
Limestone: Tensor Overview

Tensor Preliminaries

Figure 1: A third-order (or 3-mode) tensor of size 3 × 3 × 2 with the tensor
elements shown on the right side.

A tensor is a generalization of the matrix to multiway arrays. The number
of dimensions of a tensor is known as the order or mode of the tensor. Figure
1 illustrates an example of a third-order (or 3-mode) tensor X with the
modes 1, 2, and 3. Element (a, b, c) of X is denoted by xabc; e.g. x2,3,2 = 17,
x3,1,1 = 3, and x2,2,1 = 5. For the rest of the paper, vectors (first-order
tensors) are denoted by lowercase boldface letters (x), matrices (second-order
tensors) by uppercase boldface letters (X), and higher-order (order three or
higher) tensors by Euler boldface letters (X ).

Slices are two-dimensional sections of a tensor, defined by fixing all but
two modes. Figure 1 shows the two slices obtained from fixing modes 1 and
2.

The tensor X can be unfolded (or flattened) into a matrix, which reorders
the tensor elements into a matrix. X(n) symbolizes the mode-n matriciza-
tion. “Although matricization is conceptually simple, the formal notation is
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clunky” [1]. Thus, to orient the reader we provide the three mode-n matrices
for our example tensor (Figure 1).

X(1) =

⎡
⎣1 4 7 10 13 16

2 5 8 11 14 17
3 6 9 12 15 18

⎤
⎦

X(2) =

⎡
⎣1 2 3 10 11 12

4 5 6 13 14 15
7 8 9 16 17 18

⎤
⎦

X(3) =

[
1 2 3 4 5 6 7 8 9
10 11 12 13 14 15 16 17 18

]

Matrix Algebra

Here we detail the matrix algebra used in the paper.

Definition 1. The outer product of N vectors, a(1) ◦a(2) ◦ · · ·◦a(N), produces
a N th order tensor X where each element x�i = xi1,i2,··· ,iN = a

(1)
i1

a
(2)
i2

· · · a(N)
iN

.

Definition 2. The element-wise multiplication (and division) of two same-
sized matrices A∗B (A�B) produces a matrix Z of the same size such that
the element c�i = a�ib�i (c�i = a�i/b�i) for all �i.

Definition 3. The Khatri-Rao product of two matrices A�B of sizes IA×R
and IB × R respectively, produces a matrix Z of size IAIB × R such that
Z =

[
a1 ⊗ b1 · · · aR ⊗ bR

]
, where ⊗ represents the Kronecker product.

The Kronecker product of two vectors a ⊗ b =

⎡
⎢⎢⎢⎣

a1b
a2b
...

aIA
b

⎤
⎥⎥⎥⎦.

Tensor Factorization

Tensor factorization or decomposition is a natural extension of matrix
factorization and utilizes information from the multiway structure that is
lost when modes are collapsed to use matrix factorization algorithms [2, 3, 4].
The two common tensor decompositions, CANDECOMP / PARAFAC [5, 6]
and Tucker [7], are considered higher-order generalizations of singular value
decomposition and PCA [1].
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Figure 2: CANDECOMP/PARAFAC tensor decomposition

The CANDECOMP / PARAFAC (CP) model approximates the original
tensor X as a sum of R rank-one tensors

X ≈
R∑

r=1

λra
(1)
r ◦ . . . ◦ a(N)

r

= λ;A(1); . . . ;A(n) .

Note that λ;A(1); . . . ;A(n) is shorthand notation to describe the CP de-

composition, where λ is a vector of the weights λr and a
(n)
r is the rth column

of A(n) .
The Tucker model decomposes a tensor into a core tensor G multiplied

by a factor matrix U(n) along each mode

X ≈
J1∑

j1=1

. . .

JN∑
jN=1

gj1...jN
(u

(1)
j1

◦ . . . ◦ u
(N)
jN

)

= G ×1 U(1) ×2 . . . ×N U(N)

= G;U(1); . . . ;U(N) .

The Tucker decomposition model is shown in Figure 3. Thus, CP is a special
case of Tucker, where the size of each factor matrix has the same column
dimension (J1 = J2 = . . . = JN) and the core tensor is superdiagonal [1].
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Figure 3: Tucker tensor decomposition
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