Limestone: Tensor Overview

Tensor Preliminaries

Figure 1: A third-order (or 3-mode) tensor of size 3 x 3 x 2 with the tensor
elements shown on the right side.

A tensor is a generalization of the matrix to multiway arrays. The number
of dimensions of a tensor is known as the order or mode of the tensor. Figure
1 illustrates an example of a third-order (or 3-mode) tensor X with the
modes 1,2, and 3. Element (a,b, c) of X is denoted by Zape; €.g. T232 = 17,
311 = 3, and @951 = 5. For the rest of the paper, vectors (first-order
tensors) are denoted by lowercase boldface letters (x), matrices (second-order
tensors) by uppercase boldface letters (X), and higher-order (order three or
higher) tensors by Euler boldface letters (X).

Slices are two-dimensional sections of a tensor, defined by fixing all but
two modes. Figure 1 shows the two slices obtained from fixing modes 1 and
2.

The tensor X can be unfolded (or flattened) into a matrix, which reorders
the tensor elements into a matrix. X,y symbolizes the mode-n matriciza-
tion. “Although matricization is conceptually simple, the formal notation is



clunky” [1]. Thus, to orient the reader we provide the three mode-n matrices
for our example tensor (Figure 1).

(1 4 7 10 13 16]

Xpy=[2 58 11 14 17

3 6 9 12 15 18]

(1 2 3 10 11 12]

X =4 56 13 14 15

7 8 9 16 17 18]
X1 2 3 45 6 7 89
B 710 11 12 13 14 15 16 17 18

Matrix Algebra
Here we detail the matrix algebra used in the paper.

Definition 1. The outer product of N vectors, a oa®o- . -0(33(]\?3 pmd(uc)es
1) (2 N

a Nth order tensor X where each element x; = Tiy iy ... iy = ;) =+~ a; .
Definition 2. The element-wise multiplication (and division) of two same-
sized matrices AxB (A @B) produces a matriz Z of the same size such that
the element c; = azby (c; = az/bz) for all i.

Definition 3. The Khatri-Rao product of two matrices A©B of sizes I4 X R
and Ig x R respectively, produces a matriz Z of size Ialgp X R such that
Z = [al ®b; - ap® bR}, where ® represents the Kronecker product.
alb
(lzb
The Kronecker product of two vectors a®@ b = .
CL[Ab

Tensor Factorization

Tensor factorization or decomposition is a natural extension of matrix
factorization and utilizes information from the multiway structure that is
lost when modes are collapsed to use matrix factorization algorithms [2, 3, 4].
The two common tensor decompositions, CANDECOMP / PARAFAC [5, 6]
and Tucker [7], are considered higher-order generalizations of singular value
decomposition and PCA [1].
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Figure 2: CANDECOMP /PARAFAC tensor decomposition

The CANDECOMP / PARAFAC (CP) model approximates the original
tensor X as a sum of R rank-one tensors

R
X%Z/\Tas,l)o...oaq(}v)
r=1
= )\;A(l);...;A(") )

Note that X; AM: ... A®™ is shorthand notation to describe the CP de-
composition, where X is a vector of the weights A, and al™ is the rth column

of A
The Tucker model decomposes a tensor into a core tensor G multiplied
by a factor matrix U™ along each mode

J1 JINn
1 N
X ~ Z .. Z gjl---jN<U’§'1) 0...0 ug-N))

Jji=1 Jn=1
= g XlU(l) Xog oo XNU(N)
= g;uW.. .., U™
The Tucker decomposition model is shown in Figure 3. Thus, CP is a special

case of Tucker, where the size of each factor matrix has the same column
dimension (J; = J; = ... = Jy) and the core tensor is superdiagonal [1].
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Figure 3: Tucker tensor decomposition
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