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Supplementary Material 
 
Supplementary Note 
 
1. Methods 
GWAS catalog analyses 
Ancestry over time 
We downloaded the GWAS catalog report named “All ancestry data” on 7/17/2018. We 
excluded individuals whose ancestry was listed as “Not reported.” Studies were sorted by date, 
and cumulative number of individuals over time were calculated. Individuals were grouped by 
broad ancestral categories, as defined previously1. 
 
Frequency by ancestry 
We downloaded the GWAS catalog (v1.0.2) on 8/14/2018. To assess the frequency of GWAS 
catalog variants in African, East Asian, and European continental populations, we extracted 
African (AFR), East Asian (EAS), and European (EUR) individuals from the phase 3 1000 
Genomes Project, where AFR excluded African Caribbeans in Barbados (ACB) and Americans 
of African Ancestry in SW USA (ASW) populations due to their recent European ancestry. We 
then computed minor allele frequency with plink22. 
 
GWAS methods 
Quantitative traits 
GWAS for both the UK Biobank (UKBB) and BioBank Japan (BBJ) data were conducted using 
the same sample sizes for each phenotype (Supplementary Table 6). BBJ was ascertained 
on 47 diseases that likely influence or are correlated with some blood panel or anthropometric 
traits3. In BBJ, we thus first withheld a randomly selected 5,000 samples matching case/control 
fraction across diseases for prediction and used the rest of the cohort for conducting GWAS of 
the anthropometric and blood panel traits. Because the UKBB includes more individuals with 
homogeneous ancestry (N=361,195)4, we matched sample sizes to the smaller BBJ data. All 
phenotypes evaluated were processed using PHESANT, as described previously4, which 
curated and transformed phenotypes into normally distributed quantitative traits and 
categorical variables. Because basophil and eosinophil counts were binned with PHESANT 
resulting in lower observed h2, we rank normalized these phenotypes separately. We ran all 
GWAS in Hail (https://hail.is/) using v0.1. As covariates, we included age, sex, age2, age * sex, 
age2 * sex, and the first 20 principal components. Because of the BBJ disease ascertainment 
strategy3, we included additional indicator variables for each disease for BBJ only. 
 
Disease endpoints 
In addition to the 17 quantitative traits described above, we also examined five disease 
endpoints which exist in both BBJ and UKBB. In UKBB, phenotypes were defined based on 
PheCodes5 using ICD-10 and ICD-9 primary and secondary diagnoses (UKBB Fields 41202–
41204). In BBJ, the corresponding ICD codes were manually mapped to available medical 
records in their database (Supplementary Data Set 1). We conducted GWAS for both BBJ 
and UKBB using the same sample sizes for cases and controls (Supplementary Table 8). We 
first withheld a randomly selected 500 cases and 500 controls from each cohort, and then 
matched numbers of cases and controls. All GWAS were conducted using logistic regression 
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in Hail v0.1 with the same covariates: age, sex, age2, age * sex, age2 * sex, and the first 20 
principal components. 
 
Global structure in the UK Biobank 
To assess global population structure in the UK Biobank, we used the 1000 Genomes Project 
phase 3 data to assign “super population” labels defined in 1000 Genomes. Briefly, we 
intersected genotyped SNPs in the UK Biobank with SNPs genotyped in 1000 Genomes, 
filtering to SNPs with a minor allele frequency > 5%, excluding indels, removing ambiguous 
(i.e. A->T, T-> A, C->G, or G->C) SNPs, filtering to missingness < 1%, and pruning for LD R2 < 
0.2, resulting in 162,114 biallelic intersecting SNPs. Using this set of SNPs, we computed PCA 
for the 2,504 1000 Genomes individuals, then projected 488,377 UK Biobank individuals into 
the same PCA space. As in the ExAC project6, we used a random forest classifier to assign 
super population labels based on the first 6 PCs (https://github.com/macarthur-
lab/gnomad_hail/blob/master/utils/generic.py#L778). Counts of individuals by super population 
are shown in Supplementary Table 7. 
 
African ancestry individuals 
A more stringent set of filters was applied compared to the procedure described above for PRS 
analyses on African ancestry individuals in Figure 4 to obtain a more ancestrally 
homogeneous set of individuals. These stricter filters were used for consistency with the Neale 
Lab UKBB GWAS of European ancestry individuals (Supplementary Table 7) and because 
considerable diversity in ancestral origins is present among Africans ancestry individuals in 
UKBB. We first performed PCA on an unrelated set of 1,919 individuals of African descent 
from the intersection between 1000 Genomes Project phase 3 Omni2.5 genotype data (AFR 
super population, N=627) and African Genome Variation Project Omni2.5 genotype data 
(N=1,292), computing the first 20 PCs using Hail 0.1. We projected all UK Biobank individuals 
assigned to the AFR super population in the “Global structure in the UK Biobank” section 
above onto this PC space. We then excluded related individuals. For these UKBB AFR 
samples, we then adapted the PCA-based European ancestry sample selection criteria for UK 
Biobank described here: 
https://github.com/Nealelab/UK_Biobank_GWAS/blob/master/ukb31063_eur_selection.R. 
Briefly, because of the greater ancestral heterogeneity, we used this sample selection to use 
code to draw ellipses in each PC space but narrowed the selection criteria to include 
individuals within two standard deviations along the first 10 PCs, keeping 5,739 of the 8,503 
unrelated AFR individuals for PRS analyses in Figure 4, as shown in Supplementary Figure 
11. 
 
Polygenic risk score (PRS) methods 
To ensure that both datasets started with the same number of SNPs, we extracted the 
intersecting SNP set across datasets (N=5,178,318 SNPs), then clumped the UKBB and BBJ 
summary statistics using EUR and EAS super populations from the phase 3 1000 Genomes 
Project data, respectively. Briefly, we used plink to clump variants using the following flags: --
clump-p1 0.01 --clump-p2 1 --clump-r2 0.5 --clump-kb 250. We computed polygenic risk scores 
using Hail v0.2 for SNPs meeting several p-value thresholds: 5e-8, 1e-6, 1e-4, 1e-3, and 1e-2. 
We evaluated PRS accuracy in independent individuals from each biobank who were withheld 
from the GWAS. To assess genetic prediction accuracy, we computed partial R2 attributable to 
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the PRS from nested models, in which the full linear model was the true phenotype ~ PRS + all 
covariates described in “GWAS methods” above, and the nested model dropped only the PRS 
term. We bootstrapped individual phenotypes with their covariates to compute 95% confidence 
intervals on R2 values. For disease endpoints, we instead used a logistic regression model and 
computed Nagelkerke’s and liability-scale pseudo-R2 as in Lee, SH., et al7. We set the 
population prevalence of each disease as 0.84% (atrial fibrillation), 0.0911% (colorectal 
cancer), 3.3% (glaucoma), 0.46% (rheumatoid arthritis), and 5.8% (type 2 diabetes) for both 
UKBB and BBJ based on the median of the reported values from the Incidence and 
Prevalence Database by Clarivate Analytics IPD (http://www.tdrdata.com). All computed PRS 
statistics including R2 values (liability-scale and Nagelkerke’s R2 for binary traits), 95% 
confidence intervals, and p-values are in Supplementary Data Sets 2 and 3 for all traits, 
discovery and target populations, and GWAS p-value thresholds. 
 
We note that although BBJ tended to show lower R2 values than UKBB (Figure 4, 
Supplementary Figures 2-3) for quantitative traits (and vice versa for disease endpoints), we 
only consider these values for comparison within the same cohort, as they are not always 
easily comparable across different study cohorts. The observed lower R2 in BBJ may be 
attributed to various factors, including lower observed heritability in BBJ than UKBB for these 
traits even when using the same sample sizes (Supplementary Table 2), baseline cohort 
characteristics (e.g., healthy volunteers for UKBB and diseases patients for BBJ), and 
numerous environmental factors (e.g. in the UK versus Japan). 
 
Relative prediction accuracy 
We compared prediction accuracy of the 17 traits in Supplementary Table 6 across 
populations, as displayed in Figure 3. We computed R2 values for each trait and for several p-
value thresholds as described above for each of the genetically inferred continental-level 
populations (as described in “Global structure in the UK Biobank”). For each population and 
phenotype, we selected the predictor with the highest accuracy. Using these European-derived 
summary statistics, R2 is highest for each trait in the holdout European individuals, as 

expected. We computed prediction accuracy relative to Europeans as 
!"#"$%&'(#)*

!+$,#"-&)* . 

 
Heritability estimates from summary statistics 
We applied LD score regression8 to all 17 quantitative traits and five diseases in UKBB and 
BBJ for which we generated summary statistics with matched sample sizes to estimate the 
heritability explained by the genome-wide high-quality common SNPs present in the HapMap 3 
reference panel9. We estimated heritability using the default LD score8 (without any functional 
annotations) and the baseline LD score (v2.1) which includes 86 functional annotations10. We 
used population-matched LD score references (i.e., EUR for UKBB and EAS for BBJ) 
downloaded from the authors’ website (https://data.broadinstitute.org/alkesgroup/LDSCORE/). 
The major histocompatibility complex (MHC) region (chromosome 6: 25–34 Mb) was excluded 
from the analysis because of its complex LD structure. 
 
Trans-ethnic genetic correlation 
Trans-ethnic genetic correlation compares the estimated correlation of common variant effect 
sizes at SNPs common in two populations. We computed trans-ethnic genetic correlation for 
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all 17 quantitative traits and five diseases between UKBB and BBJ using Popcorn11. Trans-
ethnic genetic correlation was calculated for both genetic effect and genetic impact as defined 
previously11. For Hb, Ht, and Neutrophil, we computed trans-ethnic genetic correlation using 
regression ('--use_regression' option) rather than maximum likelihood (default), as the default 
approach produced unstable estimates for these (ρg=1, SE=0, and p=0). We used pre-
computed cross-population scores for EUR and EAS 1000 Genomes populations provided by 
the authors 
(https://www.dropbox.com/sh/37n7drt7q4sjrzn/AAAa1HFeeRAE5M3YWG9Ac2Bta). For 
Popcorn analysis, we used 3,012,341 intersecting SNPs which exist in the pre-computed 
scores and both UKBB and BBJ’s summary statistics and are not in the MHC region 
(chromosome 6: 25–34 Mb). 
 
2. PRS accuracy as a function of age 
Like other existing biomarkers, the predictive utility of PRS may change as a function of age, 
consistent with age-dependent heritability for some traits12. For example, increasing age is 
associated with higher risk of coronary artery disease, and higher PRS accelerate this 
increased risk13. Consequently, the age of intervention e.g. with statins needs to be evaluated 
in aggregate with other clinical risk factors that change over time. Autism spectrum disorder 
and schizophrenia also have a genetic basis with differing developmental trajectories; their 
shared genetic influences decrease with age, whereas the genetic overlap between 
schizophrenia and social communication difficulties persists with age14. Further work on how 
prediction accuracy varies as a function of age across phenotypes is needed. 
 
3. Previous studies of PRS generalizability across populations 
PRS prediction using European GWAS summary statistics 
We have assembled prediction accuracy statistics from several studies using the largest 
European GWAS to predict several phenotypes in target European and non-European cohorts. 
For example, multiple schizophrenia studies consistently predicted risk on average 2.2-fold 
worse in East Asians relative to Europeans, (i.e. μ=0.46, σ=0.06), using summary statistics 
from a Eurocentric GWAS15,16 (Supplementary Figure 13), despite the fact that there is no 
significant genetic heterogeneity in schizophrenia between the two populations17. This finding 
is even more pronounced in African Americans, consistent with higher genetic divergence from 
Europeans than between Europeans and East Asians18. Across several phenotypes with a 
range of genetic architectures in which empirical evaluations were available, including BMI, 
educational attainment, height, and schizophrenia, prediction accuracy using European GWAS 
summary statistics was on average 4.5-fold less accurate in African Americans than in 
Europeans (i.e. μ=0.22, σ=0.09, Supplementary Figure 13)16,19-23. By extension, prediction 
accuracy is expected to be even lower in African Americans with higher than average African 
ancestry or among populations with greater divergence from Europeans (e.g. some southern 
African populations). 
 
Promise from diverse GWAS to improve PRS accuracy across populations 
Several GWAS conducted outside European populations have disproportionately improved 
PRS accuracy in ancestry-matched individuals. These results suggest that diverse population 
GWAS are likely to improve PRS accuracy for all populations, with especially rapid 
improvement for underrepresented populations. For example, a BioBank Japan (BBJ) GWAS 
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study (N=158,284) showed that compared to a 2× larger European GWAS (N=322,154), the 
variance in BMI explained in an independent Japanese cohort with Japanese GWAS summary 
statistics was on average 1.5-fold greater than with European GWAS summary statistics 
(R2=0.154 vs 0.104 at p < 0.05, respectively)24. Similarly, a Chinese schizophrenia study 
(N=7,699 cases and 18,327 controls) showed that compared to an effectively 5.1× larger 
European GWAS (N=36,989 cases, 113,075 controls), prediction accuracy in an independent 
Chinese cohort with GWAS summary statistics from China far surpassed prediction accuracy 
from European summary statistics by 2.63 fold (2.34% versus 6.16%)25. Relatedly, an East 
Asian schizophrenia study (N=22,778 cases and 35,362 controls) showed that compared to an 
effectively 3× larger European study, prediction accuracy in East Asians was on average 1.3-
fold higher than with European summary statistics (liability R2=0.029 vs 0.022, respectively)17.  
 
4. Effect sizes estimates differ, even if causal effects are the same  
The marginal GWAS estimate differs because LD varies across populations. Mathematically, 
this is defined as:  

/01 = 341,6/6 + 81
9

6:;
 

where /01 are effect size estimates at SNP j, 41,6 is pairwise SNP LD between SNPs j and k,	/6 
is the causal SNP effect at nearby SNP k, and 8 is residual error from bias or noise. More 
simply, when causal effects are the same across populations, effect size estimates at SNPs 
tagging these causal variants from which we construct predictors will differ across populations. 
 
5. Genetically determined ancestry versus self-identified race/ethnicity 
For diverse genetic studies in the U.S. and globally, genetically determined ancestry and 
populations are important to delineate from self-identified race/ethnicity. Only controlling for the 
former can account for stratification of allele frequencies within a population. The latter may 
provide additional information about environmental racial correlates. 
 
6. Considerations of uneven population sample sizes and PRS accuracy 
To maximally benefit all populations, the largest existing GWAS results should be used. Down-
sampling the largest European GWAS for the sake of parity results in worse predictors for all 
individuals. 
 
7. Software availability 
Code used to generate the results in this manuscript can be accessed here: 
https://github.com/armartin/prs_disparities  
 
8. Data availability 
All data used in this study were available through previous work. As described in the Life 
Sciences Reporting Summary, UK Biobank analyses were conducted via application 31063. 
BBJ GWAS summary statistics are publicly available at our website (http://jenger.riken.jp/en/) 
and the National Bioscience Database Center (NBDC) Human Database (Research ID: 
hum0014). Genotype data from the BBJ subjects was deposited at the NBDC Human 
Database (Research ID: hum0014).
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Supplementary Table 1. R2 measures across populations from European GWAS. For binary traits, liability-scale R2 is 
reported where possible and Nagelkerke’s R2 is reported elsewhere. 
Study 
population 

Target 
population 

Target 
cohort Phenotype R2 

Relative to 
European Reference 

European European HRS BMI 0.058 N/A Ware et al, 2017 
European African American HRS BMI 0.015 0.26 Ware et al, 2017 
European European ARIC BMI 0.016 N/A Belsky et al, 2013 
European African American ARIC BMI 0.001 0.09 Belsky et al, 2013 
European European Add Health EA 0.032 N/A Domingue et al, 2015 
European African American Add Health EA 0.012 0.37 Domingue et al, 2015 
European European HRS EA 0.060 N/A Ware et al, 2017 
European African American HRS EA 0.010 0.17 Ware et al, 2017 
European European HRS EA 0.106 N/A Lee et al, 2018 
European African American HRS EA 0.016 0.15 Lee et al, 2018 
European European HRS Height 0.104 N/A Ware et al, 2017 
European African American HRS Height 0.025 0.24 Ware et al, 2017 
European European Multiple SCZ 0.085 N/A Ripke et al, 2014 
European East Asian JPN1 SCZ 0.046 0.55 Ripke et al, 2014 
European East Asian TCR1 SCZ 0.033 0.39 Ripke et al, 2014 
European East Asian HOK2 SCZ 0.040 0.47 Ripke et al, 2014 
European European MGS SCZ 0.069 N/A Vilhjalmsson et al, 2015 
European East Asian JPN1 SCZ 0.032 0.46 Vilhjalmsson et al, 2015 
European East Asian TCR1 SCZ 0.034 0.48 Vilhjalmsson et al, 2015 
European East Asian HOK2 SCZ 0.027 0.39 Vilhjalmsson et al, 2015 
European African American AFAM SCZ 0.015 0.22 Vilhjalmsson et al, 2015 
European European Multiple SCZ 0.093 N/A Vassos et al, 2017 
European African American Multiple SCZ 0.027 0.29 Vassos et al, 2017 
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Supplementary Table 2. Observed trait heritability of 17 quantitative traits in each cohort using LD score regression. 
Abbreviations are the same as in Supplementary Table 6. 
Trait BBJ UKBB 

Default LDSC 
S-LDSC 

(baselineLD v2.1) Default LDSC 
S-LDSC 

(baselineLD v2.1) 
Observed h2 SE Observed h2 SE Observed h2 SE Observed h2 SE 

Basophil 0.0441 0.0121 0.0678 0.0110 0.0213 0.0050 0.0251 0.0098 
BMI 0.1361 0.0087 0.1819 0.0114 0.1955 0.0090 0.2536 0.0101 
DBP 0.0430 0.0051 0.0529 0.0081 0.0984 0.0068 0.1465 0.0090 
Eosinophil 0.0586 0.0093 0.0709 0.0140 0.1354 0.0167 0.2113 0.0152 
Hb 0.0452 0.0053 0.0654 0.0080 0.1054 0.0107 0.1704 0.0106 
Height 0.3059 0.0187 0.4167 0.0203 0.3675 0.0208 0.4765 0.0211 
Ht 0.0457 0.0056 0.0716 0.0083 0.0942 0.0093 0.1584 0.0105 
Lymphocyte 0.0516 0.0073 0.0827 0.0119 0.1318 0.0118 0.2032 0.0139 
MCH 0.1309 0.0184 0.1354 0.0146 0.1942 0.0210 0.1870 0.0134 
MCHC 0.0481 0.0080 0.0747 0.0114 0.0402 0.0052 0.0577 0.0073 
MCV 0.1447 0.0178 0.1601 0.0154 0.1994 0.0201 0.2107 0.0136 
Monocyte 0.0448 0.0090 0.0776 0.0140 0.1331 0.0177 0.1982 0.0190 
Neutrophil 0.0758 0.0097 0.1031 0.0140 0.1153 0.0131 0.1607 0.0132 
Platelet 0.1260 0.0148 0.1818 0.0164 0.2012 0.0179 0.2481 0.0139 
RBC 0.0818 0.0093 0.1101 0.0106 0.1586 0.0141 0.2119 0.0121 
SBP 0.0574 0.0063 0.0761 0.0095 0.1041 0.0070 0.1531 0.0096 
WBC 0.0778 0.0074 0.1078 0.0092 0.1286 0.0114 0.1994 0.0098 
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Supplementary Table 3. Observed trait heritability of five diseases in each cohort using LD score regression. 
Abbreviations are the same as in Supplementary Table 8. 
Trait 
 

BBJ UKBB 

Default LDSC 
S-LDSC 

(baselineLD v2.1) Default LDSC 
S-LDSC 

(baselineLD v2.1) 
Observed h2 SE Observed h2 SE Observed h2 SE Observed h2 SE 

AFib 0.0354 0.0098 0.0413 0.0062 0.0228 0.0039 0.0259 0.0055 
CRC 0.0056 0.0027 0.0095 0.0055 0.0040 0.0024 0.0087 0.0053 
Glaucoma 0.0075 0.0025 0.0212 0.0050 0.0121 0.0026 0.0180 0.0047 
RA 0.0086 0.0027 0.0212 0.0050 0.0076 0.0023 0.0147 0.0044 
T2D 0.0473 0.0050 0.0777 0.0077 0.0641 0.0046 0.1012 0.0073 

 
 
Supplementary Table 4. Liability-scale trait heritability of five diseases in each cohort using LD score regression. 
Abbreviations are the same as in Supplementary Table 8. 
Trait 
 

BBJ UKBB 

Default LDSC 
S-LDSC 

(baselineLD v2.1) Default LDSC 
S-LDSC 

(baselineLD v2.1) 
Liability-scale 
h2 SE 

Liability-scale 
h2 SE 

Liability-scale 
h2 SE 

Liability-scale 
h2 SE 

AFib 0.1036 0.0288 0.1210 0.0183 0.0668 0.0115 0.0758 0.0161 
CRC 0.0226 0.0108 0.0383 0.0222 0.0163 0.0097 0.0349 0.0214 
Glaucoma 0.0711 0.0234 0.2009 0.0471 0.1153 0.0248 0.1710 0.0447 
RA 0.0521 0.0163 0.1290 0.0304 0.0463 0.0139 0.0893 0.0270 
T2D 0.1120 0.0119 0.1840 0.0182 0.1517 0.0108 0.2396 0.0173 
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Supplementary Table 5. Trans-ethnic genetic correlation between BBJ and UKBB using Popcorn. ρge: trans-ethnic genetic 
effect correlation and ρgi: trans-ethnic genetic impact correlation as defined previously11. Abbreviations are the same as in 
Supplementary Tables 6 and 8. *For these three traits, we generated Popcorn estimates using regression rather than 
maximum likelihood (default), as the default approach produced unstable estimates for these (ρg=1, SE=0, and p=0). 
Trait ρge SE P ρgi SE P 
Basophil 0.5945 0.1221 0.0009 0.6409 0.1370 0.0088 
BMI 0.7474 0.0230 0.0 0.7237 0.0232 0.0 
DBP 0.8354 0.0509 0.0012 0.8100 0.0508 0.0002 
Eosinophil 0.9656 0.0707 0.6266 0.9483 0.0732 0.4800 
Hb* 0.9741 0.0878 0.7682 0.9449 0.0935 0.5561 
Height 0.6932 0.0172 0.0 0.6737 0.0172 0.0 
Ht* 0.9012 0.0789 0.2102 0.8924 0.0890 0.2264 
Lymphocyte 0.9777 0.0666 0.7380 0.9753 0.0747 0.7415 
MCH 0.9727 0.0547 0.6175 0.9555 0.0660 0.5001 
MCHC 0.9167 0.0910 0.3596 0.9195 0.1058 0.4469 
MCV 0.9565 0.0487 0.3722 0.9409 0.0572 0.3013 
Monocyte 0.9946 0.0788 0.9453 1.0000 0.0269 0.9999 
Neutrophil* 0.9328 0.0707 0.3417 0.9404 0.0722 0.4085 
Platelet 0.9068 0.0548 0.0891 0.8856 0.0532 0.0316 
RBC 0.9819 0.0475 0.7039 0.9759 0.0532 0.6505 
SBP 0.8469 0.0430 0.0004 0.8323 0.0445 0.0002 
WBC 0.8922 0.0402 0.0074 0.8941 0.0422 0.0120 
AFib 1.0000 0.0254 0.9999 0.9799 0.0955 0.8337 
CRC 0.7410 0.2771 0.3498 0.7741 0.2992 0.4503 
Glaucoma 0.8825 0.1826 0.5200 0.9149 0.2023 0.6740 
RA 0.7984 0.2031 0.3209 0.8024 0.2136 0.3550 
T2D 1.0000 0.0005 0.9931 1.0000 0.0309 0.9999 
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Supplementary Table 6. Number of total individuals overall, in BBJ and UKBB GWAS, and in the holdout target datasets 
for 17 quantitative traits. Clumps are independent loci with p < 0.01, which were computed using the plink, as described in the 
PRS methods above. Abbreviations are as follows: BMI = body mass index, DBP = diastolic blood pressure, Hb = hemoglobin, 
Ht = Hematocrit, MCH = mean corpuscular hemoglobin, MCHC = mean corpuscular hemoglobin concentration, MCV = mean 
corpuscular volume, RBC = red blood cell count, SBP = systolic blood pressure, WBC = white blood cell count. Ntarget describes 
the number of individuals used for cross-biobank PRS analyses in Figure 4. 
Trait Ntotal (BBJ) NGWAS (BBJ & UKBB) Ntarget (BBJ & UKBB) UKBB code # BBJ clumps # UKBB clumps 
Basophil 87665 82665 5000 30160 8939 8690 
BMI 155426 150426 5000 21001 19114 21339 
DBP 137991 132991 5000 4079 9865 14213 
Eosinophil 88675 83675 5000 30150 9266 13061 
Hb 144653 139653 5000 30020 10483 16184 
Height 156569 151569 5000 50 37216 31854 
Ht 144947 139947 5000 30030 10554 15408 
Lymphocyte 91157 86157 5000 30120 9400 13648 
MCH 121249 116249 5000 30050 12598 15222 
MCHC 128232 123232 5000 30060 10272 10074 
MCV 122912 117912 5000 30040 13169 16354 
Monocyte 90593 85593 5000 30130 10886 13452 
Neutrophil 79287 74287 5000 30140 9150 12211 
Platelet 140610 135610 5000 30080 14843 19259 
RBC 145426 140426 5000 30010 12467 18069 
SBP 137981 132981 5000 4080 11231 14562 
WBC 146158 141158 5000 30000 12664 17581 
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Supplementary Table 7. Numbers of individuals with a given ancestry in UK Biobank. Target individuals describes the 
numbers of individuals used in Figure 3. 
Super population Total Unrelated Target individuals Neale Lab GWAS 
EUR 447206 370407 5000 350326 
SAS 9950 9015 9015 0 
AFR 9288 8503 8503 0 
AMR 4724 4329 4329 1 
EAS 2421 2306 2306 0 
other 14788 12252 N/A 10867 
TOTAL 488377 406812 29153 361194 

 
 
Supplementary Table 8. Number of total cases and controls overall, in BBJ and UKBB GWAS, and in the holdout target 
datasets for five diseases. Clumps are independent loci with p < 0.01, which were computed using the plink, as described in 
the PRS methods above. Abbreviations are as follows: AFib = atrial fibrillation, CRC = colorectal cancer, RA = rheumatoid 
arthritis, T2D = type 2 diabetes. 
Trait Ncases 

(BBJ) 
Ncontrols 
(BBJ) 

Ncases 
(UKBB) 

Ncontrols 
(UKBB) 

NGWAS, 
cases 
(BBJ & 
UKBB) 

NGWAS, 
controls 
(BBJ & 
UKBB) 

Ntarget, 
cases 
(BBJ & 
UKBB) 

Ntarget, 
controls 
(BBJ & 
UKBB) 

# BBJ 
clumps 

# UKBB 
clumps 

AFib 8174 154407 12975 336589 7674 153907 500 500 8357 8957 
CRC 6691 154121 3961 338191 3461 153621 500 500 6795 8048 
Glaucoma 5122 164788 3883 351405 3383 164288 500 500 7304 8206 
RA 4024 165886 3797 323214 3297 165386 500 500 8014 8222 
T2D 36802 131404 15803 343663 15303 130904 500 500 10097 12293 
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Supplementary Table 9. Numbers of thalassemia and sickle cell ICD-10 codes reported 
across all UKBB individuals 
ICD-10 code Number of individuals 
D56 Thalassaemia 
D56.1 Beta thalassaemia 8 
D56.3 Thalassaemia trait 3 
D56.9 Thalassaemia, unspecified 2 
D57 Sickle-cell disorders 
D57.0 Sickle-cell anaemia with crisis 24 
D57.1 Sickle-cell anaemia without crisis 34 
D57.2 Double heterozygous sickling disorders 3 
D57.3 Sickle-cell trait 1 
D57.8 Other sickle-cell disorders 1 

 
 
 
 

 
Supplementary Figure 1. Average sample size per GWAS over time by population using 
GWAS catalog data. 
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Supplementary Figure 2. PRS accuracy for 17 quantitative traits under several p-value 
thresholds in BBJ. Abbreviations are as in Supplementary Table 6. Points indicate the R2 
for each p-value threshold and lines correspond to 95% confidence intervals computed via 
bootstrap. 
 

 
Supplementary Figure 3. PRS accuracy for 17 quantitative traits under several p-value 
thresholds in UKBB individuals of European descent. Abbreviations are as in 
Supplementary Table 6. Points indicate the R2 for each p-value threshold and lines 
correspond to 95% confidence intervals computed via bootstrap. 
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Supplementary Figure 4. PRS accuracy for 17 quantitative traits under several p-value 
thresholds in UKBB individuals of African descent. Abbreviations are as in 
Supplementary Table 6. Points indicate the R2 for each p-value threshold and lines 
correspond to 95% confidence intervals computed via bootstrap. 
 

 
Supplementary Figure 5. PRS accuracy for five diseases under several p-value 
thresholds in BBJ. Abbreviations are as in Supplementary Table 8. Points indicate the 
liability R2 for each p-value threshold and lines correspond to 95% confidence intervals 
computed via bootstrap. 
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Supplementary Figure 6. PRS accuracy for five diseases under several p-value 
thresholds in UKBB individuals of European descent. Abbreviations are as in 
Supplementary Table 8. Points indicate the liability R2 for each p-value threshold and lines 
correspond to 95% confidence intervals computed via bootstrap. 
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Supplementary Figure 7. Trans-ethnic genetic correlation among BBJ and UKBB 
samples using Popcorn. Abbreviations are as in Supplementary Tables 6 and 8. Results 
are as in Supplementary Table 5. Error bars indicate standard errors. *For these three traits, 
we generated Popcorn estimates using regression rather than maximum likelihood (default), as 
the default approach produced unstable estimates for these (ρg=1, SE=0, and p=0). 
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Supplementary Figure 8. Estimated observed heritability in BBJ and UKBB across 17 
quantitative traits using two LD score regression approaches. The first approach (left) is 
the default for LD score regression, which doesn’t include any stratification by functional 
categories, whereas the second approach (right) is the stratified LD score regression approach 
with the baseline LD model (v2.1) for each population. Abbreviations are as in Supplementary 
Table 6. Error bars indicate standard errors. 
 

 
Supplementary Figure 9. Estimated observed heritability in BBJ and UKBB across five 
diseases using two LD score regression approaches. Abbreviations are as in 
Supplementary Table 8. Error bars indicate standard errors. 
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Supplementary Figure 10. Estimated liability-scale heritability in BBJ and UKBB across 
five diseases using two LD score regression approaches. Abbreviations are as in 
Supplementary Table 8. Error bars indicate standard errors. 
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Supplementary Figure 11. PCA of African descent UK Biobank individuals used for 
prediction accuracy assessment in Figure 4. a) Map of Africa and approximate locations of 
reference panel individuals, including 1000 Genomes AFR populations (excluding ASW) and 
African Genome Variation Project (AGVP) populations. This map was created using open 
source data with R computing code. Three-letter abbreviations correspond to 1000 Genomes 
populations, as follows: GWD=Gambian in Western Divisions in the Gambia; MSL=Mende in 
Sierra Leone; YRI=Yoruba in Ibadan, Nigeria; ESN=Esan in Nigeria; LWK=Luhya in Webuye, 
Kenya; and ACB=African Caribbeans in Barbados. b-c) Reference panel individuals are 
plotted on top of UK Biobank Africans. The latter are shown in black circles, with a red outline if 
they were included in the PRS target samples in Figure 4 and a blue outline if they were 
excluded. Plots show PCA using 1000 Genomes AFR + AGVP as reference individuals, and 
projecting UKBB African individuals into this PCA space for PC1 vs PC2 (b) and PC3 vs PC4 
(c). 
 



 20 

 
Supplementary Figure 12. Prediction accuracy in UKBB in different populations for 17 
phenotypes. The best predictors among 5 p-value thresholds (Supplementary Note) are 
shown for each population. Abbreviations are as in Supplementary Table 6. Points indicate 
the R2 for each p-value threshold and lines correspond to 95% confidence intervals computed 
via bootstrap. 
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Supplementary Figure 13. Empirical comparison of phenotypic variance explained 
across populations using polygenic scores computed with European GWAS. All GWAS 
studies included here were conducted in European ancestry populations, with PRS calculated 
and evaluated in independent European, East Asian, and African American target cohorts. The 
European study biases result in the highest prediction accuracies in independent European 
cohorts, followed by declining accuracy with increased genetic divergence from Europe. a) 
Proportion of variance explained in each of the original studies. b) Relative proportion of 
variance explained in each population with respect to an independent European target 
population in each study. The diminished proportion of variance explained in East Asian and 
African American populations relative to Europeans is remarkably consistent despite differing 
genetic architectures, prediction methods, and accuracy metrics due to similar population 
histories within these cohorts. BMI = body mass index, EA = educational attainment, and SCZ 
= schizophrenia. Colors show the same populations in a) and b). 
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