = 0.443 \text{ kWh}$		
	Removal of solvent by rotary evaporation	$E_4' = 0.083 \text{ kWh}$		
		$E_5' = 0.018 \text{ kWh}$		
	Enzyme separation by ultrafiltration ^[1]	$E_6' = 0.011 \text{ kWh}$		

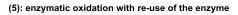
 Table S1. Details of the electricity consumption for each synthesis step.

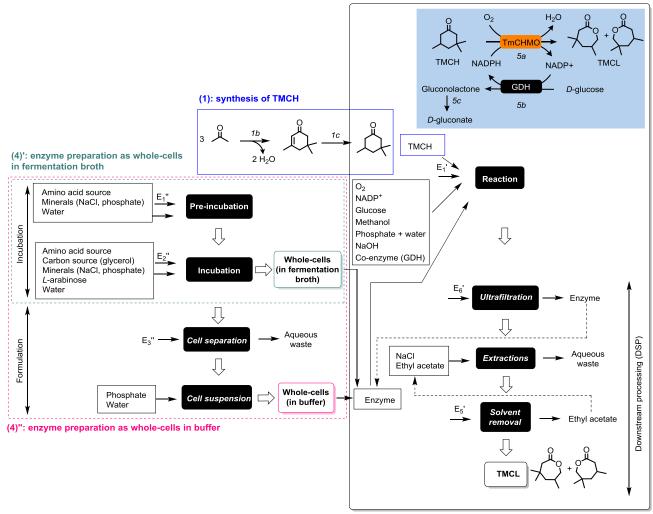
Table S2. Pedigree matrix.

For all chemicals, the following pedigree matrix was applied (basic uncertainty of 1.07):


Category	Description
Reliability	Qualified estimate
Completeness	Representative data from only one site relevant to the market considered
Temporal correlation	Age of data unknown or more than 15 years of difference to the time period of the dataset
Geographical correlation	Average data from larger area in which area under study is included
Further technological correlation	Data on related processes on laboratory scale or from different technology
Sample size	Unknown

For the enzyme production from potato starch which is from the *Ecoinvent* database, the following pedigree matrix was applied (basic uncertainty of 1.5):


Category	Description
Reliability	Verified data based on measurements
Completeness	Representativeness unknown or data from a small number of sites and from shorter periods
Temporal correlation	Age of data unknown or more than 15 years of difference to the time period of the dataset
Geographical correlation	Average data from larger area in which area under study is included
Further technological correlation	Data on related processes on laboratory scale or from different technology
Sample size	Unknown


Table S3. Impact category val	lues and uncertainty value	s for the chemical and	d enzymatic syntheses.

		Chemical synthesis			Enzymatic synthesis				
		Impact	SD	2.5 th percentile	97.5 th percentile	Impact	SD	2.5 th percentile	97.5 th percentile
Ecosystem quality	PDF.m ⁻ ² .yr ⁻¹	0.28	0.12	0.13	0.58	0.30	0.15	0.13	0.65
Human health	DALY	1.20. 10 ⁻⁶	3.91. 10 ⁻⁷	6.42. 10 ⁻⁷	2.30. 10 ⁻⁶	1.17. 10 ⁻⁶	5.00. 10 ⁻⁷	5.47. 10 ⁻⁷	2.25. 10^{-6}
Resources	MJ primary	32.47	12.69	15.73	66.99	36.35	16.68	16.63	76.71
Global warming	kg CO ₂ eq	1.646	0.59	0.83	3.30	1.639	0.67	0.78	3.34

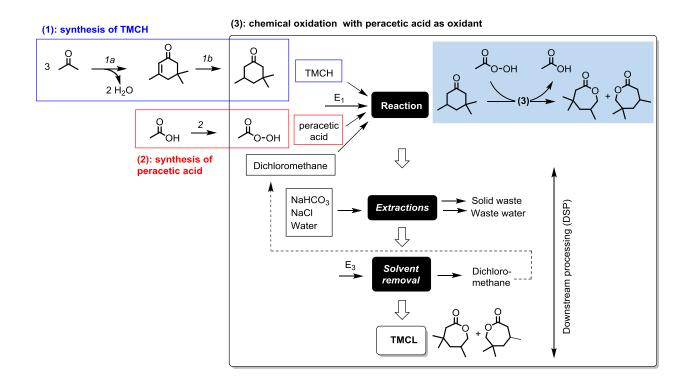


Figure S1. Contribution of chemicals to the GWP of the synthesis of the product when no recycling of chemicals is considered with a) chemical synthesis, and b) the enzymatic synthesis. Stripes indicate chemicals used for downstream processing. Stars indicate chemicals with negligible contributions. The values in parentheses indicate the global warming potential of the synthesis of 1 kg of the chemicals with the largest contributions (as expressed in kg CO_2 eq / kg product).

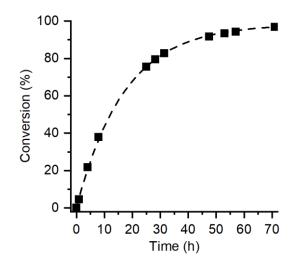


Figure S2. Alternative process flowsheet for the enzymatic synthesis of the product TMCL with recycling of the enzyme with (4)' whole-cells in fermentation broth (in green), and (4)'' whole-cells in buffer (in pink). See Table 2 for the details of the electricity consumptions. Dotted arrows indicate recycling streams.

Figure S3. Alternative process flowsheet for the chemical synthesis of the product TMCL using peracetic acid as oxidant. See Table S1 for the details of the electricity consumptions. Dotted arrows indicate recycling streams.

Figure S4. Conversion of the enzymatic reaction followed by GC-FID (the measurements were performed as described in reference ^[2]). Reaction conditions: 2 equivalents *m*-CPBA, [substrate] = 0.2 M in dichloromethane, room temperature.

References

- [1] A. Bahnasawy, M. Shenana, *Australian Journal of Agricultural Engineering* **2010**, *1*, 54.
- [2] M. Delgove, M. Elford, K. Bernaerts, S. De Wildeman, *Organic Process Research & Development* **2018**, *22*, 803-812.