Stem Cell Reports, Volume 12

Supplemental Information

Therapeutic Regeneration of Lymphatic and Immune Cell Functions

upon Lympho-organoid Transplantation

Elisa Lenti, Silvia Bianchessi, Steven T. Proulx, Maria Teresa Palano, Luca Genovese, Laura Raccosta, Antonello Spinelli, Denise Drago, Annapaola Andolfo, Massimo Alfano, Tatiana V. Petrova, Sylvain Mukenge, Vincenzo Russo, and Andrea Brendolan

SUPPLEMENTAL EXPERIMENTAL PROCEDURES

Transplantation under kidney capsule and at axillary/popliteal region

Pre-LOs were kept on ice and transplanted in vivo. The transplantation at the renal subcapsular space of the right kidney of anesthetized C57BL/6 mice was performed as previously described Three-four weeks later, LOs were harvested, fixed and stained for immunofluorescence analysis (Suematsu and Watanabe, 2004). For pre-LOs transplantation at axillary region: C57BL6/N were anesthetized and intradermal injection of 3% Evans blue solution (Sigma) into the palmar side of the forelimb footpad was performed to detect LNs. Then axillary/brachial LNs were resected within a small portion of the surrounding fat pad and of the lymphatic vessels. Immediately after the LNs removal, LOs were transferred or not at site of resection, and LOs were kept at the site by closing the fat pad pocket with suture. For sham-operated mice, skin was opened and immediately sutured. Two months after, lymphatic drainage analysis through in vivo planar optical and µCT imaging was performed. For pre-LOs transplantation at popliteal region: C57BL6/ and Prox1-mOrange mice were anesthetized, popliteal LNs (LN) were resected and pre-LOs were transferred or not at site of resection. As for transplantation at axillary region, LOs were kept inside the fat pad pocket with suture, and in sham-operated mice skin was opened and immediately sutured. One month after, lymphatic perfusion analysis was performed, then LOs were collected, fixed and analysed by immunofluorescence staining.

Immunohistochemistry, immunofluorescence and confocal analyses of LOs

Pre-LOs and LOs after 3-4 weeks from transplantation were harvested and fixed 5 minutes at 4°C with 4% (wt/vol) PFA (Sigma-Aldrich), then washed in PBS 1X and dehydrated overnight in 30% sucrose (Sigma-Aldrich) at 4°C. Samples were embedded in Tissue-Tek OCT compound (Bio-Optica) and frozen in an ethanol dry-ice bath. Eight- to ten-micrometer-thick sections were placed onto glass slides (Bio-Optica), fixed in cold acetone for 5 minutes, dried, and kept at -80° C until used. Slices were incubated 30 minutes with a blocking solution of PBS at 0.5% FBS and 0.05% Tween (PBS-T), followed by anti-CD3 (PE hamster IgG1 κ ; 130-102-792, clone 145-2C11; 1:300 stock 30µg/ml; Miltenyi), anti-CD45R/B220 (biotin rat IgG2a, κ ; 553085, clone RA3-6B2; 1:100 stock 0.5 mg/ml; BD), anti-CD31/PECAM-1 (PE rat IgG2a; 553373, clone MEC 13.3; 1:100 stock 0.2 µg/µl; BD), anti-LYVE-1 (rabbit IgG; NB600-1008; 1:600 stock 1 mg/ml; Novusbio), anti-RFP (rabbit IgG; 600-401-379; 1:600 stock 1.1mg/ml; Rockland), anti-GFP (chicken IgG; ab13970; 1:250 stock 10mg/ml; Abcam), anti-CD35 (biotin rat IgG2a, κ ; 553816, clone 8C12; 1:100 stock 0.5 mg/ml; BD) and anti-COLL-IV alpha 1 (rabbit IgG; NB120-6586; 1:500 stock 1 mg/ml; Novusbio) specific antibodies diluted in PBS-T blocking solution. Secondary anti-rabbit Alexa

Fluor 488 (1:250 stock 2 μ g/ μ l; A21206; Invitrogen), anti-rabbit Alexa Fluor 647 (1:250 stock 2 μ g/ μ l; A31573; Invitrogen), anti-rat Alexa Fluor 546 (1:250 stock 2 μ g/ μ l; A11081; Invitrogen), anti-chicken Alexa Fluor 488 (1:250 stock 2 μ g/ μ l; A11039; Invitrogen), anti-rabbit Alexa Fluor 546 (1:250 stock 2 μ g/ μ l; S11223; Invitrogen), was diluted in PBS-T blocking solution and incubated for 30 minutes. Nuclei were visualized with DAPI (Fluka) and mounting was performed with Mowiol (Calbiochem). Images were acquired using an Ultraview Leica TCS SP8 laser confocal microscope and Zeiss AxioObserver.Z1. Digital images were recorded in separately scanned channels with no overlap in detection of emission from the respective fluorochromes. Final image processing was performed with Adobe Photoshop and Illustrator and minimal contrast and luminosity adjustment.

In vivo planar, 3D and μ CT optical imaging

In vivo planar (2D) fluorescence imaging (FLI) was performed using an IVIS SpectrumCT imaging system (Perkin Elmer). The system is equipped with a low noise, back-thinned, back-illuminated CCD camera cooled at -90 °C. Each mouse was s.c injected with 5µl of 20µM P20D800 lymphatic tracer at dorsal paw immediately prior to FLI (see Figure 2a). Dynamic FLI was performed by acquiring a set of images every 2 minutes from 0 to 10 minutes after tracer injection to detect the maximum FLI signal in the LNs region. The images were obtained using the following IVIS settings: exposure time=auto, binning=8, f=1 and a field of view equal to 12 cm (field C). Excitation/Emission=745/840 filters were used for epi-illumination FLI acquisitions. During image acquisition, the animals were kept at 37 °C and under inhalation anaesthesia (2–3% isoflurane and 1 l/min O₂). FLI images were acquired and analysed using Living Image 4.5 (Perkin Elmer). ROI values were processed using GraphPad Prism 5 (GraphPad Software Inc.).

In vivo μ CT imaging was performed using the IVIS SpectrumCT, μ CT images were acquired without any contrast medium, with the following parameters: x-ray tube voltage=50 kV, tube current=1 mA, x-ray focal spot size=50 μ m. The μ CT images calibrated in Hounsfield unit (HU) were reconstructed with a voxel size of 75 μ m³. Tomographic fluorescence imaging (FLIT) was performed 10min after P20D800 injection (immediately after the last FLI image) using transillumination with the same acquisition parameters used for epi-illumination and the reconstructed 3D images were fused with μ CT images using Living Image 4.5.

Perfusion analysis of popliteal collecting lymphatic vessels

Assessment of the perfusion of lower limb collecting lymphatic vasculature using NIR fluorescence imaging was performed as previously described (Proulx et al., 2017). In brief, a Zeiss StereoLumar.V12 microscope adapted for sensitivity in NIR wavelengths was used to acquire videos to assess lymphatic perfusion during injection of 5µl of 20µM P20D680 into the dorsal skin of the rear paw. Videos were recorded for 3 min and were subsequently scored for perfusion of tracer to the afferent collecting lymphatic vessels entering the popliteal region, the efferent collecting lymphatic vessels exiting the popliteal region and within the sacral LNs. To score the perfusion of AV, EV and saLN, all the recorded videos were watched and all parameters evaluated separately; a positive score was assigned when the perfusion with the dye was observed. If backflow of tracer to the dermal lymphatic vessels near the paw was observed this was also recorded. For lymphatic perfusion experiments, Prox1-mOrange2 mice were anesthetized and injected with 5µl of 8µg/µl dextran-FITC (cat.no. FD2000S, Sigma) into the dorsal skin of the rear paw. Images were acquired using Zeiss Axio Zoom V16 fluorescence microscope, recorded in separately scanned channels with no overlap in detection of emission from the respective fluorochromes. Final image processing was performed with Adobe Photoshop and Illustrator and minimal contrast and luminosity adjustment.

SEM

b

Imaging perfusion: Scheme of analysis and videos recording steps.

Imaging perfusion: LO transplanted

Imaging perfusion: CTRL (popLN resected)

To score the perfusion of AV, EV and saLN, all the recorded videos were watched and all parameters evaluated separately. A positive score was assigned when the perfusion with the dye was observed. For quantification analysis of saLN perfusion, a positive score was assigned if the saLN was perfused by the NIR dye. If backflow of tracer to the dermal lymphatic vessels near the paw was observed this was also recorded.

Supplemental Figure 1. ECM-based scaffold supports cell adhesion, Related to Figure 1

a) Scheme for generating ECM within 10 days. Vitamin C was added to the culture every two days and then decellularized at day 10.

b) Representative confocal images of Lectin-PNA staining of dECM.

c) Representative bright field, confocal images (upper panel), and scanning electron microscopy (lower panel) of dECM with stromal progenitor cells. DAPI staining indicate nuclei; yellow arrows indicate glycosaminoglycan aggregates. Scale bars = 25um (bright field and DAPI), 100uM and 3uM (SEM=scanning electron microscopy).

Supplemental Figure 2. Phenotypic characterization of LN stromal progenitors, Related to Figure 1.

Representative FACS plot analysis of primary stromal progenitors obtained from neonatal mesenteric LNs before (Day 0) and after (Day 10) ex vivo expansion. Antibodies against CD45, GP38, PDGFR-a and PECAM-1 were used to assess phenotype of cells.

Supplemental Figure 3. Scheme of imaging analysis and videos recording, Related to Figure 3.

To score the perfusion of AV, EV and saLN, all the recorded videos were watched and all parameters evaluated separately. A positive score was assigned when the perfusion with the dye was observed. For quantification analysis of saLN perfusion, a positive score was assigned if the saLN was perfused by the NIR dye. If backflow of tracer to the dermal lymphatic vessels near the paw was observed this was also recorded.

	•			
Proteins common between		Proteins present in	Proteins present in dECM	
dSPL and dECM		dSPL only	only	
Name	Name	Name	Name	
WISP2	LOXL1	СОСН	FBLN2	
EMILIN2	TGM2	FGA	PCOLCE	
FN1	LOX	FGG	EFEMP2	
TNC	ADAMTSL4	LAMA2	TSKU	
TGFBI	P4HA1	LAMA4	VCAN	
FGB	SERPINH1	LAMB1	COL4A5	
TINAGL1	CTSB	LTBP4	COL4A6	
FBLN5	LGALS1	MMRN1	P4HA2	
NID1	LGALS3	SBSPON	CTSL	
AGRN	COLEC12	THBS1	PLOD3	
EFEMP1	ANXA2	DPT	SERPINF1	
MATN2	ANXA5	FGL2	ANXA1	
EMILIN1	LGALS9	LTBP2	ANGPTL4	
FBN1	MFGE8	MFAP4	NGF	
POSTN	S100A4	MFAP5	S100A6	
LAMB2	ANGPTL2	VTN		
LAMC1	HCFC1	VWA1		
LAMA5	PLXNB2	LUM		
TNXB		OGN		
NID2		COL15A1		
ASPN		COL6A4		
HSPG2		COL6A5		
DCN		COL6A6		
PRELP		ITIH1		
BGN		ITIH2		
COL3A1		SERPINA1C;1A		
COL5A3		CTSG		
COL18A1		ELANE		
COL14A1		SERPINA1B		
COL12A1		SERPINA1D		
COL5A1		SERPINA1E		
COL16A1		SERPINA3K		
COL1A1		ANXA7		
COL5A2		LMAN1		
COL1A2		PF4		
COL6A3		IL16		
COL4A1		S100A10		
COL6A2		S100A13		
COL6A1		S100A9		
COL4A2		TGFB1		
		· • • • • •		

Table 1. List of proteins resulted from mass-spectrometry analysis List of total proteins in dSPL and dECM common to mouse matrisome

Glycoproteins
Proteoglycans
Collagens
ECM Regulators
ECM Affiliated
Secreted factors

Proteins comm	on between dSPI	Dr
and	dFCM	
Name	Name	
WISP2	LOXL1	COCI
EMILIN2	TGM2	FGA
FN1	LGALS1	FGG
TNC	MFGE8	LAMA
TGFBI		LAMA
FGB		LAME
TINAGL1		LTBP
FBLN5		MMR
NID1		SBSF
AGRN		THBS
ASPN		COL1
HSPG2		COLE
DCN		COLE
COL3A1		COLE
COL5A3		ITIH1
COL18A1		ITIH2
COL14A1		SERF
COL12A1		PF4

Proteins present in dSPL only
Name
СОСН
FGA
FGG
LAMA2
LAMA4
LAMB1
LTBP4
MMRN1
SBSPON
THBS1
COL15A1
COL6A4
COL6A5
COL6A6
ITIH1
ITIH2
SERPINA1C;1A
PF4

Proteins present in dECM only		
Name		
FBLN2		
PCOLCE		
P4HA2		
ANXA1		
ANGPTL4		

Not statistically significant (p>0.01) between dSPL vs dECM							
Proteins common between dSPL		Proteins present in			Proteins present in		
and dECM			dSPL only		dECM only		
Name	Name		Name		Name		
EFEMP1	LOX		DPT		EFEMP2		
MATN2	ADAMTSL4		FGL2		TSKU		
EMILIN1	P4HA1		LTBP2		VCAN		
FBN1	SERPINH1		MFAP4		COL4A5		
POSTN	CTSB		MFAP5		COL4A6		
LAMB2	LGALS3		VTN		CTSL		
LAMC1	COLEC12		VWA1		PLOD3		
LAMA5	ANXA2		LUM		SERPINF1		
TNXB	ANXA5		OGN		NGF		
NID2	LGALS9		CTSG		S100A6		
PRELP	S100A4		ELANE				
BGN	ANGPTL2		SERPINA1B				
COL5A1	HCFC1		SERPINA1D				
COL16A1	PLXNB2		SERPINA1E				
COL1A1			SERPINA3K				
COL5A2			ANXA7				
COL1A2			LMAN1				
COL6A3			IL16				
COL4A1			S100A10				
COL6A2			S100A13				
COL6A1			S100A9				
COL4A2			TGFB1				

Glycoproteins
Proteoglycans
Collagens
ECM Regulators
ECM Affiliated
Secreted factors

-