# **Supporting Information Part A**

## Preparation of Chiral Allenes through Pd-Catalyzed Intermolecular Hydroamination of Conjugated Enynes: Enantioselective Synthesis Enabled by Catalyst Design

Nathan J. Adamson, Haleh Jeddi, and Steven J. Malcolmson\*

Department of Chemistry, Duke University Durham, North Carolina 27708 USA

E-mail: steven.malcolmson@duke.edu

## **Table of Contents**

| I.   | General Information                           | 1  |
|------|-----------------------------------------------|----|
| II.  | Supplemental Screening Data                   | 5  |
| III. | Ligand Synthesis                              | 9  |
| IV.  | Pd Complex Synthesis                          | 15 |
| V.   | Substrate Synthesis                           | 16 |
| VI.  | Substrate Scope                               | 25 |
| VII. | Supplemental Substrate Screening              | 60 |
| VIII | I. Stereoproof                                | 63 |
| IX.  | Transamination/Reaction Reversibility Studies | 65 |
| X.   | Enantiomerization Kinetic Studies             | 68 |
| XI.  | Deuterium Labeling Studies                    | 73 |
| XII. | Allylic Substitution Experiments              | 74 |
| XIII | I. Derivatization of Allene Products          | 77 |
| XIV  | 7. References                                 | 80 |

#### I. General Information

**General Procedures.** All reactions were carried out in oven- (120 °C) or flame-dried glassware under an inert atmosphere of dry N<sub>2</sub> unless otherwise noted. Oven-dried (60 °C or 120 °C) stainless steel cannulas and/or glass syringes (or N<sub>2</sub>-flushed plastic syringes) were used for reagent transfer. Organic solutions were concentrated under reduced pressure using a rotary evaporator (Büchi). Flash column chromatography was performed using SiliCycle SiliaFlash<sup>®</sup> P60 Silica Gel.

## Reagents.

Reagents purchased and used as received acetyl chloride (Sigma-Aldrich) allyl palladium chloride dimer (Strem) azepane (Sigma-Aldrich) benzofuran-2-carbaldehyde (Beantown) benzophenone imine (Chem-Impex) bis[rhodium( $\alpha, \alpha, \alpha', \alpha'$ -tetramethyl-1,3-benzenedipropionic acid)] (Rh<sub>2</sub>(esp)<sub>2</sub>, Sigma-Aldrich) 2-bromobenzovl chloride (Oakwood) 1-bromo-4-ethynylbenzene (Matrix) (*Z*)-1-bromo-1-propene (Sigma-Aldrich) 2-bromopropene (Beantown) 2-bromo-3,3,3-trifluoro-1-propene (Alfa Aesar) *tert*-butyl(ethynyl)dimethylsilane (TCI) *n*-butyllithium (2.0 M in cyclohexane or 2.5 M in hexanes, Sigma-Aldrich) *t*-butyllithium (1.7 M in pentane, Sigma-Aldrich) citric acid (Fisher) copper (I) Iodide (Strem) cyclohexylacetylene (Alfa Aesar) cyclohexylamine (Sigma-Aldrich) diisoproyl azodicarboxylate (Alfa Aesar) (S)-N, $\alpha$ -dimethylbenzylamine (Acros) 1-dodecyne (Beantown) 4-ethynylaniline (Chem-Impex) 4-ethynylanisole (TCI) 2-ethynyltoluene (Sigma-Aldrich) 3-ethynyltoluene (Alfa Aesar) 1-ethynyl-4-(trifluoromethyl)benzene (TCI) ferrocene carboxylic acid (Chem-Impex) indoline (Acros) L-tert-leucinol (TCI) methanesulfonyl chloride (Alfa Aesar) *N*-methylbenzylamine (Sigma-Aldrich) methyl 4-ethynylbenzoate (Sigma-Aldrich) 1-methylpiperazine (TCI) (*R*)-2-methylpyrrolidine (Alfa Aesar) morpholine (Sigma-Aldrich) oxalyl chloride (Alfa Aesar) 4-pentyn-1-ol (Alfa Aesar) phenylacetylene (Alfa Aesar) 4-phenyl-1-butyne (Acros) piperidine (Sigma-Aldrich) 4-piperidone ethylene ketal (Alfa Aesar) *N*-propargylphthalimide (Alfa Aesar) *n*-propylamine (Alfa Aesar) pyridine (Alfa Aesar)

pyrrolidine (Sigma-Aldrich) silver tetrafluoroborate (Strem) sodium tetrafluoroborate (Acros) 1,2,3,4-tetrahydroquinoline (Alfa Aesar) Tetrabutylammonium fluoride (1.0 M in THF, Sigma-Aldrich) tetrakis[(R)-(-)-[(1R)-1-(4-bromophenyl)-2,2-diphenylcyclopropanecarboxylato]dirhodium(II) (Rh<sub>2</sub>(*R*-BTPCP)<sub>4</sub>, Strem) tetrakis[(R)-(+)-N-(p-dodecylphenylsulfonyl)prolinato]dirhodium(II) (Rh<sub>2</sub>(*R*-DOSP)<sub>4</sub>, Strem) tetrakis[(S)-(+)-(1-adamantyl)-(N-phthalimido)acetato]dirhodium(II) (Rh<sub>2</sub>(S-PTAD)<sub>4</sub>, Strem) tetrakis[5-t-butyl-phthaloyl-N-(S)-tert-leucinato]dirhodium (Rh<sub>2</sub>(S-tert-PTTL)<sub>4</sub>, Strem) tetrakis(triphenylphosphine)palladium(0) (Strem) *p*-toluenesulfonyl chloride (Alfa Aesar) trimethylsilylacetylene (Chem-Impex) vinvl bromide (1.0 M in THF, Sigma-Aldrich) Ligands purchased and used as received (R)-2,2'-bis[bis(3,5-trifluoromethylphenyl)phosphino]-4,4',6,6'-tetramethoxybiphenyl (R-BTFM-Garphos, Alfa Aesar) (S,S)-2,3-bis(*tert*-butylmethylphosphino)quinoxaline (S,S-QuinoxP<sup>\*</sup>, Strem) (-)-1,2-bis((2S,5S)-2,5-dimethylphospholano)ethane (S,S-Me-BPE, Alfa Aesar) (±)-2,2'-bis(diphenylphosphino)-1,1'-binaphthalene (*rac*-BINAP, Chem-Impex) (*R*)-2,2'-bis(diphenylphosphino)-1,1'-binaphthalene (*R*-BINAP, Alfa Aesar) 1,4-bis(diphenylphosphino)butane (dppb, Alfa Aesar) 4,5-bis(diphenylphosphino)-9,9-dimethylxanthene (xantphos, Strem) (+)-1,2-bis((2R,5R)-2,5-diphenylphospholano)ethane (S,S-Ph-BPE, Strem) (2S,4S)-2,4-bis(diphenylphosphino)pentane (S,S-BDPP, Strem) 1,3-bis(diphenylphosphino)propane (dppp, Sigma-Aldrich)  $(R_P)$ -1-[(R)-|A-(Dimethylamino)-2-(diphenylphosphino)benzyl]-2-diphenylphosphinoferrocene  $(R_P)$ -1-[(R)-|A-(Dimethylamino)-2-(diphenylphosphino)benzyl]-2-diphenylphosphinoferrocene ((R,R)-taniaphos, Strem) (R)-1-[ $(S_P)$ -2-(diphenylphosphino)ferrocenyl]ethyldicyclohexylphosphine (R,S-josiphos, Strem) ethylenebis(diphenylphosphine) (dppe, Strem) 1,1'-ferrocenediyl-bis(diphenylphosphine) (dppf, Sigma-Aldrich) (oxydi-2,1-phenylene)bis(diphenylphosphine) (DPEphos, Strem) triphenylphosphine (Alfa Aesar) Reagents distilled from CaH<sub>2</sub>

diethylamine (Beantown)

1,2,3,4-tetrahydroisoquinoline (THIQ, Sigma-Aldrich)

tetramethylethylenediamine (TMEDA, Alfa Aesar)

triethylamine (Sigma-Aldrich)

The following alkynes were prepared by a previously described route through Sonogashira coupling of the corresponding aryl halides with trimethylsilylacetylene followed by deprotection.<sup>1</sup> 4-ethynylbenzaldehyde 3-ethynylbenzonitrile

2-ethynylnaphthalene
2-ethynylphenol
3-ethynylpyridine
2-ethynylbenzofuran was prepared by a Corey-Fuchs reaction from the corresponding aldehyde as previously described.<sup>2</sup>

Other reagents prepared by previously described methods 2-bromooct-1-ene<sup>3</sup> (1-bromovinyl)cyclohexane<sup>3</sup> chlorobis(perfluorophenyl)phosphane<sup>4</sup> methyl 2-diazo-2-phenylacetate<sup>5</sup> sodium tetrakis[3,5-bis(trifluoromethyl)phenyl]borate (NaBAr<sub>4</sub><sup>F</sup>)<sup>6</sup>

**Solvents.** Solvents were sparged with dry  $N_2$  and purified under a positive pressure of dry  $N_2$  by an Innovative Technologies PureSolve solvent purification system: tetrahydrofuran (Sigma-Aldrich), dichloromethane (Sigma-Aldrich), toluene (Sigma-Aldrich), and diethyl ether (Sigma-Aldrich) were passed through two consecutive alumina columns. Hexanes (Fisher) and ethyl acetate (Fisher) were used for flash column chromatography and used as received. HPLC-grade hexanes (Sigma-Aldrich), isopropanol (Sigma-Aldrich), acetonitrile (Fischer), and methanol (Sigma-Aldrich) were used as received.

Instrumentation. <sup>1</sup>H NMR spectra were recorded on a Varian INOVA (400 MHz) or a Bruker (500 MHz) spectrometer. Chemical shifts are reported in ppm from tetramethylsilane with the solvent resonance resulting from incomplete deuteration as the internal reference (CDCl<sub>3</sub>:  $\delta$  7.24, CD<sub>3</sub>OD:  $\delta$  3.29). Data are reported as follows: chemical shift, integration, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, br = broad, m = multiplet, app. = apparent), coupling constant(s) (Hz). <sup>13</sup>C NMR spectra were recorded on a Varian/Agilent VNMRS (500 MHz) or a Bruker (500 MHz) spectrometer with complete proton decoupling. Chemical shifts are reported in ppm from tetramethylsilane with the solvent resonance as the internal reference (CDCl<sub>3</sub>:  $\delta$  77.07, CD<sub>3</sub>OD:  $\delta$ 47.6, DMSO-d<sub>6</sub>:  $\delta$  40.0). <sup>19</sup>F NMR spectra were recorded on a Varian INOVA (400 MHz) spectrometer. <sup>31</sup>P NMR spectra were recorded on a Varian INOVA (400 MHz) spectrometer. Enantiomer ratios (er) were determined by HPLC (Phenomenex<sup>TM</sup> Lux<sup>®</sup> Cellulose-3, Amylose-1, or Chiralpak 1A-3) in comparison with authentic racemic materials on a Shimadzu Prominence Modular HPLC. High-resolution mass spectrometry was performed on an Agilent (1200 Series) LCMS-TOF-DART at the Duke University Mass Spectrometry Facility. Elemental Analysis was performed at Atlantic Microlab. Specific rotation values were recorded on a Rudolph Autopol IV Polarimeter. Melting points were measured on an Electrothermal MelTemp<sup>®</sup> capillary melting point apparatus and are uncorrected. Infrared (IR) spectra were collected on a Nicolet 6700 FT-IR spectrometer,  $v_{max}$  in cm<sup>-1</sup>. Bands are characterized as broad (br), strong (s), medium (m), or weak (w).

## II. Supplemental Screening Data

|   |                 | $\begin{array}{c} 2.5 \text{ mol}\% [Pd(\eta^3-\text{allyl})Cl]_2 \\ 5 \text{ mol}\% \text{ Ligand} \\ +/- 6 \text{ mol}\% \text{ additive} \\ +/- Et_3N \\ CH_2Cl_2, 22 ^\circ C, 3 \text{ h} \end{array} \qquad \begin{array}{c} Ph & & & & \\ Ph & & & & \\ \hline & & & & \\ \hline & & & & \\ \hline & & & &$ |                        |                         |                           |  |
|---|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-------------------------|---------------------------|--|
| _ | entry           | Ligand ac                                                                                                                                                                                                                                                                                                          | ditive (6 mol%)        | base (equiv)            | yield 2a (%) <sup>b</sup> |  |
|   | 1               | none                                                                                                                                                                                                                                                                                                               | none                   | none                    | 0                         |  |
|   | 2               | DPEphos                                                                                                                                                                                                                                                                                                            | none                   | none                    | 29                        |  |
|   | 3               | DPEphos                                                                                                                                                                                                                                                                                                            | NaBAr <sub>4</sub> F   | none                    | 84                        |  |
|   | 4               | Xantphos                                                                                                                                                                                                                                                                                                           | NaBAr <sub>4</sub> F   | none                    | 83                        |  |
|   | 5               | rac-BINAP                                                                                                                                                                                                                                                                                                          | NaBAr <sub>4</sub> F   | none                    | 46                        |  |
|   | 6               | dppf                                                                                                                                                                                                                                                                                                               | NaBAr <sub>4</sub> F   | none                    | 63                        |  |
|   | 7               | dppe                                                                                                                                                                                                                                                                                                               | NaBAr <sub>4</sub> F   | none                    | 14                        |  |
|   | 8               | dppp                                                                                                                                                                                                                                                                                                               | NaBAr <sub>4</sub> F   | none                    | 44                        |  |
|   | 9               | dppb                                                                                                                                                                                                                                                                                                               | NaBAr <sub>4</sub> F   | none                    | 62                        |  |
|   | 10              | PPh <sub>3</sub> (10 mol%                                                                                                                                                                                                                                                                                          | ) NaBAr <sub>4</sub> F | none                    | 44                        |  |
|   | 11              | DPEphos                                                                                                                                                                                                                                                                                                            | NaBAr <sub>4</sub> F   | Et <sub>3</sub> N (2.0) | 84                        |  |
|   | 12              | DPEphos                                                                                                                                                                                                                                                                                                            | NaBF <sub>4</sub>      | none                    | 86                        |  |
|   | 13 <sup>c</sup> | DPEphos                                                                                                                                                                                                                                                                                                            | AgBF <sub>4</sub>      | none                    | 85                        |  |
|   | 14              | Pd-1                                                                                                                                                                                                                                                                                                               | none                   | none                    | 88                        |  |

 Table S1. Optimization of Non-Enantioselective Reaction<sup>a</sup>

<sup>a</sup>Reactions run with 0.20 mmol THIQ in 0.25 mL CH<sub>2</sub>Cl<sub>2</sub>. <sup>b</sup>Isolated yield of pure **2a**. <sup>c</sup>AgCl precipitate removed by filtration

| $= HNR^{1}R^{2}$ $+$ $Ph$ $1a$ $1.2 equiv$ |      | 5 mol% <b>Pd-2</b> or <b>Pd-3</b><br>+/- 2.0 equiv Et <sub>3</sub> N<br>solvent, 22 °C, time |                         | Ph <b>2a</b><br>+ | $\mathbb{R}^{1}\mathbb{R}^{2}$<br>$\mathbb{R}^{1}\mathbb{R}^{2}$<br>$\mathbb{R}^{1}\mathbb{R}^{2}$ | <i>t</i> -Bu<br>Ar = 3<br><b>Pd-2</b> | $Pd \div PAr_2$ $Pd \div Pd \div$ |  |
|--------------------------------------------|------|----------------------------------------------------------------------------------------------|-------------------------|-------------------|----------------------------------------------------------------------------------------------------|---------------------------------------|-----------------------------------------------------------------------------------|--|
| entry                                      | Pd   | solvent                                                                                      | base (equiv)            | time (h)          | 2a:9 <sup>b</sup>                                                                                  | yield 2a (%) <sup>c</sup>             | er <sup>d</sup>                                                                   |  |
| 1                                          | Pd-2 | CH <sub>2</sub> Cl <sub>2</sub>                                                              | none                    | 17                | 2:1                                                                                                | 43                                    | 50:50                                                                             |  |
| 2                                          | Pd-2 | CH <sub>2</sub> Cl <sub>2</sub>                                                              | none                    | 3                 | 4:1                                                                                                | 56                                    | 53.5:46.5                                                                         |  |
| 3                                          | Pd-2 | $CH_2CI_2$                                                                                   | none                    | 0.5               | 8:1                                                                                                | 51                                    | 68:32                                                                             |  |
| 4                                          | Pd-2 | Et <sub>2</sub> O                                                                            | none                    | 3                 | -                                                                                                  | <5%                                   | -                                                                                 |  |
| 5                                          | Pd-3 | Et <sub>2</sub> O                                                                            | none                    | 3                 | 13:1                                                                                               | 73                                    | 69.5:30.5                                                                         |  |
| 6                                          | Pd-2 | $CH_2CI_2$                                                                                   | Et <sub>3</sub> N (2.0) | 3                 | 19:1                                                                                               | 71                                    | 63:37                                                                             |  |

Table S2. Initial Investigations into Enantioselective Reaction with PHOX Ligands<sup>a</sup>

<sup>a</sup>Reactions run with 0.20 mmol THIQ in 0.25 mL solvent. <sup>b</sup>Determined by <sup>1</sup>H NMR analysis of unpurified reaction mixture. <sup>c</sup>Isolated yield of pure 2a. <sup>d</sup>Determined by HPLC analysis of pure 2a in comparison with an authentic racemic standard.

3

3

>20:1

>20:1

23

65

80:20

84:16

Et<sub>3</sub>N (2.0)

Et<sub>3</sub>N (2.0)

7

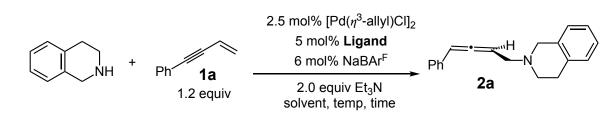
8

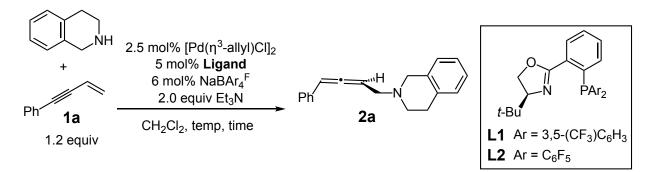
Et<sub>2</sub>O

 $CH_2CI_2$ 

Pd-3

Pd-3



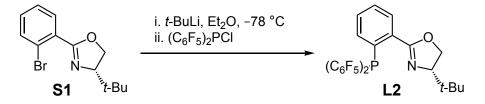


Table S3. Enantioselective Reaction Ligand Screening and Optimization<sup>a</sup>

| entry | ligand             | solvent           | temp (°C) | time (h) | yield 3a (%) <sup>b</sup> | er <sup>c</sup> |
|-------|--------------------|-------------------|-----------|----------|---------------------------|-----------------|
| entry | ngana              | 30146111          | temp ( C) | une (n)  | yielu Sa (70)             | CI              |
| 1     | ( <i>R</i> )-BINAP | Et <sub>2</sub> O | 22        | 3        | 82                        | 50:50           |
| 2     | (R,S)-Josiphos     | Et <sub>2</sub> O | 22        | 3        | 30                        | 50:50           |
| 3     | (S,S)-Ph-BPE       | Et <sub>2</sub> O | 22        | 3        | 85                        | 70:30           |
| 4     | (S,S)-Me-BPE       | Et <sub>2</sub> O | 22        | 3        | <5                        | _               |
| 5     | (S,S)-BDPP         | Et <sub>2</sub> O | 22        | 3        | 82                        | 50:50           |
| 6     | (R,R)-Taniaphos    | Et <sub>2</sub> O | 22        | 3        | 83                        | 50:50           |
| 7     | (R)-BTFM-Garphos   | Et <sub>2</sub> O | 22        | 3        | 19                        | 80:20           |
| 8     | (S,S)-QuinoxP*     | Et <sub>2</sub> O | 22        | 3        | 34                        | 66:34           |
| 9     | L4                 | Et <sub>2</sub> O | 22        | 3        | 63                        | 50:50           |
| 10    | L2                 | Et <sub>2</sub> O | 22        | 3        | 75                        | 79.5:20.5       |
| 11    | L5                 | Et <sub>2</sub> O | 22        | 3        | 77                        | 75:25           |
| 12    | L6                 | Et <sub>2</sub> O | 22        | 3        | 75                        | 50:50           |
| 13    | L3                 | Et <sub>2</sub> O | 22        | 3        | 73                        | 84.5:15.5       |
| 14    | L3                 | $CH_2CI_2$        | 22        | 3        | 66                        | 86.5:13.5       |
| 15    | L3                 | $CH_2CI_2$        | 22        | 19       | 78                        | 82.5:17.5       |
| 16    | L3                 | $CH_2CI_2$        | 0-4       | 3        | 33                        | 93.5:6.5        |
| 17    | L3                 | $CH_2CI_2$        | 0-4       | 19       | 63                        | 92.5:7.5        |
| 18    | L7                 | $CH_2CI_2$        | 0-4       | 3        | 37                        | 92.5:7.5        |

<sup>a</sup>Reactions run with 0.20 mmol THIQ in 0.25 mL solvent. <sup>b</sup>Isolated yield of pure **3a**. <sup>c</sup>Determined by HPLC analysis of pure **2a** in comparison with an authentic racemic standard.

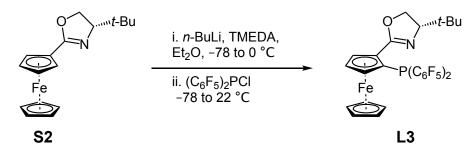
 $\begin{array}{c} \begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\$ 

**Table S4.** Experiments Performed in Duplicate or Triplicate to Compare Reaction Reproducibility with Different Ligand Electronics<sup>*a*</sup>



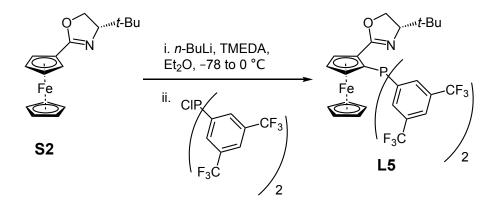

| entry | ligand | solvent                         | temperature (°C) | time (h) | trial | yield 2a (%) <sup>b</sup> | er <sup>c</sup> |
|-------|--------|---------------------------------|------------------|----------|-------|---------------------------|-----------------|
| 1     | L1     | Et <sub>2</sub> O               | 22               | 3        | 1     | 73                        | 74:26           |
|       |        |                                 |                  |          | 2     | 48                        | 71.5:28.5       |
|       |        |                                 |                  |          | 3     | 70                        | 51.5:48.5       |
| 2     | L1     | CH <sub>2</sub> Cl <sub>2</sub> | 22               | 3        | 1     | 65                        | 82:18           |
|       |        |                                 |                  |          | 2     | 65                        | 54:46           |
|       |        |                                 |                  |          | 3     | 70                        | 76.5:23.5       |
| 3     | L1     | $CH_2CI_2$                      | 22               | 20       | 1     | 68                        | 61:39           |
|       |        |                                 |                  |          | 2     | 67                        | 50:50           |
| 4     | L1     | CH <sub>2</sub> Cl <sub>2</sub> | 0-4              | 20       | 1     | 50                        | 86:14           |
|       |        |                                 |                  |          | 2     | 62                        | 71:29           |
| 5     | L2     | CH <sub>2</sub> Cl <sub>2</sub> | 22               | 3        | 1     | 67                        | 82:18           |
|       |        |                                 |                  |          | 2     | 67                        | 82.5:17.5       |
|       |        |                                 |                  |          | 3     | 73                        | 82:18           |

<sup>a</sup>Reactions run with 0.20 mmol THIQ in 0.25 mL solvent. <sup>b</sup>Isolated yield of pure **2a**. <sup>c</sup>Determined by HPLC analysis of pure **2a** in comparison with an authentic racemic standard.

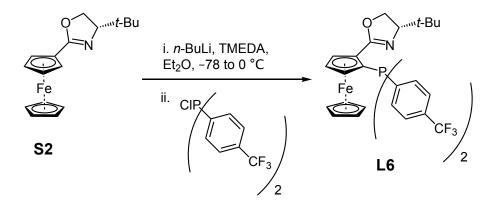

#### III. Ligand Synthesis

Ligands L1 and L4 were prepared as previously described.<sup>7,8</sup>

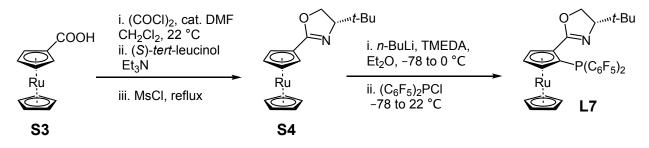



S1 was prepared by a known method.<sup>9</sup>

L2: To an oven dried 50-mL round-bottom flask equipped with a magnetic stirring rod was added S1 (847 mg, 3.00 mmol, 1.00 equiv) and Et<sub>2</sub>O (15 mL). The solution was allowed to cool to -78 °C and t-BuLi (1.7 M in pentane, 2.30 mL, 3.9 mmol, 1.30 equiv) was added dropwise via syringe. reaction mixture was allowed to stir at -78 °C for 1 h and then The chlorobis(pentafluorophenyl)phosphane (80% pure by wt., 1.95 g, 3.90 mmol, 1.30 equiv) [note: for this material the remaining 20 wt.% was tris(pentafluorophenyl)phosphine and does not affect reactivity] was added as a solution in  $Et_2O$  (3 mL) via cannula transfer. The mixture was allowed to warm to ambient temperature and stir for 1 h. The reaction was quenched with sat aq  $NH_4Cl$  (50 mL). The aqueous layer was separated from the organics and was washed with  $Et_2O$  (20 mL). The combined organic fractions were dried over MgSO<sub>4</sub>, filtered, and concentrated. L2 (1.37 g, 2.42 mmol, 80.7% yield) was obtained as a white solid after flash silica gel chromatography (99:1 to 95:5 hexanes: EtOAc). IR (neat, cm<sup>-1</sup>) 2959 (w), 1650 (m), 1640 (m), 1513 (s), 1467 (s), 1381 (m), 1358 (m), 1309 (w), 1285 (m), 1256 (w), 1209 (w), 1138 (w), 1082 (s), 1051 (m), 1026 (w), 973 (s); <sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.99 (1H, ddd, J = 7.7, 5.0, 1.4 Hz), 7.52–7.47 (1H, m), 7.39 (1H, td, J = 7.7, 1.4 Hz), 7.15 (1H, dd, J = 7.4, 3.7 Hz), 4.34 (1H, dd, J = 10.1, 8.7 Hz), 4.16 (1H, dd, J = 10.1, 8.7 Hz), 4.16t, J = 8.7 Hz), 3.92 (1H, dd, J = 10.1, 8.8 Hz), 0.74 (9H, s); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  162.2 (d, J = 5.0 Hz), 149.2-148.3 (m), 147.0-146.3 (m), 143.6-142.5 (m), 141.5-140.5 (m), 141.5-1138.9-138.1 (m), 136.9-136.0 (m), 132.4, 132.0 (d, J = 25.1 Hz), 131.3 (d, J = 22.1 Hz), 130.7, 129.6 (d, J = 1.8 Hz), 129.5, 112.2–111.4 (m), 77.1 (d, J = 1.5 Hz), 69.0, 33.5, 25.5 (note: aryl carbons show complex splitting due to <sup>19</sup>F and <sup>31</sup>P atoms); <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  -129.61 --130.00 (2F, m), -130.19 --130.63 (2F, m), -151.09 --151.33 (1F, m), -151.53 --151.80 (1F, m), -160.95 - -161.16 (2F, m), -161.17 - -161.44 (2F, m); <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>)  $\delta$  75.2–74.2 (1P, m); **HRMS** (ESI<sup>+</sup>) [M+H]<sup>+</sup> calc'd for C<sub>25</sub>H<sub>16</sub>F<sub>10</sub>NOP: 568.0883, found: 568.0886: **MP** = 61–65 °C.




S2 was prepared from ferrocenecarboxylic acid and (*S*)-*tert*-leucinol by a previously reported method and spectral data match those previously reported.<sup>10,11</sup> The synthesis of all ferrocene and ruthenocene based ligands is based on a previously reported method for related ligands and the stereoisomer depicted is based on the observed diastereoselectivity for this related procedure.<sup>10</sup>


L3: To an oven-dried 50-mL round-bottom flask equipped with a magnetic stirring rod was added **S2** (622 mg, 2.00 mmol, 1.00 equiv), TMEDA (0.450 mL, 3.01 mmol, 1.51 equiv) and Et<sub>2</sub>O (24 mL). The solution was then allowed to cool to -78 °C and subsequently n-BuLi (2.50 M in hexanes, 1.20 mL, 3.00 mmol, 1.50 equiv) was added dropwise via syringe. The mixture was allowed to stir at -78 °C for 0.5 h and then warm to 0 °C and stir for an additional 0.5 h. The resulting red solution was then allowed to cool to -78°C and chlorobis(pentafluorophenyl)phosphane (94% pure by wt., 1.11 g, 2.60 mmol, 1.30 equiv) was added as a solution in Et<sub>2</sub>O (4.0 mL) via cannula transfer. The resulting solution was allowed to warm gradually to ambient temperature and stir for 1 h. The reaction mixture was then quenched with sat aq NaHCO<sub>3</sub> (30 mL). The aqueous layer was separated from organics and washed with Et<sub>2</sub>O (30 mL). The combined organic fractions were dried over MgSO<sub>4</sub>, filtered, and concentrated. L3 (986 mg, 1.46 mmol, 73.0% yield) was obtained as an orange solid after flash silica gel chromatography (98:2 to 95:5 hexanes:EtOAc). <sup>1</sup>H NMR analysis indicated L3 was formed as a single detectable diastereomer. **IR** (neat, cm<sup>-1</sup>) 2957 (w) 1657 (m), 1638 (w), 1513 (s), 1470 (s), 1382 (m), 1365 (w), 1285 (m), 1256 (w), 1171 (w), 1151 (m), 1084 (s); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  4.88 (1H, dt, J = 2.7, 1.4 Hz), 4.41 (1H, t, J = 2.6 Hz), 4.22–4.14 (2H, m), 4.17 (5H, s), 3.92 (1H, br s), 3.66 (1H, dd, J = 9.9, 7.4 Hz), 0.87 (9H, s); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  163.9 (d, J = 3.8 Hz), 149.5-149.0 (m), 148.3-147.8 (m), 147.5-147.1 (m), 146.2-141.7 (m),138.9-138.5 (m), 138.1-137.7 (m), 136.9-136.5 (m), 136.2-135.6 (m), 76.3 (d, J = 1.9 Hz), 73.3, 73.2, 72.4, 72.4, 70.9, 70.9, 70.9, 69.0, 33.5, 29.6 (note: aryl carbons show complex splitting due to <sup>19</sup>F and <sup>31</sup>P atoms); <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  -127.0 – -127.5 (2F, m), -133.3 – -134.0 (2F, m), -148.7 - -148.9 (1F, m),  $-153.9 (1F, t, J_F = 20.6 Hz)$ ,  $-159.8 (2F, ddd, J_F = 23.8, 20.7, 9.3)$ Hz), -162.7 - -162.9 (2F, m); <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>)  $\delta$  68.0–67.0 (1P, m); HRMS (ESI<sup>+</sup>)  $[M+H]^+$  calc'd for C<sub>29</sub>H<sub>20</sub>F<sub>10</sub>[<sup>56</sup>Fe]NOP: 676.0545, found: 676.0546; **MP** = 75-80 °C.



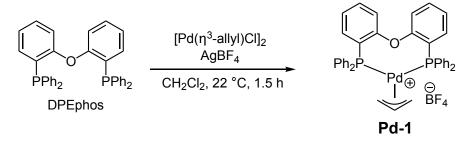
L5: To an oven-dried 100-mL round-bottom flask equipped with a magnetic stirring rod was added **S2** (966 mg, 3.20 mmol, 1.00 equiv), TMEDA (0.620 mL, 4.16 mmol, 1.30 equiv) and Et<sub>2</sub>O (35 mL). The solution was then allowed to cool to -78 °C and subsequently *n*-BuLi (2.00 M in cyclohexane, 2.10 mL, 4.16 mmol, 1.30 equiv) was added dropwise via syringe. The mixture was allowed to stir at -78 °C for 1 h and then warm to 0 °C and stir for an additional 0.5 h. Chlorobis[3,5-bis(trifluoromethyl)phenyl]phosphine (2.05 g, 4.16 mmol, 1.30 equiv) was then added as a solution in  $Et_2O$  (5.0 mL) via cannula transfer. The resulting solution was allowed to warm gradually to ambient temperature and stir for 1 h. The mixture was then guenched with sat aq NH<sub>4</sub>Cl (30 mL). The aqueous layer was separated from the organics and washed with  $Et_2O$  (30 mL). The combined organic fractions were dried over MgSO<sub>4</sub>, filtered, and concentrated. L5 (2.07 g, 2.69 mmol, 84.1% yield) was obtained as an orange solid after flash silica gel chromatography (100% hexanes to 95:5 hexanes:EtOAc). <sup>1</sup>H NMR analysis indicated L5 was formed as a single detectable diastereomer. IR (neat, cm<sup>-1</sup>) 1656 (m), 1353 (s), 1277 (s), 1171 (m), 1120 (s), 1093 (m), 1037 (w), 984 (w); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.91 (1H, s), 7.88 (1H, s), 7.87 (1H, s), 7.78 (1H, s), 7.66 (1H, s), 7.64 (1H, s), 4.94 (1H, dt, J = 2.7, 1.4 Hz), 4.44 (1H, t, J = 2.6 Hz), 4.21(5H, s), 4.16 (1H, app. t, J = 8.9 Hz), 4.09 (1H, app. t, J = 7.5 Hz), 3.61 (1H, dd, J = 10.0, 7.4 Hz), 3.51-3.46 (1H, m), 0.88 (9H, s); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  163 (d, J = 3.3 Hz), 142.4 (d, J= 20.1 Hz), 141.6 (d, J = 20.8 Hz), 134.4 (dd, J = 22.1, 2.5 Hz), 132.5 (dd, J = 19.6, 2.4 Hz), 131.7 (qd, J = 32.9, 6.2 Hz), 131.3 (qd, J = 32.7, 6.2 Hz), 123.3 (q, J = 271 Hz), 123.2 (q, J123.0 (t, J = 3.6 Hz), 122.3 (t, J = 3.7 Hz), 76.4, 76.3, 74.2 (d, J = 12.3 Hz), 73.3 (d, J = 5.3 Hz), 73.0 (d, J = 1.5 Hz), 71.4, 70.9, 68.6, 33.5, 25.7; <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  -62.89, -62.98, <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>)  $\delta$  –16.6; HRMS (ESI<sup>+</sup>) [M+H]<sup>+</sup> calc'd for C<sub>33</sub>H<sub>26</sub>F<sub>12</sub>[<sup>56</sup>Fe]NOP: 768.0983, found: 768.0984; **MP** = 125–127 °C.



L6: To an oven-dried 100-mL round-bottom flask equipped with a magnetic stirring rod was added **S2** (966 mg, 3.20 mmol, 1.00 equiv), TMEDA (0.620 mL, 4.16 mmol, 1.30 equiv) and Et<sub>2</sub>O (35 mL). The solution was then allowed to cool to -78 °C and subsequently *n*-BuLi (2.00 M in cyclohexane, 2.10 mL, 4.16 mmol, 1.30 equiv) was added dropwise via syringe. The mixture was allowed to stir at -78 °C for 1 h and then warm to 0 °C and stir for an additional 0.5 h. Chlorobis[4-(trifluoromethyl)phenyl]phosphine (1.48 g, 4.16 mmol, 1.30 equiv) was then added as a solution in Et<sub>2</sub>O (5.0 mL) via cannula transfer. The resulting solution was allowed to warm gradually to ambient temperature and stir for 1 h. The mixture was then guenched with sat ag NH<sub>4</sub>Cl (30 mL). The aqueous layer was separated from the organics and washed with Et<sub>2</sub>O (30 mL). The combined organic fractions were dried over MgSO<sub>4</sub>, filtered, and concentrated. L6 (1.72 g, 2.73 mmol, 85.3% yield) was obtained as a vellow solid after flash silica gel chromatography (99:1 to 93:7 hexanes:EtOAc). <sup>1</sup>H NMR analysis indicated L6 was formed as a single detectable diastereomer. **IR** (neat, cm<sup>-1</sup>) 2965 (w), 1652 (m), 1604 (w), 1483 (w), 1394 (m), 1364 (w), 1323 (s), 1279 (w), 1254 (w), 1209 (w), 1165 (s), 1121 (s), 1058 (s), 1007 (m), 985 (m); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.61 (1H, d, J = 7.9 Hz), 7.56 (1H, t, J = 6.5 Hz), 7.47 (1H, d, J = 7.9 Hz), 7.29 (1H, t, J = 7.3Hz), 4.94 (1H, dt, J = 2.6, 1.2 Hz), 4.39 (1H, t, J = 2.5 Hz), 4.20 (5H, s), 4.16 (1H, dd, J = 9.8, 8.6 Hz), 3.97 (1H, app. t, J = 7.5 Hz), 3.69 (1H, dd, J = 9.9, 7.4 Hz), 3.59–3.55 (1H, m), 0.818 (9H, s); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  163.6 (d, J = 2.9 Hz), 144.6 (d, J = 16.0 Hz), 143.1 (d, J = 17.0 Hz), 135.3 (d, J = 21.8 Hz), 132.5 (d, J = 19.3 Hz), 131.1 (q, J = 34.4 Hz), 130.0 (q, J = 32.0 Hz), 125.0 (dt, J = 10.3, 3.6 Hz), 124.7 (dt, J = 13.7, 3.7 Hz), 124.2 (q, J = 271 Hz), 124.0 (q, J = 271Hz), 76.2, 76.2, 76.1 (d, J = 3.4 Hz), 73.6 (d, J = 4.8 Hz), 72.6 (d, J = 1.5 Hz), 71.0, 70.8, 68.5, 33.6, 25.7; <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) δ -62.66, -62.75; <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>) δ -18.0; **HRMS** (ESI<sup>+</sup>)  $[M+H]^+$  calc'd for  $C_{31}H_{28}F_6[{}^{56}Fe]NOP$ : 632.1235, found: 632.1238; **MP** = 197–199 °C (decomp.).



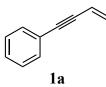
Ruthenocenecarboxylic acid (S3) was prepared from ruthenocene by a known method.<sup>12</sup>


S4: To a dry 50-mL round-bottom flask equipped with a magnetic stirring rod was added ruthenocene carboxylic acid (S3, 743 mg, 2.70 mmol, 1.00 equiv), which was suspended in CH<sub>2</sub>Cl<sub>2</sub> (7.5 mL) with one drop of DMF added. The suspension was then treated with oxalyl chloride (0.460 mL, 5.40 mmol, 2.00 equiv) and the resulting yellow solution was allowed to stir at ambient temperature for 1 h. Volatiles were then removed by mild vacuum distillation with gentle heating (warm water bath) to reveal the acid chloride as a vellow solid. The acid chloride was then dissolved in CH<sub>2</sub>Cl<sub>2</sub> (7 mL) and added to a solution of (S)-tert-leucinol (333 mg, 2.84 mmol, 1.05 equiv) and Et<sub>3</sub>N (1.90 mL, 13.5 mmol, 5.00 equiv) in CH<sub>2</sub>Cl<sub>2</sub> (3 mL) via cannula transfer. The reaction mixture was allowed to stir at ambient temperature for 1.5 h, and then methanesulfonyl chloride (0.230 mL, 3.0 mmol, 1.10 equiv) was added. A reflux condenser was added to the flask and the reaction mixture was brought to reflux, which was maintained for 11 h. The reaction mixture was then allowed to cool to ambient temperature and was quenched with H<sub>2</sub>O (20 mL). The aqueous layer was separated from the organics and washed with  $CH_2Cl_2$  (3 X 10 mL). The combined organic fractions were dried over MgSO<sub>4</sub>, filtered, and concentrated. S4 (580 mg, 1.63 mmol, 60.3% yield) was obtained as a white solid after flash silica gel chromatography (85:15 hexanes: EtOAc). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  5.16–5.13 (1H, m), 5.04–5.02 (1H, m), 4.67–4.61 (2H, m), 4.55 (5H, s), 4.13 (1H, dd, J = 9.9, 8.6 Hz), 4.07 (1H, dd, J = 8.6, 7.0 Hz), 3.81 (1H, dd, J = 9.9, 7.0 Hz), 0.88 (9H, s). Spectral data match those previously reported.<sup>13</sup>

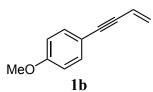
L7: To an oven-dried 25-mL round-bottom flask equipped with a magnetic stirring rod was added S4 (178 mg, 0.500 mmol, 1.00 equiv), TMEDA (97.0 µL, 0.650 mmol, 1.30 equiv) and Et<sub>2</sub>O (8 mL). The solution was then allowed to cool to -78 °C and subsequently *n*-BuLi (2.00 M in cyclohexane, 0.33 mL, 0.65 mmol, 1.30 equiv) was added dropwise via syringe. The mixture was allowed to stir at -78 °C for 1 h and then warm to 0 °C and stir for an additional 0.5 h. Chlorobis(pentafluorophenyl)phosphane (94% pure by wt., 277 mg, 0.650 mmol, 1.30 equiv) was then added as a solution in Et<sub>2</sub>O (2.0 mL) via cannula transfer. The resulting solution was allowed to warm gradually to ambient temperature and stir for 1 h. The reaction mixture was then quenched with sat aq NH<sub>4</sub>Cl (10 mL). The aqueous layer was separated from organics and washed with Et<sub>2</sub>O (2 X 10 mL). The combined organic fractions were dried over MgSO<sub>4</sub>, filtered, and concentrated. L7 (218 mg, 0.290 mmol, 58.1% yield) was obtained as a pale yellow solid after flash silica gel chromatography (95:5 hexanes:EtOAc). <sup>1</sup>H NMR analysis indicated L7 was formed as a single detectable diastereomer. IR (neat, cm<sup>-1</sup>) 2953 (w), 1659 (m), 1638 (w), 1513 (s), 1468 (s), 1382 (m), 1365 (w), 1284 (m), 1254 (w), 1209 (w), 1170 (w), 1149 (m), 1083 (s), 1030 (w), 972 (s); <sup>1</sup>H **NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$ ; 5.21–5.19 (1H, m), 4.27–4.70 (1H, m), 5.43 (5H, s), 4.32–4.29 (1H, m), 4.16 (1H, app. t, J = 8.8 Hz), 4.11 (1H, dd, J = 8.7, 6.9 Hz), 3.65 (1H, dd, J = 9.6, 6.7 Hz), 0.81 (9H, s); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  162.7 (t, J = 3.9 Hz), 149.3–148.8 (m), 148.0–147.6

(m), 147.3–146.8 (m), 146.1–145.5 (m), 142.1–141.3 (m), 140.4–139.6 (m), 138.3–138.2 (m), 138.0–137.5 (m), 136.8–136.2 (m), 136.1–135.6 (m), 80.8–80.4 (m), 76.1–75.9 (m), 75.9–75.8 (m), 73.8, 73.2, 72.8, 68.8, 33.9, 25.3 (note: aryl carbons show complex splitting due to <sup>19</sup>F and <sup>31</sup>P atoms); <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  -127.67 – -127.88 (2F, m), -134.10 – -134.38 (2F, m), -148.95 – -149.15 (1F, m), -153.91 (1F, t,  $J_{CF}$  = 20.9 Hz), -159.99 – -160.21 (2F, m), -162.59 – 162.87 (2F, m); <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>)  $\delta$  67.8–66.5 (1P, m); HRMS (ESI<sup>+</sup>) [M+H]<sup>+</sup> calc'd for; C<sub>29</sub>H<sub>20</sub>F<sub>10</sub>NOP[<sup>102</sup>Ru]: 722.0239, found: 722.0243; **MP** = 83–88 °C.

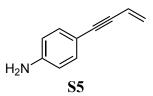
#### IV. Pd Complex Synthesis


The synthesis of **Pd-2** and **Pd-3** have been reported previously.<sup>7,14</sup> **Pd-1** was prepared by an analogous procedure.



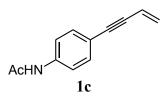

**Pd-1:** In an N<sub>2</sub>-filled glovebox, to a dry 250-mL round-bottom flask equipped with a magnetic stirring rod was added (oxybis(2,1-phenylene))bis(diphenylphosphane) (DPEphos, 1.24 g, 2.30 mmol, 1.00 equiv),  $[Pd(\eta^3-allyl)Cl]_2$  (420 mg, 1.15 mmol, 0.500 equiv), and  $CH_2Cl_2$  (50 mL). The solution was allowed to stir at ambient temperature for 20 min and then AgBF<sub>4</sub> (493 mg, 2.53 mmol, 1.10 equiv) was added. Vigorous stirring was allowed to continue for 1 h during which time a white precipitate formed. The following work up took place outside of the glovebox. The heterogenous reaction mixture was filtered through a pad of celite eluting with CH<sub>2</sub>Cl<sub>2</sub> (3 X 20 mL). The solution was then concentrated to reveal Pd-1 as an off-white powder (1.77 g, 2.06 mmol, 89.7% vield). <sup>1</sup>H NMR analysis revealed **Pd-1** to be formed as a 1:1 adduct with CH<sub>2</sub>Cl<sub>2</sub>. **IR** (neat, cm<sup>-1</sup>); 3057 (w), 1567 (w), 1479 (w), 1465 (m), 1434 (s), 1262 (m), 1215 (s), 1187 (w), 1092 (m), 1052 (s), 1020 (s), 958 (m); <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>) δ 7.56–7.29 (18H, m), 7.26-7.18 (4H, m), 7.09-7.00 (4H, m), 6.61-6.52 (2H, m), 6.14-6.00 (1H, m), 5.72 (2H, s, CH<sub>2</sub>Cl<sub>2</sub>), 4.06–3.93 (2H, m), 3.70–3.54 (2H, m); <sup>13</sup>C NMR (125 MHz, DMSO- $d_6$ )  $\delta$  158.2 (t, J = 3.8 Hz), 134.4, 133.9 (t, J = 6.6 Hz), 133.7, 133.4 (t, J = 6.4 Hz), 131.7, 131.5, 129.5 (q, J = 5.3Hz), 125.7, 123.7 (t, J = 5.0 Hz), 122.2, 122.0, 121.8, 121.3, 79.2, 79.1, 77.0, 55.4 (CH<sub>2</sub>Cl<sub>2</sub>); <sup>19</sup>F NMR (376 MHz, DMSO-*d*<sub>6</sub>) δ-148.31, -148.36; <sup>31</sup>P NMR (162 MHz, DMSO-*d*<sub>6</sub>) δ 13.0; HRMS (ESI<sup>+</sup>)  $[M+H]^+$  calc'd for C<sub>39</sub>H<sub>33</sub>OP<sub>2</sub>[<sup>106</sup>Pd]: 685.1036, found: 685.1055; **MP** = 255–260 °C (decomp.).

#### V. Substrate Synthesis

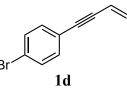

Enyne substrates were prepared by Sonogashira coupling<sup>15</sup> from their corresponding terminal alkynes with vinyl bromide by a slightly modified method. <u>General Method A</u> is exemplified by the synthesis of 1a.



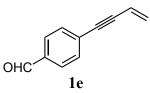
**but-3-en-1-yn-1-ylbenzene (1a):** General Method A: In an N<sub>2</sub>-filled glovebox, to an oven-dried 250-mL round-bottom flask equipped with a magnetic stirring bar was added Pd(PPh<sub>3</sub>)<sub>4</sub> (462 mg, 0.400 mmol, 2.00 mol%) and CuI (381 mg, 2.00 mmol, 10.0 mol%). The flask was sealed with a rubber septum and removed from the glovebox. Vinyl bromide (1.0 M in THF, 50.0 mL, 2.50 equiv) was added followed by freshly distilled and degassed Et<sub>2</sub>NH (10.4 mL, 100 mmol, 5.00 equiv). The mixture was allowed to stir at ambient temperature for *ca*. 5 min and subsequently phenylacetylene (2.20 mL, 20.0 mmol, 1.00 equiv) was added as a solution in THF (10 mL) dropwise over 1 h. The mixture was then allowed to stir at ambient temperature overnight (15–20 h). The reaction contents were then filtered through a pad of celite, eluting with Et<sub>2</sub>O (3 X 20 mL). The solution was then concentrated *in vacuo*. **1a** was obtained by flash silica gel chromatography (99:1 hexanes:Et<sub>2</sub>O) to afford a colorless oil (2.43 g, 18.9 mmol, 94.6%). **<sup>1</sup>H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.48–7.41 (2H, m), 7.34–7.26 (3H, m), 6.01 (1H, dd, *J* = 17.6, 11.1), 5.73 (1H, dd, *J* = 17.6, 2.0 Hz), 5.54 (1H, dd, *J* = 11.1, 2.0 Hz). Spectral data match those previously reported.<sup>15</sup>




**1-(but-3-en-1-yn-1-yl)-4-methoxybenzene (1b):** Prepared by General Method A in 92.5% yield after flash silica gel chromatography (98:2 to 95:5 hexanes:EtOAc). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.39–7.34 (2H, m), 6.86–6.80 (2H, m), 5.99 (1H, dd, J = 17.5, 11.1 Hz), 5.68 (1H, dd, J = 17.5, 2.0 Hz), 5.48 (1H, dd, J = 11.1, 2.0 Hz), 3.80 (3H, s). Spectral data match those previously reported.<sup>16</sup>

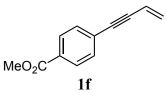



**4-(but-3-en-1-yn-1-yl)aniline (S5):** Prepared by General Method A in 89.0% yield after flash silica gel chromatography (80:20 hexanes:EtOAc). **IR** (neat, cm<sup>-1</sup>) 3466 (m), 3376 (m), 3211 (w), 3033 (w), 3005 (w), 2212 (m), 2177 (m), 1618 (s), 1598(s), 1510 (s), 1432 (w), 1410 (w), 1284 (s), 1176 (s), 1127 (w), 1077 (w), 969 (m); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.29–7.17 (2H, m),

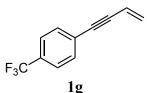

6.61–6.55 (2H, m), 5.99 (1H, dd, J = 17.5, 11.1 Hz), 5.64 (1H, dd, J = 17.5, 2.1 Hz), 5.44 (1H, dd, J = 11.1, 2.1 Hz), 3.79 (2H, br s); <sup>13</sup>**C NMR** (125 MHz, CDCl<sub>3</sub>)  $\delta$  146.7, 132.9, 125.4, 117.5, 114.7, 112.4, 90.8, 86.2; **HRMS** (ESI<sup>+</sup>) [M+H]<sup>+</sup> calc'd for C<sub>10</sub>H<sub>9</sub>N: 144.0808, found: 144.0810.



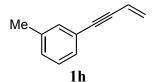
*N*-(4-(but-3-en-1-yn-1-yl)phenyl)acetamide (1c): Prepared from S5 by the following procedure. To an oven-dried 25-mL round-bottom flask equipped with a magnetic stirring rod was add S5 (430 mg, 3.00 mmol, 1.00 equiv), pyridine (0.480 mL, 5.96 mmol, 1.99 equiv), and CH<sub>2</sub>Cl<sub>2</sub> (5.0 mL). The mixture was allowed to cool to 0 °C and acetyl chloride (0.430 mL, 6.05 mmol, 2.02 equiv) was added. The mixture was then allowed to warm to ambient temperature and stir for 3 h. The reaction was then quenched with sat aq NaHCO<sub>3</sub> (20 mL). The aqueous layer was separated from the organics and washed with CH<sub>2</sub>Cl<sub>2</sub> (2 X 20 mL). The combined organic fractions were dried over MgSO<sub>4</sub>, filtered, and concentrated. **1c** was obtained as a pale yellow solid (462 mg, 2.49 mmol, 83.2% yield) after purification by flash silica gel chromatography (60:40 hexanes:EtOAc). **IR** (neat, cm<sup>-1</sup>) 3252 (w), 3103 (w), 1660 (m), 1594 (s), 1530 (s), 1505 (s), 1403 (m), 1369 (m), 1319 (s), 1296 (w), 1256 (m), 1178 (w), 1111 (w), 1080 (w), 1040 (w), 1012 (w), 966 (m); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.46 (2H, d, *J* = 8.6 Hz), 7.42–7.32 (3H, m), 5.99 (1H, dd, *J* = 17.5, 11.1), 5.70 (1H, dd, *J* = 17.5, 2.0 Hz), 5.51 (1H, dd, *J* = 11.1, 2.0 Hz), 2.16 (3H, s); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  168.7, 138.0, 132.3, 126.7, 119.5, 118.7, 117.1, 89.7, 87.8, 24.6; HRMS (ESI<sup>+</sup>) [M+H]<sup>+</sup> calc'd for C<sub>12</sub>H<sub>11</sub>NO: 186.0913, found: 186.0917; **MP** = 144–147 °C.



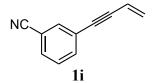

**1-bromo-4-(but-3-en-1-yn-1-yl)benzene (1d):** Prepared by General method A in 79.1% yield after flash silica gel chromatography (99:1 hexanes:Et<sub>2</sub>O). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.46–7.40 (2H, m), 7.31–7.26 (2H, m), 5.98 (1H, dd, J = 17.6, 11.1 Hz), 5.73 (1H, dd, J = 17.6, 2.0 Hz), 5.55 (1H, dd, J = 11.1, 2.0 Hz). Spectral data match those previously reported.<sup>17</sup>



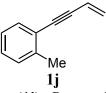

**4-(but-3-en-1-yn-1-yl)benzaldehyde (1e):** Prepared by General Method A in 86.6% yield after flash silica gel chromatography (95:5 hexanes:EtOAc). **IR** (neat, cm<sup>-1</sup>) 2845 (w), 2744 (w), 2215 (w), 1693 (s), 1599 (s), 1556 (m), 1503 (w), 1413 (m), 1386 (m), 1300 (m), 1287 (m), 1265 (m), 1204 (s), 1163 (s), 1103 (m), 1013 (w), 1001 (w), 970 (m); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  9.99 (1H, s), 7.82 (2H, d, J = 8.2 Hz), 7.57 (2H, d, J = 8.2 Hz), 6.02 (1H, dd, J = 17.6, 11.2 Hz), 5.79 (1H, dd, J = 17.6, 1.9 Hz), 5.62 (1H, dd, J = 11.2, 1.9 Hz); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  191.4,


135.4, 132.0, 129.5, 129.4, 128.4, 116.7, 92.0, 89.0; **HRMS** (ESI<sup>+</sup>)  $[M+H]^+$  calc'd for C<sub>11</sub>H<sub>8</sub>O: 157.0648, found: 157.0647.

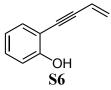



**methyl 4-(but-3-en-1-yn-1-yl)benzoate (1f)**: Prepared by General Method A in 83.0% yield after flash silica gel chromatography (95:5 hexanes:EtOAc). **IR** (neat, cm<sup>-1</sup>) 2950 (w), 2850 (w), 1707 (s), 1605 (s), 1436 (s), 1406 (m), 1307 (w), 1271 (s), 1193 (w), 1174 (m), 1105 (s), 1015 (m), 961 (m); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.00–7.94 (2H, m), 7.51–7.44 (2H, m), 6.01 (1H, dd, *J* = 17.5, 11.1 Hz), 5.76 (1H, dd, *J* = 17.5, 1.9 Hz), 5.59 (1H, dd, *J* = 11.1, 1.9 Hz), 3.89 (3H, s); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  166.5, 131.4, 129.4, 128.0, 127.8, 116.8, 90.9, 89.1, 52.2 (one sp<sup>2</sup> carbon missing due to overlap); **HRMS** (ESI<sup>+</sup>) [M+H]<sup>+</sup> calc'd for C<sub>12</sub>H<sub>10</sub>O<sub>2</sub>: 187.0754, found: 187.0756; **MP** = 34–36 °C.

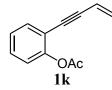



**1-(but-3-en-1-yn-1-yl)-4-(trifluoromethyl)benzene (1g)**: Prepared by General Method A in 99.0% yield after flash silica gel chromatography (99:1 hexanes:Et<sub>2</sub>O). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.56 (2H, AB<sub>q</sub>, J<sub>AB</sub> = 8.6 Hz), 7.52 (2H, AB<sub>q</sub>, J<sub>AB</sub> = 8.6 Hz), 6.01 (1H, dd, J = 17.5, 11.1 Hz), 5.78 (1H, dd, J = 17.5, 1.9 Hz), 5.60 (1H, dd, J = 11.1, 1.9 Hz); <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  -62.9. Spectral data match those previously reported.<sup>16</sup>



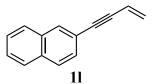

**1-(but-3-en-1-yn-1-yl)-3-methylbenzene (1h):** Prepared by General Method A in 88.8% yield after flash silica gel chromatography (99:1 hexanes:Et<sub>2</sub>O). **IR** (neat, cm<sup>-1</sup>) 3008 (w), 2920 (w), 2202 (w), 1840 (w), 1607 (m), 1578 (w), 1484 (m), 1450 (w), 1380 (w), 1281 (w), 1181 (w), 1094 (w), 1080 (w), 1040 (w), 969 (m); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.29–7.22 (2H, m), 7.19 (1H, dd, J = 7.5, 7.5 Hz), 7.14–7.09 (1H, m), 6.00 (1H, dd, J = 17.5, 11.2 Hz), 5.71 (1H, dd, J = 17.5, 2.0 Hz) 5.52 (1H, dd, J = 11.2, 2.0 Hz), 2.32 (3H, s); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  138.0, 132.2, 129.2, 128.7, 128.2, 126.7, 122.9, 117.3, 90.2, 87.8, 21.2; **EA** calc' for C<sub>11</sub>H<sub>10</sub>: C = 92.91%, H = 7.09%, found: C = 92.65%, H = 7.12%.



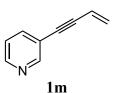

**3-(but-3-en-1-yn-1-yl)benzonitrile (1i):** Prepared by General Method A in 87.5% yield after flash silica gel chromatography (95:5 hexanes:EtOAc). **IR** (neat, cm<sup>-1</sup>) 3070 (w), 3012 (w), 2230 (m), 1850 (w), 1722 (w), 1600 (m), 1571 (w), 1477 (s), 1417 (w), 1407 (w), 1319 (w), 1288 (w), 1267 (w), 1167 (w), 1095 (w), 1082 (w), 969 (m); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.70 (1H, dd, J = 1.6,1.6 Hz), 7.63 (1H, ddd, J = 7.8, 1.4, 1.4 Hz), 7.57 (1H, ddd, J = 7.8, 1.4, 1.4 Hz), 7.42 (1H, dd, J = 7.8, 7.8 Hz), 5.99 (1H, dd, J = 17.5, 11.1 Hz), 5.78 (1H, dd, J = 17.5, 12.8, 90.4, 87.4; **HRMS** (ESI<sup>+</sup>) [M+H]<sup>+</sup> calc'd for C<sub>11</sub>H<sub>7</sub>N: 154.0651, found: 154.0649.



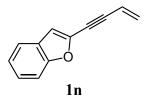
**1-(but-3-en-1-yn-1-yl)-2-methylbenzene (1j):** Prepared by General Method A in 89.0% yield after flash silica gel chromatography (99:1 hexanes:Et<sub>2</sub>O). **IR** (neat, cm<sup>-1</sup>) 3009 (w), 2920 (w), 2212 (w), 1839 (w), 1605 (m), 1484 (m), 1455 (m), 1409 (w), 1379 (w), 1289 (w), 1256 (w), 1197 (w), 1158 (w), 1116 (m), 1042 (w), 968 (m); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.40 (1H, d, J = 7.3 Hz), 7.23–7.16 (2H, m), 7.15–7.08 (1H, m), 6.05 (1H, dd, J = 17.5, 11.1 Hz), 5.72 (1H, dd, J = 17.5, 2.0 Hz), 5.53 (1H, dd, J = 11.1, 2.0 Hz), 2.44 (3H, s); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  140.2, 131.9, 129.4, 128.3, 126.5, 125.5, 122.9, 117.4, 92.0, 88.9, 20.7; **EA** calc' for C<sub>11</sub>H<sub>10</sub>: C = 92.91%, H = 7.09%, found: C = 91.58%, H = 6.89%.




**2-(but-3-en-1-yn-1-yl)phenol (S6):** Prepared by General Method A in 61.2% yield after flash silica gel chromatography (95:5 hexanes:EtOAc). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.33 (1H, dd, J = 7.7, 1.6 Hz), 7.27–7.19 (1H, m), 6.94 (1H, dd, J = 8.3, 0.9 Hz), 6.86 (1H, td, J = 7.6, 1.1 Hz), 6.05 (1H, dd, J = 17.5, 11.2 Hz), 5.77 (1H, dd, J = 17.5, 1.8 Hz), 5.72 (1H, br s), 5.60 (1H, dd, J = 11.2, 1.8 Hz). Spectral data match those previously reported.<sup>18</sup>

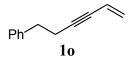



**2-(but-3-en-1-yn-1-yl)phenyl acetate (1k):** Prepared from **S6** by the following procedure. To an oven-dried 25-mL round-bottom flask equipped with a magnetic stirring rod was added **S6** (288 mg, 2.00 mmol, 1.00 equiv), pyridine (0.320 mL, 3.97 mmol 1.99 equiv), and CH<sub>2</sub>Cl<sub>2</sub> (4.0 mL).

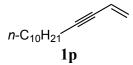

The solution was cooled to 0 °C and acetyl chloride (0.280 mL, 3.94 mmol, 1.97 equiv) was added. The solution was allowed to warm to ambient temperature and stir for 3 h. The reaction mixture was quenched with sat aq NaHCO<sub>3</sub> (20 mL) and the aquous layer was separated from the organics and washed with CH<sub>2</sub>Cl<sub>2</sub> (2 X 20 mL). The combined organic fractions were dried over MgSO<sub>4</sub>, filtered and concentrated. **1k** (342 mg, 1.84 mmol, 91.8% yield) was obtained as a colorless oil after flash silica gel chromatography (95:5 hexanes:EtOAc). **IR** (neat, cm<sup>-1</sup>) 3010 (w), 1759 (s), 1590 (w), 1485 (m), 1445 (m), 1367 (m), 1290 (w), 1256 (w), 1207 (m), 1178 (s), 1106 (m), 1077 (w), 1034 (w), 1008 (m), 969 (w); <sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.47 (1H, dd, *J* = 7.7, 1.9 Hz), 7.33 (1H, ddd, *J* = 7.6, 7.6, 1.6 Hz), 7.19 (1H, ddd, *J* = 7.6, 7.6, 1.2 Hz), 7.08 (1H, dd, *J* = 8.1, 1.1 Hz), 6.00 (1H, dd, *J* = 17.6, 11.2 Hz), 5.71 (1H, dd, *J* = 17.6, 2.0 Hz), 5.55 (1H, dd, *J* = 11.2, 2.0 Hz), 2.33 (3H, s); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  168.9, 151.5, 133.0, 129.5, 127.5, 125.9, 122.3, 117.3, 116.9, 92.8, 84.7, 20.8; **HRMS** (ESI<sup>+</sup>) [M+H]<sup>+</sup> calc'd for C<sub>12</sub>H<sub>10</sub>O<sub>2</sub>: 187.0754, found: 187.0755.



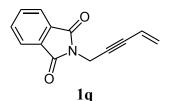
**2-(but-3-en-1-yn-1-yl)naphthalene (11):** Prepared by General Method A in 79.5% yield after flash silica gel chromatography (99:1 hexanes:EtOAc). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.96 (1H, s), 7.86–7.70 (3H, m), 7.54–7.41 (3H, s), 6.06 (1H, dd, J = 17.5, 11.1 Hz), 5.78 (1H, dd, J = 17.5, 1.9 Hz), 5.57 (1H, dd, J = 11.1, 1.9 Hz). Spectral data match those previously reported.<sup>19</sup>



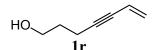

**3-(but-3-en-1-yn-1-yl)pyridine (1m):** Prepared by General Method A in 82.0% yield after flash silica gel chromatography (70:30 pentanes:Et<sub>2</sub>O). **IR** (neat, cm<sup>-1</sup>) 3030 (w), 1605 (m), 1578 (m), 1552 (m), 1475 (s), 1404 (s), 1327 (w), 1291 (w), 1268 (w), 1186 (m), 1121 (w), 1098 (w), 1021 (m), 969 (m); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.66 (1H, d, J = 1.8 Hz), 8.51 (1H, dd, J = 4.9, 1.6 Hz), 7.70 (1H, ddd, J = 7.9, 1.9, 1.9 Hz), 7.26–7.21 (1H, m), 6.01 (1H, dd, J = 17.6, 11.2 Hz), 5.77 (1H, dd, J = 17.6, 1.9 Hz), 5.60 (1H, dd, J = 11.2, 1.9 Hz); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  152.1, 148.5, 138.3, 128.0, 123.0, 120.3, 116.6, 91.2, 86.5; **HRMS** (ESI<sup>+</sup>) [M+H]<sup>+</sup> calc'd for C<sub>9</sub>H<sub>7</sub>N 130.0651, found: 130.0653.




**2-(but-3-en-1-yn-1-yl)benzofuran (1n):** Prepared by General Method A in 76.1% yield after flash silica gel chromatography (100% hexanes). **IR** (neat, cm<sup>-1</sup>) 3057 (w), 1854 (w), 1778 (w), 1608 (w), 1557 (w), 1473 (w), 1448 (m), 1408 (w), 1349 (w), 1305 (w), 1288 (w), 1267 (w), 1255 (m),

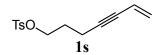

1200 (m), 1160 (m), 1143 (m), 1108 (m), 1073 (w), 966 (m); <sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.54 (1H, d, *J* = 7.6 Hz), 7.44 (1H, d, *J* = 8.2 Hz), 7.32 (1H, ddd, *J* = 7.3, 7.3, 1.3 Hz), 7.23 (1H, dd, *J* = 7.4, 7.4 Hz), 6.93 (1H, s), 6.05 (1H, dd, *J* = 17.6, 11.3 Hz), 5.84 (1H, dd, *J* = 17.6, 1.8 Hz), 5.65 (1H, dd, *J* = 11.3, 1.8 Hz); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  154.9, 138.6, 128.7, 127.7, 125.7, 123.3, 121.2, 116.1, 111.7, 111.2, 93.9, 80.2; **HRMS** (ESI<sup>+</sup>) [M+H]<sup>+</sup> calc'd for C<sub>12</sub>H<sub>8</sub>O: 169.0648, found: 169.0645.



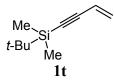

hex-5-en-3-yn-1-ylbenzene (10): Prepared by General Method A in 87.9% yield after flash silica gel chromatography (99:1 hexanes:Et<sub>2</sub>O). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.33–7.26 (2H, m), 7.25–7.18 (3H, m), 5.76 (1H, ddt, J = 17.6, 11.0, 2.0 Hz), 5.54 (1H, dd, J = 17.6, 2.2 Hz), 5.38 (1H, dd, J = 11.0, 2.2 Hz), 2.85 (2H, t, J = 7.6 Hz), 2.59 (2H, td, J = 7.6, 2.0 Hz). Spectral data match those previously reported.<sup>20</sup>



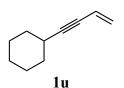
**tetradec-1-en-3-yne (1p):** Prepared by General Method A in 95.0% yield after flash silica gel chromatography (100% hexanes). **IR** (neat, cm<sup>-1</sup>) 2922 (s), 2853 (s), 2227 (w), 1608 (w), 1466 (m), 1378 (w), 1328 (w), 1162 (w), 971 (m); 911 (s); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  5.76 (1H, ddt, J = 17.5, 11.0, 2.0 Hz), 5.52 (1H, dd, J = 17.5, 2.2 Hz), 5.35 (1H, dd, J = 11.0, 2.2 Hz), 2.28 (2H, td, J = 7.1, 2.0 Hz), 1.56–1.47 (2H, m), 1.42–1.15 (14H, m), 0.86 (3H, t, J = 6.6 Hz); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  125.3, 117.6, 91.2, 79.3, 31.9, 29.6, 29.5, 29.3, 29.2, 28.9, 28.7, 22.7, 19.3, 14.1; **EA** calc' for C<sub>14</sub>H<sub>24</sub>: C = 87.42%, H = 12.58%, found: C = 87.44%, H = 12.65%.



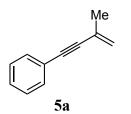

**2-(pent-4-en-2-yn-1-yl)isoindoline-1,3-dione (1q):** Prepared by General Method A in 82.8% yield after flash silica gel chromatography (80:20 hexanes:EtOAc). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.90–7.83 (2H, m), 7.75–7.69 (2H, m), 5.72 (1H, ddt, J = 17.6, 10.8, 1.8 Hz), 5.62 (1H, dd, J = 17.6, 2.4 Hz), 5.45 (1H, dd, J = 10.8, 2.4 Hz), 4.55 (2H, d, J = 1.9 Hz). Spectral data match those previously reported.<sup>21</sup>



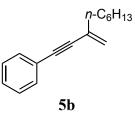

**hept-6-en-4-yn-1-ol (1r):** Prepared by General Method A in 92.2% yield after flash silica gel chromatography (70:30 to 50:50 pentanes:Et<sub>2</sub>O). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  5.75 (1H, ddt, J = 17.5, 11.0, 2.0 Hz), 5.53 (1H, dd, J = 17.5, 2.2 Hz), 5.37 (1H, dd, J = 11.0, 2.2 Hz), 3.79–3.71


(2H, m), 2.42 (2H, td, J = 7.0, 2.0 Hz), 1.82–1.72 (2H, m), 1.55 (1H, br s). Spectral data match those previously reported.<sup>22</sup>

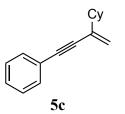



hept-6-en-4-yn-1-yl 4-methylbenzenesulfonate (1s): Prepared from 1r by the following procedure. To an oven-dried 50-mL round-bottom flask equipped with a magnetic stirring rod was added 1r (551 mg, 5.00 mmol, 1.00 equiv), pyridine (1.60 mL, 19.9 mmol, 3.97 equiv), and CH<sub>2</sub>Cl<sub>2</sub> (5.0 mL). The solution was allowed to cool to 0 °C and then *p*-toluenesulfonyl chloride (1.43 g, 7.50 mmol, 1.50 equiv) was added portionwise over 10 min. The reaction mixture was allowed to stir at 0 °C for 1 h and then partitioned between H<sub>2</sub>O (50 mL) and Et<sub>2</sub>O (50 mL). The aqueous layer was separated from the organics and washed with Et<sub>2</sub>O (20 mL). The combined organic fractions were dried over MgSO<sub>4</sub>, filtered and concentrated. **1s** (1.14 g, 4.30 mmol, 86.0% yield) was obtained as a pale yellow oil after flash silica gel chromatography (90:10 hexanes:EtOAc). IR (neat, cm<sup>-1</sup>) 2960 (w), 2227 (w), 1598 (m), 1495 (w), 1433 (w), 1357 (s), 1307 (w), 1291 (w), 1188 (m), 1173 (s), 1120 (w), 1096 (m), 973 (m), 921 (s); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.81–7.75 (2H, m), 7.32 (2H, d, J = 8.3 Hz), 5.65 (1H, ddt, J = 17.5, 11.0, 2.0 Hz), 5.46 (1H, dd, J = 17.5, 11.0, 2.0 Hz), 5.46 (1H, dd, J = 17.5, 11.0, 2.0 Hz), 5.46 (1H, dd, J = 17.5, 11.0, 2.0 Hz), 5.46 (1H, dd, J = 17.5, 11.0, 2.0 Hz), 5.46 (1H, dd, J = 17.5, 11.0, 2.0 Hz), 5.46 (1H, dd, J = 17.5, 11.0, 2.0 Hz), 5.46 (1H, dd, J = 17.5, 11.0, 2.0 Hz), 5.46 (1H, dd, J = 17.5, 11.0, 2.0 Hz), 5.46 (1H, dd, J = 17.5, 11.0, 2.0 Hz), 5.46 (1H, dd, J = 17.5, 11.0, 2.0 Hz), 5.46 (1H, dd, J = 17.5, 11.0, 2.0 Hz), 5.46 (1H, dd, J = 17.5, 11.0, 2.0 Hz), 5.46 (1H, dd, J = 17.5, 11.0, 2.0 Hz), 5.46 (1H, dd, J = 17.5, 11.0, 2.0 Hz), 5.46 (1H, dd, J = 17.5, 11.0, 2.0 Hz), 5.46 (1H, dd, J = 17.5, 11.0, 2.0 Hz), 5.46 (1H, dd, J = 17.5, 11.0, 2.0 Hz), 5.46 (1H, dd, J = 17.5, 11.0, 2.0 Hz), 5.46 (1H, dd, J = 17.5, 11.0, 2.0 Hz), 5.46 (1H, dd, J = 17.5, 11.0, 2.0 Hz), 5.46 (1H, dd, J = 17.5, 11.0, 2.0 Hz), 5.46 (1H, dd, J = 17.5, 11.0, 2.0 Hz), 5.46 (1H, dd, J = 17.5, 11.0, 2.0 Hz), 5.46 (1H, dd, J = 17.5, 11.0, 2.0 Hz), 5.46 (1H, dd, J = 17.5, 11.0, 2.0 Hz), 5.46 (1H, dd, J = 17.5, 11.0, 2.0 Hz), 5.46 (1H, dd, J = 17.5, 11.0, 2.0 Hz), 5.46 (1H, dd, J = 17.5, 11.0, 2.0 Hz), 5.46 (1H, dd, J = 17.5, 11.0, 2.0 Hz), 5.46 (1H, dd, J = 17.5, 11.0, 2.0 Hz), 5.46 (1H, dd, J = 17.5, 11.0, 2.0 Hz), 5.46 (1H, dd, J = 17.5, 11.0, 2.0 Hz), 5.46 (1H, dd, J = 17.5, 11.0, 2.0 Hz), 5.46 (1H, dd, J = 17.5, 11.0, 2.0 Hz), 5.46 (1H, dd, J = 17.5, 11.0, 2.0 Hz), 5.46 (1H, dd, J = 17.5, 11.0, 2.0 Hz), 5.46 (1H, dd, J = 17.5, 11.0, 2.0 Hz), 5.46 (1H, dd, J = 17.5, 11.0, 2.0 Hz), 5.46 (1H, dd, J = 17.5, 11.0, 2.0 Hz), 5.46 (1H, dd, J = 17.5, 11.0, 2.0 Hz), 5.46 (1H, dd, J = 17.5, 11.0, 2.0 Hz), 5.46 (1H, dd, J = 17.5, 11.0, 2.0 Hz), 5.46 (1H, dd, J = 17.5, 11.0, 2.0 Hz), 5.46 (1H, dd, J = 17.5, 11.0, 2.0 Hz), 5.46 (1H, dd, J = 17.5, 11.0, 2.0 Hz), 5.46 (1H, dd, J = 17.5, 11.0, 2.0 Hz), 5.46 (1H, dd, J = 17.5, 11.0, 2.0 Hz), 5.46 (1H, dd, J = 17.5, 11.0, 2.0 Hz2.2 Hz), 5.35 (1H, dd, J = 11.0, 2.2 Hz), 4.12 (2H, t, J = 6.1 Hz), 2.42 (3H, s), 2.35 (2H, td, J =6.9, 2.0 Hz), 1.84 (2H, dt, J = 6.4, 6.4 Hz); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  144.8, 132.8, 129.9, 127.9, 126.0, 117.2, 88.4, 80.3, 68.9, 27.8, 21.6, 15.5; HRMS (ESI<sup>+</sup>) [M+H]<sup>+</sup> calc'd for: C<sub>14</sub>H<sub>16</sub>O<sub>3</sub>S: 265.0893, found: 265.0896.

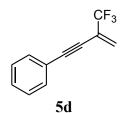



**but-3-en-1-yn-1-yl**(*tert*-butyl)dimethylsilane (1t): Prepared by General Method A in 84.0% yield after flash silica gel chromatography (100% pentanes). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  5.80 (1H, dd, J = 17.6, 11.1 Hz), 5.67 (1H, dd, J = 17.6, 2.4 Hz), 5.48 (1H, dd, J = 11.1, 2.4 Hz), 0.93 (9H, s), 0.11 (6H, s). Spectral data match those previously reported.<sup>17</sup>

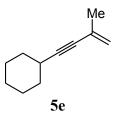



**but-3-en-1-yn-1-ylcyclohexane (1u):** Prepared by General Method A in 82.7% yield after flash silica gel chromatography (99:1 pentanes:Et<sub>2</sub>O). <sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  5.78 (1H, ddd, J = 17.5, 11.0, 1.9 Hz), 5.52 (1H, dd, J = 17.5, 2.2 Hz), 5.35 (1H, dd, J = 11.0, 2.2 Hz), 2.88–2.52 (1H, m), 1.98–0.97 (10H, m). Spectral data match those previously reported.<sup>17</sup>

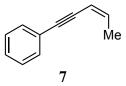



(3-methylbut-3-en-1-yn-1-yl)benzene (5a): Prepared by General Method A in 91.3% yield after flash silica gel chromatography (99:1 hexanes:EtOAc) using 2-bromopropene (2.5 equiv) in place of vinyl bromide. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.47–7.40 (2H, m), 7.34–7.27 (3H, m), 5.41–5.37 (1H, m), 5.31–5.27 (1H, m), 2.00–1.98 (3H, m). Spectral data match those previously reported.<sup>23</sup>




(3-methylenenon-1-yn-1-yl)benzene (5b): Prepared by General Method A in 40.8% yield after flash silica gel chromatography (99:1 hexanes:EtOAc) using 2-bromooct-1-ene (2.5 equiv) in place of vinyl bromide. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.50–745 (2H, m), 7.36–7.29 (3H, m), 5.44 (1H, ABq, J = 1.9 Hz), 5.32 (1H, ABq, J = 1.9 Hz), 2.27 (2H, t, J = 7.6 Hz), 1.68–1.57 (2H, m), 1.43–1.28 (6H, m), 0.94 (3H, t, J = 6.9 Hz). Spectral data match those previously reported.<sup>24</sup>




(3-cyclohexylbut-3-en-1-yn-1-yl)benzene (5c): Prepared by General Method A in 83.2% yield after flash silica gel chromatography (99:1 hexanes:EtOAc) using (1-bromovinyl)cyclohexane (2.5 equiv) in place of vinyl bromide. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.54–7.46 (2H, m), 7.39–7.30 (3H, m), 5.43 (1H, s), 5.34 (1H, s), 2.18 (1H, t, *J* = 10.9 Hz), 2.00–1.68 (4H, m), 1.49–1.15 (6H, m). Spectral data match those previously reported.<sup>25</sup>



(3-(trifluoromethyl)but-3-en-1-yn-1-yl)benzene (5d): Prepared by General Method A in 88.0% yield after flash silica gel chromatography (99:1 hexanes:EtOAc) using 2-bromo-3,3,3-trifluoroprop-1-ene (2.5 equiv) in place of vinyl bromide. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.46–7.35 (2H, m), 7.30–7.20 (3H, m), 6.00 (1H, s), 5.84 (1H, s). Spectral data match those previously reported.<sup>26</sup>



(3-methylbut-3-en-1-yn-1-yl)cyclohexane (5e): Prepared by General Method A in 49.8% yield after flash silica gel chromatography (99:1 hexanes:EtOAc) using 2-bromopropene (2.5 equiv) in place of vinyl bromide. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  5.20–5.16 (1H, m), 5.13–5.09 (1H, m), 2.49–2.37 (1H, m), 1.85 (3H, s), 1.81–1.62 (4H, m), 1.56–1.36 (4H, m), 1.33–1.21 (2H, m). Spectral data match those previously reported.<sup>27</sup>



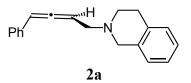
(Z)-pent-3-en-1-yn-1-ylbenzene (7): Prepared by General Method A in 91.1% yield after flash silica gel chromatography (99:1 pentane:Et<sub>2</sub>O) using (Z)-1-bromo-1-propene (2.5 equiv) in place of vinyl bromide. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.49–7.41 (2H, m), 7.35–7.27 (3H, m), 6.04 (1H, dq, J = 10.7, 6.8 Hz), 5.70 (1H, dq, J = 10.7, 1.6 Hz), 1.96 (3H, dd, J = 6.8, 1.6 Hz). Spectral data match those previously reported.<sup>28</sup>

### VI. Substrate Scope

<u>General Method B (non-enantioselective method)</u>: In an N<sub>2</sub>-filled glovebox, to a 2-dram vial equipped with a magnetic stirring rod were added successively: **Pd-1** catalyst (8.6 mg, 0.01 mmol, 5 mol %), CH<sub>2</sub>Cl<sub>2</sub> (0.25 mL), appropriate enyne (0.240 mmol, 1.20 equiv), and lastly appropriate amine nucleophile (0.200 mmol, 1.00 equiv). The reaction vials were then capped with a PTFE lined cap and allowed to stir at ambient temperature for the specified amount of time. The reaction contents were then diluted with 1:1 hexanes:EtOAc (1 mL) and passed through a short plug of either silica gel or neutral alumina, eluting with 1:1 hexanes:EtOAc (*ca.* 20 mL, in some cases 2% Et<sub>3</sub>N was added to the eluent). The solution was then concentrated. The pure products were obtained by flash silica gel chromatography as described for each compound.

<u>General Method C (*in situ* non-enantioselective method)</u>: In an N<sub>2</sub>-filled glovebox, to a 2-dram vial equipped with a magnetic stirring rod were added successively: (1.8 mg, 5.0  $\mu$ mol, 2.5 mol %), DPEphos (5.4 mg, 0.010 mmol, 5.0 mol %), and NaBAr<sub>4</sub><sup>F</sup> (10.6 mg, 0.012 mmol, 6.0 mol %). This mixture was dissolved in CH<sub>2</sub>Cl<sub>2</sub> (0.25 mL) and then appropriate enyne (0.240 mmol, 1.20 equiv) was added followed by appropriate amine nucleophile (0.200 mmol, 1.00 equiv). The reaction vials were then capped with a PTFE lined cap and were allowed to stir at ambient temperature for the specified amount of time. The reactions were worked up and purified as described for General Method B.

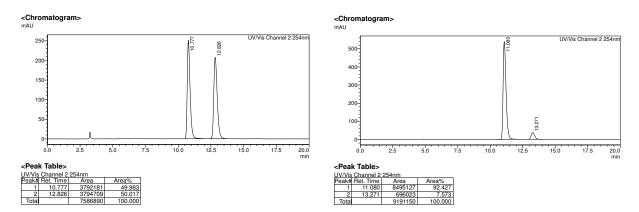
<u>General Method D (enantioselective method for enyne scope)</u>: In an N<sub>2</sub>-filled glovebox, to a 2dram vial equipped with a magnetic stirring rod were added successively:  $[Pd(\eta^3-allyl)Cl]_2$  (1.8 mg, 5.0 µmol, 2.5 mol %), **L3** (6.8 mg, 0.010 mmol, 5.0 mol %), and NaBAr<sub>4</sub><sup>F</sup> (10.6 mg, 0.012 mmol, 6.0 mol %). The mixture was dissolved in CH<sub>2</sub>Cl<sub>2</sub> (0.25 mL) and allowed to stir for *ca*. 5 min, resulting in a deep orange/red solution, and then appropriate enyne (0.240 mmol, 1.20 equiv) was added. The reaction vials were then capped with a PTFE lined cap, removed from the glovebox, and allowed to cool in an ice water bath at 0–4 °C for *ca*. 15 minutes before Et<sub>3</sub>N (56.0 µL, 0.400 mmol, 2.00 equiv) and THIQ (25.0 µL, 0.200 mmol, 1.00 equiv) were added. The reactions were allowed to stir at 4 °C for 20 h and then worked up and purified as described for General Method B.


## General Method E (enantioselecitve method for amine scope):

**Catalyst stock solution:** In an N<sub>2</sub>-filled glovebox, to a 2-dram vial equipped with a magnetic stirring rod were added successively:  $[Pd(\eta^3-allyl)Cl]_2$  (7.3 mg, 0.020 mmol, 1.0 mol %), L3 (27.0 mg, 0.040 mmol, 2.0 mol %), and NaBAr<sub>4</sub><sup>F</sup> (44.3 mg, 0.050 mmol, 2.5 mol %). The mixture was dissolved in Et<sub>2</sub>O (2.50 mL) and allowed to stir for *ca*. 5 min, resulting in a deep orange solution.

To a 2-dram vial equipped with a magnetic stirring rod was added 0.50 mL of the above catalyst stock solution and then enyne **2a** (65.0  $\mu$ L, 0.480 mmol, 1.20 equiv). The reaction vial was then capped with a PTFE lined cap, removed from the glovebox, and allowed to cool in an ice water bath at 0–4 °C for *ca.* 15 minutes before Et<sub>3</sub>N (112  $\mu$ L, 0.800 mmol, 2.00 equiv) and appropriate amine nucleophile (0.400 mmol, 1.00 equiv) were added. The reaction mixtures were maintained at 4 °C for 3–5 h and then worked up and purified as described for General Method B.

Important Notes About Substrate Scope:


- The results for the substrate scope in the manuscript are an average of two runs, but for clarity, the results shown below are one of the two runs. In all cases the remainder of the mass balance is unreacted starting material and, unless otherwise noted, evidence of other competing side reactions was not observed.
- Some samples may contain ≤5% of the allylated starting amine (e.g. THIQ) that is generated upon pre-catalyst activation and which could not be separated from the desired product. Samples that contain this minor impurity are indicated with an asterisk (\*) where the yields are reported.
- It was found early on that many of the products produced in this research exhibit only moderate stability if stored neat at ambient temperature. In most cases, products can be stored for up to 48 h at ambient temperature without detectable decomposition. It is advised that the allene products be stored in a -20 °C freezer, where they are generally stable for weeks. To avoid problems associated with decomposition and racemization, all products were purified immediately after workup and were analyzed by <sup>1</sup>H NMR and HPLC immediately after purification.

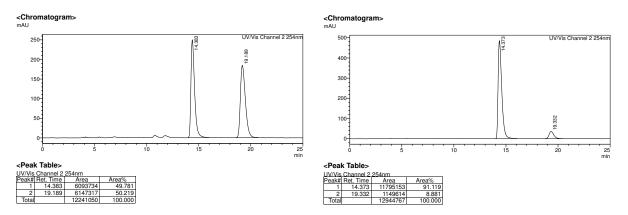


**2-(4-phenylbuta-2,3-dien-1-yl)-1,2,3,4-tetrahydroisoquinoline (2a):** Prepared by General Method B using **Pd-1** at 22 °C for 3 h. The material was purified by flash silica gel chromatography (75:25 hexanes:EtOAc) to yield **2a** as a pale yellow oil (46.1 mg, 0.176 mmol, 88.2 % yield). **IR** (neat, cm<sup>-1</sup>) 3026 (w), 2914 (w), 2787 (m), 2746 (w), 1947 (m), 1650 (w), 1597 (w), 1494 (m), 1456 (m), 1427 (w), 1360 (w), 1314 (w), 1277 (w), 1264 (w), 1232 (w), 1130 (m), 1089 (m); <sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.36–7.30 (4H, m), 7.24–7.20 (1H, m), 7.15–7.09 (3H, m), 7.06–7.01 (1H, m), 6.24 (1H, dt, *J* = 6.4, 2.5 Hz), 5.71 (1H, ddd, *J* = 6.7, 6.7, 6.7 Hz), 3.79 (1H, AB<sub>q</sub>, *J*<sub>AB</sub> = 15.0 Hz), 3.73 (1H, AB<sub>q</sub>, *J*<sub>AB</sub> = 15.0 Hz), 3.36 (2H, dd, *J* = 7.2, 2.4 Hz), 2.98–2.91 (2H, m), 2.89–2.83 (2H, m); <sup>13</sup>**C NMR** (125 MHz, CDCl<sub>3</sub>)  $\delta$  206.3, 134.7, 134.3, 134.2, 128.7, 128.7, 127.0, 126.8, 126.6, 126.2, 125.6, 94.9, 91.7, 57.2, 55.6, 50.4, 29.1; **HRMS** (ESI<sup>+</sup>) [M+H]<sup>+</sup> calc'd for C<sub>19</sub>H<sub>19</sub>N: 262.1590, found: 262.1591.

<u>Scaled Up Reaction</u>: To an oven-dried 25-mL round-bottom flask equipped with a magnetic stirring rod was added [Pd( $\eta^3$ -allyl)Cl]<sub>2</sub> (18.3 mg, 0.0500 mmol, 1.00 mol %), DPEphos (53.9 mg, 0.100 mmol, 2.00 mol %), and NaBAr<sub>4</sub><sup>F</sup> (102 mg, 0.115 mmol, 2.30 mol %). This mixture was dissolved in CH<sub>2</sub>Cl<sub>2</sub> (6.25 mL) which was then allowed to stir an ambient temperature for *ca*. 5 min. To this solution was added enyne **1a** (811  $\mu$ L, 6.00 mmol, 1.20 equiv) and then 1,2,3,4-tetrahydroisoquinoline (634  $\mu$ L, 5.00 mmol, 1.00 equiv). The reaction mixture was allowed to stir at ambient temperature for 3 h and then concentrated. The concentrated material was purified by flash silica gel chromatography (75:25 hexanes:EtOAc) to afford **2a** as a pale yellow oil (1.21 g, 4.61 mmol, 92.2% yield).

By General Method D: (*R*)-**2a** was isolated as a pale yellow oil (32.8 mg, 0.125 mmol, 62.7% yield). HPLC analysis indicated er = 92.5:7.5.  $[\alpha]_D^{24} = -161.0$  (*c* = 1.0, CHCl<sub>3</sub>) for a sample of 92.5:7.5 er.

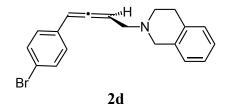



**HPLC:** Column: Cellulose-3 (3  $\mu$ m, 4.6 mm X 250 mm). Mobile phase: 90:10 hexanes:*i*-PrOH, 1 mL/min. Detection wavelength: 254 nm. Er = 92.5:7.5.



**2-(4-(4-methoxyphenyl)buta-2,3-dien-1-yl)-1,2,3,4-tetrahydroisoquinoline (2b):** Prepared by General Method B using **Pd-1** at 22 °C for 3 h. The material was purified by flash silica gel chromatography (75:25 hexanes:EtOAc) to yield **2b** as a yellow oil (49.8 mg, 0.171 mmol, 85.4% yield). **IR** (neat, cm<sup>-1</sup>) 3003 (w), 2916 (m), 2832 (w), 2786 (m), 2748 (w), 1946 (w), 1650 (w), 1605 (s), 1580 (w), 1509 (s), 1462 (m), 1439 (m), 1385 (w), 1358 (w), 1336 (w), 1301 (m), 1282 (w), 1241 (s), 1169 (s), 1130 (s), 1082 (m), 1060 (w), 1032 (s); <sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.29–7.20 (2H, m), 7.17–7.08 (3H, m), 7.06–6.99 (1H, m), 6.90–6.84 (2H, m), 6.19 (1H, dt, J = 6.4, 2.3 Hz), 5.67 (1H, ddd, J = 6.8, 6.8, 6.8 Hz), 3.80 (3H, s), 3.77 (1H, AB<sub>q</sub>,  $J_{AB} = 14.8 \text{ Hz}$ ), 3.71 (1H, AB<sub>q</sub>,  $J_{AB} = 14.8 \text{ Hz}$ ), 3.34 (2H, dd, J = 7.2, 2.4 Hz), 2.98–2.89 (2H, m), 2.88–2.80 (2H, m); <sup>13</sup>C **NMR** (125 MHz, CDCl<sub>3</sub>)  $\delta$  205.8, 158.8, 134.6, 134.2, 128.7, 127.9, 126.6, 126.5, 126.2, 125.6, 114.2, 94.3, 91.5, 57.5, 55.6, 55.3, 50.3, 29.1; **HRMS** (ESI<sup>+</sup>) [M+H]<sup>+</sup> calc'd for C<sub>20</sub>H<sub>21</sub>NO: 292.1696, found: 292.1698.

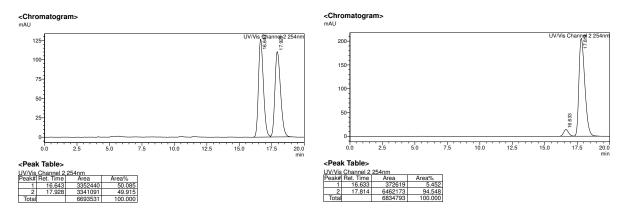
<u>By General Method D:</u> (*R*)-**2b** was isolated as a pale yellow oil (37.0 mg, 0.127 mmol, 63.5% yield). HPLC analysis indicated er = 91:9.  $[\alpha]_D^{25} = -116.3$  (*c* = 1.0, CHCl<sub>3</sub>) for a sample of 91:9 er.

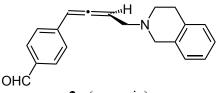

**HPLC:** Column: Cellulose-3 (3  $\mu$ m, 4.6 mm X 250 mm). Mobile phase: 70:30 hexanes:*i*-PrOH, 1 mL/min. Detection wavelength: 254 nm. Er = 91:9.





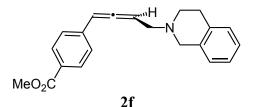
2c (racemic)


*N*-(4-(4-(3,4-dihydroisoquinolin-2(1*H*)-yl)buta-1,2-dien-1-yl)phenyl)acetamide (2c): Prepared by General Method B using Pd-1 at 22 °C for 3 h. The material was purified by flash silica gel chromatography (75:25 hexanes:EtOAc) to yield 2c as a yellow semisolid (45.5 mg, 0.143 mmol, 71.5% yield). **IR** (neat, cm<sup>-1</sup>) 3257 (m), 3023 (m), 2918 (m), 2801 (m), 2244 (w), 1947 (w), 1664 (s), 1599 (s), 1532 (s), 1511 (s), 1427 (m), 1368 (m), 1313 (s), 1262 (m), 1195 (w), 1176 (w), 1129 (w), 1088 (w), 1036 (w), 1007 (w); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.73 (1H, br s), 7.49–7.42 (2H, m), 7.26–7.19 (2H, m), 7.15–7.06 (3H, m) 7.04–6.98 (1H, m), 6.17 (1H, dt, J = 6.4, 2.5 Hz), 5.67 (1H, ddd, J = 6.7, 6.7, 6.7 Hz), 3.74 (1H, AB<sub>q</sub>,  $J_{AB} = 15.2$  Hz), 3.70 (1H, AB<sub>q</sub>,  $J_{AB} = 15.2$  Hz), 3.32 (2H, dd, J = 7.1, 2.1 Hz), 2.96–2.87 (2H, m), 2.86–2.78 (2H, m), 2.13 (3H, s); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) δ 206.2, 168.5, 136.9, 134.6, 134.1, 130.2, 128.7, 127.3, 126.6, 126.2, 125.7, 120.2, 94.4, 91.7, 57.2, 55.6, 50.3, 29.1, 24.6; **HRMS** (ESI<sup>+</sup>) [M+H]<sup>+</sup> calc'd for C<sub>21</sub>H<sub>22</sub>N<sub>2</sub>O: 319.1805, found: 319.1807.




**2-(4-(4-bromophenyl)buta-2,3-dien-1-yl)-1,2,3,4-tetrahydroisoquinoline (2d):** Prepared by General Method B using **Pd-1** at 22 °C for 3 h. The material was purified by flash silica gel chromatography (75:25 hexanes:EtOAc) to yield **2d** as a yellow solid (59.4 mg, 0.175 mmol, 87.3% yield). **IR** (neat, cm<sup>-1</sup>) 3019 (w), 2924 (m), 2789 (m), 2743 (m), 1946 (m), 1907 (w), 1583 (w), 1485 (s), 1452 (m), 1426 (m), 1377 (w), 1359 (m), 1330 (m), 1308 (m), 1226 (w), 1192 (w), 1129 (m), 1089 (s), 1037 (s), 1007 (s), 932 (m); <sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.46–7.40 (2H, m), 7.20–7.14 (2H, m), 7.14–7.07 (3H, m), 7.04–6.99 (1H, m), 6.16 (1H, dt, *J* = 6.4, 2.4 Hz), 5.68 (1H, ddd, *J* 6.9, 6.9, 6.9 Hz), 3.74 (1H, AB<sub>q</sub>, *J*<sub>AB</sub> = 15.8 Hz), 3.70 (1H, AB<sub>q</sub>, *J*<sub>AB</sub> = 15.8 Hz), 3.38–3.29 (2H, m), 2.97–2.89 (2H, m), 2.85–2.79 (2H, m); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  206.3, 134.6, 134.1, 133.4, 131.8, 128.8, 128.3, 126.6, 126.2, 125.7, 120.6, 94.1, 92.2, 57.0, 55.6, 50.4, 29.1; **HRMS** (ESI<sup>+</sup>) [M+H]<sup>+</sup> calc'd for C<sub>19</sub>H<sub>18</sub>NBr: 340.0695, found: 340.0704; **MP** = 66–69 °C.

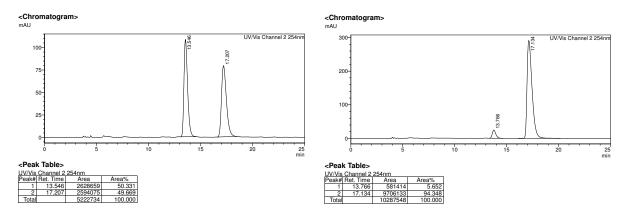
By General Method D: (*R*)-2d was isolated as a yellow solid (35.3 mg, 0.104 mmol, 51.9% yield). HPLC analysis indicated er = 94.5:5.5.  $[\alpha]_{D}^{27} = -182.3$  (*c* = 1.0, CHCl<sub>3</sub>) for a sample of 94.5:5.5 er.

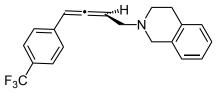

**HPLC:** Column: Cellulose-3 (3  $\mu$ m, 4.6 mm X 250 mm). Mobile phase: 80:20 hexanes:*i*-PrOH, 1 mL/min. Detection wavelength: 254 nm. Er = 94.5:5.5.





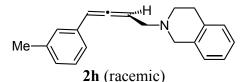
2e (racemic)


**4-(4-(3,4-dihydroisoquinolin-2(1***H***)-yl)buta-1,2-dien-1-yl)benzaldehyde (2e):** Prepared by General Method B using **Pd-1** at 22 °C for 3 h. The material was purified by flash silica gel chromatography (70:30 hexanes:EtOAc) to yield **2e** as a yellow oil (38.9 mg, 0.134 mmol, 67.2% yield). **IR** (neat, cm<sup>-1</sup>) 3021 (w), 2917 (w), 2801 (m), 2744 (w), 1945 (m), 1690 (s), 1600 (s), 1570 (w), 1497 (w), 1428 (w), 1384 (w), 1334 (w), 1303 (m), 1210 (m), 1163 (m), 1130 (w), 1091 (m), 1056 (w), 1038 (w), 1013 (w); <sup>1</sup>H **NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  9.96 (1H, s), 7.86–7.79 (2H, m), 7.48–7.41 (2H, m), 7.17–7.06 (3H, m), 7.04–6.98 (1H, m), 6.28 (1H, dt, *J* = 6.4, 2.4 Hz), 5.77 (1H, ddd, *J* = 6.7, 6.7, 6.7 Hz), 3.75 (1H, AB<sub>q</sub>, *J*<sub>AB</sub> = 15.1 Hz), 3.73 (1H, AB<sub>q</sub>, *J*<sub>AB</sub> = 15.1 Hz), 3.43–3.33 (2H, m), 2.97–2.89 (2H, m), 2.87–2.79 (2H, m); <sup>13</sup>C **NMR** (125 MHz, CDCl<sub>3</sub>)  $\delta$  207.6, 191.6, 141.1, 135.0, 134.4, 134.0, 130.1, 128.7, 127.2, 126.6, 126.3, 125.7, 94.6, 92.2, 56.7, 55.5, 50.3, 29.0; **HRMS** (ESI<sup>+</sup>) [M+H]<sup>+</sup> calc'd for C<sub>20</sub>H<sub>19</sub>NO: 290.1539, found: 290.1540.

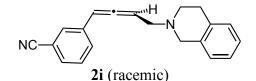



**methyl 4-(4-(3,4-dihydroisoquinolin-2(1***H***)-yl)buta-1,2-dien-1-yl)benzoate (2f):** Prepared by General Method B using **Pd-1** at 22 °C for 3 h. The material was purified by flash silica gel chromatography (70:30 hexanes:EtOAc) to yield **2f** as a pale yellow oil (55.0 mg, 0.172 mmol, 86.1 % yield). **IR** (neat, cm<sup>-1</sup>) 3026 (w), 2912 (w), 2806 (w), 1952 (w), 1713 (s), 1605 (m), 1497 (w), 1435 (m), 1362 (w), 1331 (w), 1276 (s), 1235 (w), 1192 (w), 1177 (m), 1109 (m), 1091 (m), 1014 (w), 1039 (w); <sup>1</sup>H **NMR** (400 MHz, CDCl<sub>3</sub>) δ 8.02–7.96 (2H, m), 7.39–7.32 (2H, m), 7.17–7.05 (3H, m), 7.04–6.98 (1H, m), 6.25 (1H, dt, J = 6.4, 2.3 Hz), 5.74 (1H, ddd, J = 6.7, 6.7, 6.7 Hz), 3.90 (3H, s), 3.76 (1H, AB<sub>q</sub>,  $J_{AB} = 14.9$  Hz), 3.70 (1H, AB<sub>q</sub>,  $J_{AB} = 14.9$  Hz), 3.36 (2H, dt, J = 7.1, 2.0 Hz), 2.97–2.88 (2H, m), 2.87–2.77 (2H, m); <sup>13</sup>C **NMR** (125 MHz, CDCl<sub>3</sub>) δ 207.2, 166.9, 139.4, 134.5, 134.0, 130.0, 128.7, 128.5, 126.6, 126.2, 125.7, 94.5, 92.1, 56.8, 55.5, 52.1, 50.3, 29.1 (note: one sp<sup>2</sup> carbon could not be identified due to overlap); **HRMS** (ESI<sup>+</sup>) [M+H]<sup>+</sup> calc'd for C<sub>21</sub>H<sub>21</sub>NO<sub>2</sub>: 320.1645, found: 320.1645.

<u>By General Method D:</u> (*R*)-**2f** was isolated as a pale yellow oil (38.1 mg, 0.119 mmol, 59.6% yield). HPLC analysis standard indicated er = 95.5:4.5.  $[\alpha]_D^{24} = -158.7$  (*c* = 1.0, CHCl<sub>3</sub>) for a sample of 94.5:5.5 er.

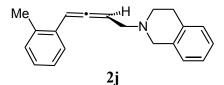

**HPLC:** Column: Cellulose-3 (3  $\mu$ m, 4.6 mm X 250 mm). Mobile phase: 70:30 hexanes:*i*-PrOH, 1 mL/min. Detection wavelength: 254 nm. Er = 94.5:5.5.






#### 2g (racemic)

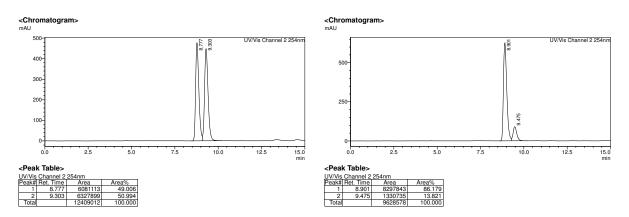
**2-(4-(4-(trifluoromethyl)phenyl)buta-2,3-dien-1-yl)-1,2,3,4-tetrahydroisoquinoline** (2g): Prepared by General Method B using Pd-1 at 22 °C for 3 h. The material was purified by flash silica gel chromatography (80:20 hexanes:EtOAc) to yield 2g as a yellow solid (58.7 mg, 0.178 mmol, 89.1 % yield). IR (neat, cm<sup>-1</sup>) 3023 (w), 2925 (w), 2814 (w), 1951 (m), 1611 (m), 1581 (w), 1497 (w), 1464 (w), 1450 (w), 1438 (w), 1359 (w), 1322 (s), 1157 (s), 1113 (s), 1087 (m), 1063 (s), 1028 (w), 1014 (m); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.67 (2H, d *J* = 8.2 Hz), 7.40 (2H, d, *J* = 8.2 Hz), 7.18–7.08 (3H, m), 7.06–6.99 (1H, m), 6.26 (1H, dt, *J* = 6.4, 2.3 Hz), 5.76 (1H, ddd, *J* = 6.8, 6.8, 6.8 Hz), 3.76 (1H, AB<sub>q</sub>, *J*<sub>AB</sub> = 15.7 Hz), 3.73 (1H, AB<sub>q</sub>, *J*<sub>AB</sub> = 15.7 Hz), 3.41–3.32 (2H, m), 2.99–2.90 (2H, m), 2.88–2.81 (2H, m); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  207.0, 138.3, 134.4, 134.0, 128.9 (q, *J*<sub>CF</sub> = 32.0 Hz), 128.7, 126.9, 126.6 (q, *J*<sub>CF</sub> = 3.2 Hz), 125.7, 125.6, 125.6, 124.2 (q, *J*<sub>CF</sub> = 270.2 Hz), 94.1, 92.2, 56.8, 55.6, 50.3, 29.1; <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  –62.4; HRMS (ESI<sup>+</sup>) [M+H]<sup>+</sup> calc'd for C<sub>20</sub>H<sub>18</sub>F<sub>3</sub>N: 330.1464, found: 330.1460; MP = 73–75 °C.

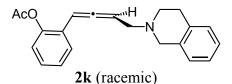



**2-(4-(***m***-tolyl)buta-2,3-dien-1-yl)-1,2,3,4-tetrahydroisoquinoline (2h)**: Prepared by General Method B using **Pd-1** at 22 °C for 3 h. The material was purified by flash silica gel chromatography (75:25 hexanes:EtOAc) to yield **2h** as a pale yellow oil (48.2 mg, 0.175 mmol, 87.5% yield). **IR** (neat, cm<sup>-1</sup>) 3021 (w), 2915 (m), 2792 (m), 2746 (w), 1947 (m), 1584 (m), 1603 (w), 1488 (m), 1453 (m), 1380 (w), 1359 (w), 1332 (m), 1306 (w), 1276 (w), 1232 (w), 1130 (m), 1091 (m), 1056 (w), 1038 (w); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.26–7.20 (1H, m), 7.18–7.10 (5H, m), 7.07–7.02 (2H, m), 6.21 (1H, dt, *J* = 6.4, 2.3 Hz), 5.70 (1H, ddd, *J* = 7.0, 7.0, 7.0 Hz), 3.80 (1H, ABq, *J*<sub>AB</sub> = 14.8 Hz), 3.73 (1H, ABq, *J*<sub>AB</sub> = 14.8 Hz), 3.36 (2H, dd, *J* = 7.2, 2.4 Hz), 2.99–2.92 (2H, m), 2.90–2.83 (2H, m), 2.36 (3H, s); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  206.4, 138.2, 134.6, 134.2, 134.1, 128.7, 128.6, 127.8, 127.5, 126.6, 126.2, 125.7, 124.0, 94.8, 91.4, 57.2, 55.5, 50.3, 29.1, 21.4; HRMS (ESI<sup>+</sup>) [M+H]<sup>+</sup> calc'd for C<sub>20</sub>H<sub>21</sub>N: 276.1747, found: 276.1749.

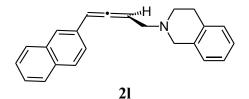


**3-(4-(3,4-dihydroisoquinolin-2(1***H***)-yl)buta-1,2-dien-1-yl)benzonitrile (2i):** Prepared by General Method B using **Pd-1** at 22 °C for 3 h. The material was purified by flash silica gel chromatography (65:35 hexanes:EtOAc) to yield **2i** as a pale yellow oil (53.8 mg, 0.188 mmol, 93.9% yield).\* **IR** (neat, cm<sup>-1</sup>) 3021 (w), 2917 (m), 2796 (m), 2229 (m), 1948 (m), 1597 (w), 1578


(w), 1497 (w), 1481 (m), 1463 (m), 1453 (m), 1434 (m), 1381 (w), 1359 (w), 1332 (m), 1305 (w), 1277 (w), 1226 (w), 1192 (w), 1130 (m), 1092 (m), 1056 (w); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.57 (1H, s), 7.53–7.44 (2H, m), 7.40 (1H, dd *J* = 7.7, 7.7 Hz), 7.18–7.06 (3H, m), 7.05–6.99 (1H, m), 6.20 (1H, dt, *J* = 6.4, 2.4 Hz), 5.77 (1H, ddd, *J* = 6.9, 6.9, 6.9 Hz), 3.75 (1H, AB<sub>q</sub>, *J*<sub>AB</sub> = 15.2 Hz), 3.71 (1H, AB<sub>q</sub>, *J*<sub>AB</sub> =15.2 Hz), 3.42–3.30 (2H, m), 2.97–2.88 (2H, m), 2.86–2.78 (2H, m); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  206.6, 136.0, 134.4, 134.0, 130.9, 130.3, 130.1, 129.4, 128.7, 126.6, 126.2, 125.7, 118.7, 112.8, 93.5, 92.9, 56.8, 55.6, 50.4, 29.1; HRMS (ESI<sup>+</sup>) [M+H]<sup>+</sup> calc'd for C<sub>20</sub>H<sub>18</sub>N<sub>2</sub>: 287.1543, found: 287.1544.



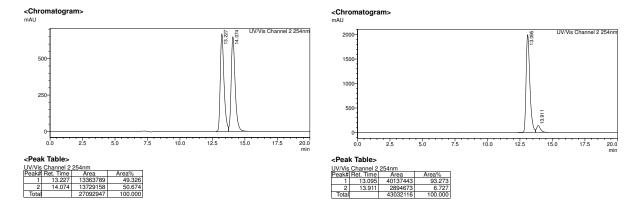

**2-(4-(***o***-tolyl)buta-2,3-dien-1-yl)-1,2,3,4-tetrahydroisoquinoline (2j):** Prepared by General Method B using **Pd-1** at 22 °C for 3 h. The material was purified by flash silica gel chromatography (75:25 hexanes:EtOAc) to yield **2j** as a pale yellow oil (43.0 mg, 0.156 mmol, 78.1% yield). **IR** (neat, cm<sup>-1</sup>) 3021 (w), 2915 (m), 2786 (m), 2746 (w), 1945 (m), 1655 (w), 1600 (w), 1491 (m), 1462 (m), 1381 (w), 1358 (w), 1334 (m), 1302 (w), 1276 (w), 1192 (w), 1127 (m), 1095 (m), 1037 (w); <sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.41 (1H, d, J = 7.6 Hz), 7.22–7.09 (6H, m), 7.06–7.01 (1H, m), 6.43 (1H, dt, J = 6.4, 2.4 Hz), 5.67 (1H, ddd, J = 7.0, 7.0, 7.0 Hz), 3.77 (1H, AB<sub>q</sub>,  $J_{AB}$  = 15.0 Hz), 3.72 (1H, AB<sub>q</sub>,  $J_{AB}$  = 15.0 Hz), 3.36 (2H, dd, J = 7.1, 2.4 Hz), 2.98–2.91 (2H, m), 2.88–2.82 (2H, m), 2.38 (3H, s); <sup>13</sup>**C NMR** (125 MHz, CDCl<sub>3</sub>)  $\delta$  207.0, 135.0, 134.6, 134.1, 132.5, 130.5, 128.7, 127.3, 126.9, 126.6, 126.2, 126.1, 125.7, 92.1, 90.8, 57.3, 55.6, 50.4, 29.1, 19.9; **HRMS** (ESI<sup>+</sup>) [M+H]<sup>+</sup> calc'd for C<sub>20</sub>H<sub>21</sub>N: 276.1747, found: 276.1752.

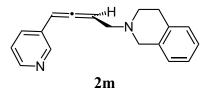

<u>By General Method D:</u> (*R*)-2j was isolated as a pale yellow oil (32.7 mg, 0.119 mmol, 59.4% yield). HPLC analysis indicated er = 86:14.  $[\alpha]_D^{27} = -102.2$  (*c* = 1.0, CHCl<sub>3</sub>) for a sample of 86:14 er.

**HPLC:** Column: Cellulose-3 (3  $\mu$ m, 4.6 mm X 250 mm). Mobile phase: 90:10 hexanes:*i*-PrOH, 1 mL/min. Detection wavelength: 254 nm. Er = 86:14.





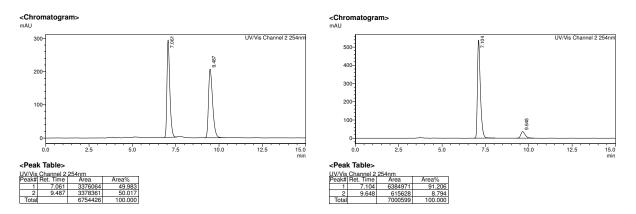

**2-(4-(3,4-dihydroisoquinolin-2(1***H***)-yl)buta-1,2-dien-1-yl)phenyl acetate (2k):** Prepared by General Method B using **Pd-1** at 22 °C for 3 h. The material was purified by flash silica gel chromatography (75:25 hexanes:EtOAc) to yield **2k** as a pale yellow oil (42.9 mg, 0.134 mmol, 67.2% yield). **IR** (neat, cm<sup>-1</sup>) 3021 (w), 2917 (m), 2789 (w), 1948 (m), 1762 (s), 1649 (w), 1604 (w), 1580 (w), 1490 (m), 1453 (w), 1367 (m), 1334 (w), 1307 (w), 1277 (w), 1194 (s), 1171 (s), 1131 (m), 1091 (s), 1038 (w), 1008 (m); <sup>1</sup>H **NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.50–7.42 (1H, m), 7.29–7.18 (2H, m), 7.16–6.98 (5H, m), 6.28 (1H, dt, *J* = 6.5, 2.3 Hz), 5.70 (1H, ddd, *J* = 7.0, 7.0, 7.0 Hz), 3.75 (1H, AB<sub>q</sub>, *J*<sub>AB</sub> = 15.1 Hz), 3.71 (1H, AB<sub>q</sub>, *J*<sub>AB</sub> = 15.1 Hz), 3.40–3.29 (2H, m), 2.96–2.89 (2H, m), 2.87–2.78 (2H, m), 2.33 (3H, s); <sup>13</sup>C **NMR** (125 MHz, CDCl<sub>3</sub>)  $\delta$  207.0, 169.2, 147.5, 134.6, 134.1, 128.7, 128.3, 127.9, 126.6, 126.5, 126.2, 125.6, 122.8, 91.5, 88.7, 57.0, 55.6, 50.4, 29.1, 20.9 (one sp<sup>2</sup> carbon could not be identified due to overlap); **HRMS** (ESI<sup>+</sup>) [M+H]<sup>+</sup> calc'd for C<sub>21</sub>H<sub>21</sub>NO<sub>2</sub>: 320.1645, found: 320.1649.

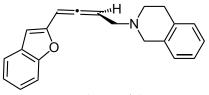



**2-(4-(naphthalen-2-yl)buta-2,3-dien-1-yl)-1,2,3,4-tetrahydroisoquinoline (2l):** Prepared by General Method B using **Pd-1** at 22 °C for 3 h. The material was purified by flash silica gel chromatography (75:25 hexanes:EtOAc) to yield **2l** as a white solid (56.1 mg, 0.180 mmol, 90.1% yield). **IR** (neat, cm<sup>-1</sup>) 2906 (w), 2808 (w), 1940 (w), 1596 (w), 1496 (w), 1448 (w), 1380 (w), 1356 (w), 1322 (w), 1270 (w), 1126 (w), 1082 (w); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.89–7.73 (3H, m), 7.69 (1H, s), 7.58–7.39 (3H, m), 7.21–7.10 (3H, m), 7.10–6.98 (1H, m), 6.43 (1H, dt, *J* = 6.3, 2.6 Hz), 7.79 (1H, ddd, *J* = 6.9, 6.9, 6.9 Hz), 3.82 (1H, AB<sub>q</sub>, *J*<sub>AB</sub> = 14.8 Hz), 3.76 (1H, AB<sub>q</sub>, *J*<sub>AB</sub> = 14.8 Hz), 3.41 (2H, dt, *J* = 7.1, 2.1 Hz), 3.01–2.93 (2H, m), 2.92–2.84 (2H, m); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  206.9, 134.7, 134.2, 133.7, 132.7, 131.9, 128.8, 128.3, 127.8, 127.7, 126.7, 126.3, 126.2, 125.7, 125.7, 125.7, 124.7, 95.3, 92.0, 57.3, 55.7, 50.4, 29.2; HRMS (ESI<sup>+</sup>) [M+H]<sup>+</sup> calc'd for C<sub>23</sub>H<sub>21</sub>N: 312.1747, found: 312.1744; **MP** = 101–104 °C.

By General Method D: (*R*)-21 was isolated as a white solid (40.0 mg, 0.128 mmol, 64.2% yield). HPLC analysis indicated er = 93.5:6.5.  $[\alpha]_D^{26} = -198.8$  (*c* = 1.0, CHCl<sub>3</sub>) for a sample of 93.5:6.5 er.

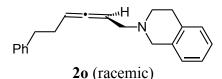
**HPLC:** Column: Chiralpak 1A-3 (3  $\mu$ m, 4.6 mm X 150 mm). Mobile phase: 98:2 *i*-PrOH:MeCN with 0.1% Et<sub>2</sub>NH additive, 0.25 mL/min. Detection wavelength: 254 nm. Er = 93.5:6.5.



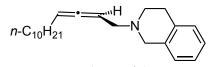




**2-(4-(pyridin-3-yl)buta-2,3-dien-1-yl)-1,2,3,4-tetrahydroisoquinoline** (**2m**): Prepared by General Method B using **Pd-1** at 22 °C for 3 h. The material was purified by flash silica gel chromatography (70:30 hexanes:EtOAc with an additional 2% Et<sub>3</sub>N additive) to yield **2m** as a pale yellow oil (42.3 mg, 0.161 mmol, 80.6% yield).\* **IR** (neat, cm<sup>-1</sup>) 3022 (w), 2917 (m), 2796 (m), 1948 (m), 1643 (w), 1584 (w), 1570 (m), 1497 (w), 1480 (m), 1445 (m), 1427 (m), 1383 (w), 1325 (m), 1232 (w), 1180 (w), 1129 (m), 1093 (m), 1056 (w), 1024 (m); <sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.52 (1H, d, J = 2.1 Hz), 8.42 (1H, dd, J = 4.8, 1.6 Hz), 7.58 (1H, ddd, J = 7.9, 1.8, 1.8 Hz), 7.25–7.19 (1H, m), 7.14–7.06 (3H, m), 7.03–6.98 (1H, m), 6.19 (1H, dt, J = 6.4, 2.4 Hz), 5.73 (1H, ddd, J = 6.9, 6.9, 6.9 Hz), 3.74 (1H, AB<sub>q</sub>,  $J_{AB} = 15.2$  Hz), 3.70 (1H, AB<sub>q</sub>,  $J_{AB} = 15.2$  Hz), 3.55 (2H, dd, J = 7.1, 2.4 Hz), 2.95–2.87 (2H, m), 2.86–2.79 (2H, m); <sup>13</sup>C **NMR** (125 MHz, CDCl<sub>3</sub>)  $\delta$  206.5, 148.2, 148.0, 134.4, 134.0, 133.5, 130.3, 128.7, 126.6, 126.2, 125.7, 123.5, 92.4, 91.7, 56.8, 55.6, 50.3, 29.0; **HRMS** (ESI<sup>+</sup>) [M+H]<sup>+</sup> calc'd for C<sub>18</sub>H<sub>18</sub>N<sub>2</sub>: 263.1543, found: 263.1545.

<u>By General Method D:</u> (*R*)-2m was isolated as a pale yellow oil (16.0 mg, 0.0610 mmol, 30.5% yield). HPLC analysis indicated er = 91:9.  $[\alpha]_D^{26} = -120.9$  (*c* = 1.0, CHCl<sub>3</sub>) for a sample of 91:9 er.


**HPLC:** Column: Cellulose-3 (3  $\mu$ m, 4.6 mm X 250 mm). Mobile phase: 70:30 hexanes:*i*-PrOH, 1 mL/min. Detection wavelength: 254 nm. Er = 91:9.

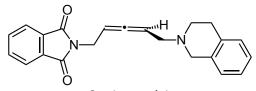





#### **2n** (racemic)

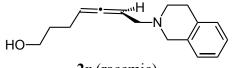
**2-(4-(benzofuran-2-yl)buta-2,3-dien-1-yl)-1,2,3,4-tetrahydroisoquinoline (2n):** Prepared by General Method B using **Pd-1** at 22 °C for 15 h. The material was purified by flash silica gel chromatography (75:25 hexanes:EtOAc) to yield **2n** as a pale yellow oil (38.9 mg, 0.129 mmol, 64.5% yield). **IR** (neat, cm<sup>-1</sup>) 3021 (w), 2916 (m), 2796 (m), 1950 (w), 1679 (w), 1582 (w), 1497 (w), 1453 (m), 1382 (w), 1361 (w), 1279 (w), 1253 (m), 1220 (w), 1164 (w), 1130 (m), 1090 (m), 1007 (w); <sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.53–7.47 (1H, m), 7.44 (1H, d, J = 8.0 Hz), 7.29–7.17 (2H, m), 7.16–7.08 (3H, m), 7.07–6.99 (1H, m), 6.59 (1H, s), 6.30 (1H, dt, J = 6.4, 2.3 Hz), 5.83 (1H, ddd, J = 6.9, 6.9, 6.9 Hz), 3.86 (1H, AB<sub>q</sub>,  $J_{AB}$  = 14.9 Hz), 3.74 (1H, AB<sub>q</sub>,  $J_{AB}$  = 14.9 Hz), 3.39 (2H, dd, J = 7.2, 2.4 Hz), 2.99–2.92 (2H, m), 2.92–2.86 (2H, m); <sup>13</sup>C **NMR** (125 MHz, CDCl<sub>3</sub>)  $\delta$  207.1, 155.0, 150.8, 134.7, 134.2, 129.1, 128.8, 126.7, 126.2, 125.7, 124.1, 122.8, 120.5, 110.9, 104.0, 92.5, 85.9, 57.0, 55.6, 50.4, 29.2; **HRMS** (ESI<sup>+</sup>) [M+H]<sup>+</sup> calc'd for C<sub>21</sub>H<sub>19</sub>NO: 302.1539, found: 302.1534.




**2-(6-phenylhexa-2,3-dien-1-yl)-1,2,3,4-tetrahydroisoquinoline (20):** Prepared by General Method C at 22 °C for 3 h. The material was purified by flash silica gel chromatography (80:20 hexanes:EtOAc) to yield **20** as a pale yellow oil (50.3 mg, 0.174 mmol, 86.9% yield). **IR** (neat, cm<sup>-1</sup>) 3023 (w), 2916 (m), 2789 (m), 2747 (w), 1961 (m), 1651 (m), 1603 (w), 1583 (w), 1496 (m), 1452 (m), 1385 (w), 1360 (w), 1333 (m), 1232 (w), 1192 (w), 1130 (m), 1091 (m), 1029 (w); **<sup>1</sup>H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.34–7.27 (2H, m), 7.24–7.17 (3H, m), 7.16–7.08 (3H, m), 7.05–7.00 (1H, m), 5.27–5.20 (2H, m), 3.69 (1H, AB<sub>q</sub>, *J*<sub>AB</sub> = 15.1 Hz), 3.64 (1H, AB<sub>q</sub>, *J*<sub>AB</sub> = 15.1 Hz), 3.18–3.12 (2H, m), 2.92 (2H, app. t, *J* = 5.9 Hz), 2.82–2.71 (4H, m), 2.42–2.31 (2H, m); **<sup>13</sup>C NMR** (125 MHz, CDCl<sub>3</sub>)  $\delta$  205.5, 141.7, 134.7, 134.2, 128.7, 128.6, 128.3, 126.6, 126.1, 125.9, 125.6, 90.5, 88.0, 57.6, 55.5, 50.2, 35.5, 30.5, 29.0; **HRMS** (ESI<sup>+</sup>) [M+H]<sup>+</sup> calc'd for C<sub>21</sub>H<sub>23</sub>N: 290.1903, found: 290.1902.

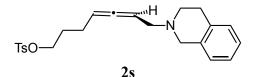


**2p** (racemic)

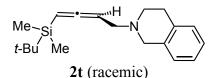

**2-(tetradeca-2,3-dien-1-yl)-1,2,3,4-tetrahydroisoquinoline (2p):** Prepared by General Method C at 22 °C for 3 h. The material was purified by flash silica gel chromatography (85:15 hexanes:EtOAc) to yield **2p** as a pale yellow oil (53.0 mg, 0.163 mmol, 81.4% yield). **IR** (neat, cm<sup>-1</sup>) 2921 (s), 2851 (s), 2791 (m), 2747 (w), 1961 (w), 1658 (w), 1585 (w), 1498 (w), 1454 (m), 1397 (w), 1360 (w), 1333 (m), 1303 (w), 1232 (w), 1192 (w), 1193 (w), 1092 (m); <sup>1</sup>**H NMR** (400

MHz, CDCl<sub>3</sub>)  $\delta$  7.16–7.06 (3H, m), 7.05–6.99 (1H, m), 5.25–5.12 (2H, m), 3.71 (1H, AB<sub>q</sub>, J<sub>AB</sub> = 15.1 Hz), 3.66 (1H, AB<sub>q</sub>, J<sub>AB</sub> = 15.1 Hz), 3.19 (2H, dt, J = 6.9, 2.6 Hz), 2.94–2.89 (2H, m), 2.83–2.76 (2H, m), 2.07–1.95 (2H, m), 1.471.15 (16H, m), 0.872 (3H, t, J = 7.0 Hz); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  205.3, 134.7, 134.2, 128.7, 126.6, 126.1, 125.6, 91.3, 87.5, 57.8, 55.5, 50.2, 31.9, 29.7, 29.5, 29.4, 29.2, 29.1, 29.0, 28.7, 22.7, 14.1 (note: one sp<sup>3</sup> carbon could not be identified due to overlap); **HRMS** (ESI<sup>+</sup>) [M+H]<sup>+</sup> calc'd for C<sub>23</sub>H<sub>35</sub>N: 326.2842, found: 326.2841.



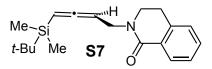

**2q** (racemic)

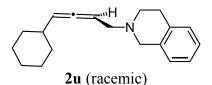
**2-(5-(3,4-dihydroisoquinolin-2(1***H***)-yl)penta-2,3-dien-1-yl)isoindoline-1,3-dione (2q):** Prepared by General Method C at 22 °C for 3 h. The material was purified by flash silica gel chromatography (50:50 hexanes:EtOAc) to yield **2q** as a yellow oil (54.4 mg, 0.158 mmol, 79.0% yield).\* **IR** (neat, cm<sup>-1</sup>) 2921 (w), 2792 (w), 1966 (w), 1771 (m), 1709 (s), 1613 (w), 1498 (w), 1466 (w), 1425 (m), 1388 (s), 1315 (s), 1189 (w), 1170 (w), 1129 (w), 1109 (m), 1088 (m), 1007 (w); <sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.85–7.80 (2H, m), 7.71–7.66 (2H, m), 7.13–6.98 (3H, m), 6.92–6.84 (1H, m), 5.37–5.26 (2H, m), 4.34–4.23 (2H, m), 3.56 (1H, AB<sub>q</sub>, *J*<sub>AB</sub> = 15.5 Hz), 3.52 (1H, AB<sub>q</sub>, *J*<sub>AB</sub> = 15.5 Hz), 3.23–3.14 (1H, m), 3.12–3.02 (1H, m), 2.80–2.70 (2H, m), 2.61 (2H, app. t, *J* = 5.9 Hz); <sup>13</sup>C **NMR** (125 MHz, CDCl<sub>3</sub>)  $\delta$  204.8, 167.7, 134.5, 134.0, 134.0, 132.1, 128.6, 126.6, 126.1, 125.5, 123.3, 91.2, 87.2, 56.9, 55.4, 50.1, 36.6, 29.0; **HRMS** (ESI<sup>+</sup>) [M+H]<sup>+</sup> calc'd for C<sub>22</sub>H<sub>20</sub>N<sub>2</sub>O<sub>2</sub>: 345.1598, found: 345.1600.




2r (racemic)

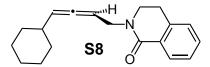
**7-(3,4-dihydroisoquinolin-2(1***H***)-yl)hepta-4,5-dien-1-ol (2r):** Prepared by General Method C at 22 °C for 3 h. The material was purified by flash silica gel chromatography (50:50 hexanes:EtOAc to 100% EtOAc) to yield **2r** as a colorless oil (28.5 mg, 0.117 mmol, 58.5% yield). **IR** (neat, cm<sup>-1</sup>) 3283 (br m), 2917 (m), 2794 (m), 1960 (m), 1584 (w), 1498 (w), 1451 (m), 1385 (w), 1360 (w), 1333 (m), 1304 (m), 1233 (w), 1192 (w), 1130 (m), 1057 (s); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.13–7.06 (3H, m), 7.03–6.98 (1H, m), 5.26–5.13 (2H, m), 3.67 (2H, s), 3.61 (2H, t, *J* = 6.4 Hz), 3.21–3.11 (2H, m), 2.94–2.86 (2H, m), 2.81–2.73 (2H, m), 2.31 (1H, br s), 2.15–2.02 (2H, m), 1.72–1.57 (2H, m); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  205.4, 134.5, 134.1, 128.7, 126.6, 126.2, 125.6, 90.8, 87.9, 61.8, 57.5, 55.6, 50.4, 31.7, 28.9, 25.0; **HRMS** (ESI<sup>+</sup>) [M+H]<sup>+</sup> calc'd for C<sub>16</sub>H<sub>21</sub>NO: 244.1696, found: 244.1694.

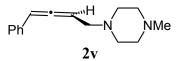




**7-(3,4-dihydroisoquinolin-2(1***H***)-yl)hepta-4,5-dien-1-yl 4-methylbenzenesulfonate (2s):** Prepared by General Method C at 22 °C for 3 h. The material was purified by flash silica gel chromatography (50:50 hexanes:EtOAc) to yield **2s** as a pale yellow oil (59.4 mg, 0.149 mmol, 74.7% yield). **IR** (neat, cm<sup>-1</sup>) 2918 (w), 2791 (w), 1962 (w), 1650 (w), 1597 (w), 1496 (w), 1449 (m), 1356 (s), 1306 (w), 1232 (w), 1188 (m), 1173 (s), 1095 (m), 1033 (w), 1009 (m), 927 (s); <sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.79–7.74 (2H, m), 7.31 (2H, d, *J* = 8.3 Hz), 7.13–7.04 (3H, m), 7.02–6.97 (1H, m), 5.26–5.15 (1H, m), 5.13–5.00 (1H, m), 4.06 (2H, t, *J* = 6.4 Hz), 3.65 (2H, s), 3.15 (2H, dd, *J* = 7.1, 2.4 Hz), 2.92–2.85 (2H, m), 2.79–2.71 (2H, m), 2.41 (3H, s), 2.10–2.00 (2H, m), 1.82–1.70 (2H, m); <sup>13</sup>**C NMR** (125 MHz, CDCl<sub>3</sub>)  $\delta$  205.3, 144.7, 134.4, 134.0, 133.1, 129.8, 128.7, 127.9, 126.6, 126.2, 125.6, 89.7, 88.5, 69.7, 57.5, 55.5, 50.2, 28.9, 28.1, 24.3, 21.6; **HRMS** (ESI<sup>+</sup>) [M+H]<sup>+</sup> calc'd for C<sub>23</sub>H<sub>27</sub>NO<sub>3</sub>S: 398.1784, found: 398.1783.



(*S*)-2-(4-(*tert*-butyldimethylsilyl)buta-2,3-dien-1-yl)-1,2,3,4-tetrahydroisoquinoline (2t): Prepared by General Method C at 22 °C for 15 h. The material was purified by flash silica gel chromatography (100% hexanes to 85:15 hexanes:EtOAc) to afford 2t (60.6 mg, 0.202 mmol, 50.6% yield) as a yellow oil. **IR** (neat, cm<sup>-1</sup>) 2950 (m), 2926 (m), 2855 (m), 2803 (w), 1937 (s), 1657 (w), 1498 (w), 1462 (m), 1376 (w), 1360 (m), 1323 (m), 1190 (w), 1129 (w), 1096 (m), 1056 (w), 936 (m); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.16–7.06 (3H, m), 7.04–6.99 (1H, m), 4.97 (1H, dt, J = 6.8, 2.9, Hz), 4.90 (1H, ddd, J = 7.2, 7.2, 7.2 Hz), 3.73 (1H, AB<sub>q</sub>,  $J_{AB} = 15.0 Hz$ ), 3.66 (1H, AB<sub>q</sub>,  $J_{AB} = 15.0 Hz$ ), 3.28–3.17 (2H, m), 2.95–2.87 (2H, m), 2.83–2.74 (2H, m), 0.903 (9H, s), 0.07 (6H, s); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  211.1, 134.5, 134.1, 128.7, 126.6, 126.2, 125.7, 79.8, 79.6, 57.2, 55.3, 50.1, 29.0, 26.3, 17.0, –5.56, –5.65; **HRMS** (ESI<sup>+</sup>) [M+H]<sup>+</sup> calc'd for C<sub>19</sub>H<sub>29</sub>NSi: 300.2142, found: 300.2143.

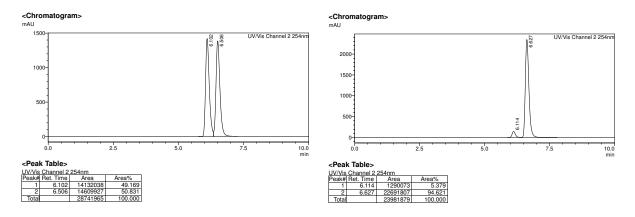

The formation of 2t was accompanied by the formation of *ca*. 5% of an oxidized side product that could not be separated and which we propose is S7. We have not fully characterized this minor side product and so cannot assign its structure with absolute certainty.

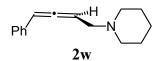





**2-(4-cyclohexylbuta-2,3-dien-1-yl)-1,2,3,4-tetrahydroisoquinoline (2u):** Prepared by General Method C at 22 °C for 15 h. The material was purified by flash silica gel chromatography (85:15 hexanes:EtOAc) to afford **2u** (84.6 mg, 0.316 mmol, 79.1% yield) as a yellow oil. **IR** (neat, cm<sup>-1</sup>) 2920 (s), 2848 (s), 2789 (m), 2746 (w), 1959 (w), 1656 (m), 1605 (w), 1497 (w), 1479 (w), 1447 (s), 1385 (w), 1359 (w), 1329 (m), 1304 (m), 1231 (w), 1192 (w), 1130 (m), 1092 (m); <sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.15–7.05 (3H, m), 7.04–6.97 (1H, m), 5.23 (1H, ddd, *J* = 13.5, 7.0, 3.0 Hz), 5.19–5.13 (1H, m), 3.71 (1H, AB<sub>q</sub>, *J*<sub>AB</sub> = 15.1 Hz), 3.66 (1H, AB<sub>q</sub>, *J*<sub>AB</sub> = 15.1 Hz), 3.24–3.14 (2H, m), 2.95–2.87 (2H, m), 2.83–2.75 (2H, m), 2.07–1.93 (1H, m), 1.83–1.55 (5H, m), 1.36–1.01 (5H, m); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  204.2, 134.7, 134.2, 128.7, 126.6, 126.1, 125.6, 97.3, 88.5, 58.0, 55.6, 50.2, 37.2, 33.2, 33.1, 29.0, 26.2, 26.0 (note: one extra sp<sup>3</sup> carbon was observed, but this has been noted before with related cyclohexyl-substituted compounds<sup>7,29</sup>); **HRMS** (ESI<sup>+</sup>) [M+H]<sup>+</sup> calc'd for C<sub>19</sub>H<sub>25</sub>N: 268.2060, found: 268.2063.

The formation of 2u was accompanied by the formation of *ca*. 5% of an oxidized side product that could not be separated and which we propose is **S8**. We have not fully characterized this minor side product and so cannot assign its structure with absolute certainty.

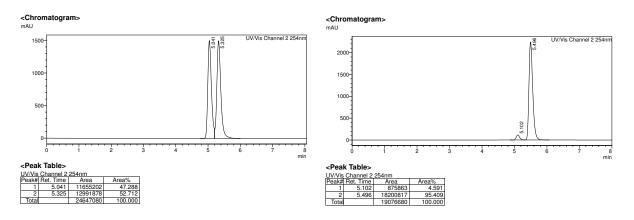


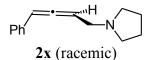




**1-methyl-4-(4-phenylbuta-2,3-dien-1-yl)piperazine (2v):** Prepared by General Method B using **Pd-1** at 22 °C for 3 h. The material was purified by flash silica gel chromatography (95:5 CH<sub>2</sub>Cl<sub>2</sub>:MeOH with 5% Et<sub>3</sub>N) to yield **2v** as a pale yellow oil (41.4 mg, 0.144 mmol, 71.8% yield). **IR** (neat, cm<sup>-1</sup>) 2933 (w), 2791 (m), 1949 (w), 1454 (s), 1330 (s), 1280 (s), 1161 (s), 1141 (m), 1009 (s), 690 (s), (625 (m); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.32–7.22 (4H, m), 7.21–7.15 (1H, m), 6.16 (1H, dt, J = 6.4, 2.4 Hz), 5.59 (1H, ddd, J = 7.1, 7.1, 7.1 Hz), 3.18 (2H, dd, J = 7.2, 2.4 Hz), 2.82–2.26 (8H, m), 2.25 (3H, s); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  206.2, 134.2, 128.6, 126.9, 126.8, 94.8, 91.3, 57.4, 55.0, 52.4, 45.9; **HRMS** (ESI<sup>+</sup>) [M+H]<sup>+</sup> calc'd for C<sub>15</sub>H<sub>20</sub>N<sub>2</sub>: 229.1699, found: 229.1704.

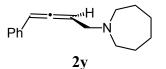
<u>By General Method E:</u> (*R*)-2v was isolated as a pale yellow was (65.4 mg, 0.286 mmol, 71.6% yield). HPLC analysis indicated er = 94.5:5.5.  $[\alpha]_D^{26} = -204.5$  (*c* = 1.0, CHCl<sub>3</sub>) for a sample of 94.5:5.5 er

**HPLC:** Column: Chiralpak 1A-3 (3  $\mu$ m, 4.6 mm X 150 mm). Mobile phase: 60:40 MeOH:*i*-PrOH with 0.1% Et<sub>2</sub>NH additive, 0.4 mL/min. Detection wavelength: 254 nm. Er = 94.5:5.5.



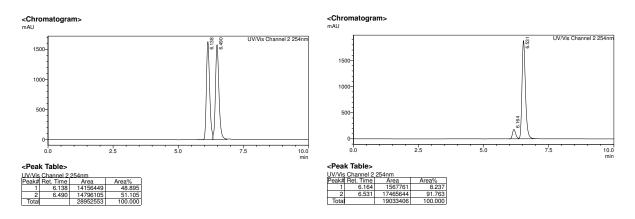

**1-(4-phenylbuta-2,3-dien-1-yl)piperidine (2w):** Prepared by General Method B using **Pd-1** at 22 °C for 3 h. The material was purified by flash silica gel chromatography (85:15 hexanes:EtOAc with 5% Et<sub>3</sub>N) to yield **2w** as a pale yellow oil (35.6 mg, 0.167 mmol, 83.4% yield). **IR** (neat, cm<sup>-1</sup>) 2933 (s), 2788 (w), 1949 (m), 1457 (w), 1338 (w), 1109 (m), 789 (s), 769 (s), 690 (s); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.33–7.23 (4H, m), 7.21–7.14 (1H, m), 6.14 (1H, dt, J = 6.2, 2.3 Hz), 5.61 (1H, ddd, J = 7.1, 7.1, 7.1 Hz), 3.15–3.13 (2H, m) 2.59–2.40 (4H, m), 1.68–1.56 (4H, m), 1.49–1.38 (2H, m); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  206.1, 134.5, 128.6, 126.9, 126.8, 94.5, 91.7, 58.3, 54.1, 26.1, 24.3; **HRMS** (ESI<sup>+</sup>) [M+H]<sup>+</sup> calc'd for C<sub>15</sub>H<sub>19</sub>N: 214.1590, found: 214.1591.

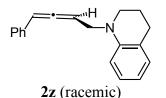

By General Method E: (*R*)-2w was isolated as a pale yellow oil (59.8 mg, 0.280 mmol, 70.1% yield). HPLC analysis indicated er = 95.5:4.5.  $[\alpha]_D^{25} = -238.9$  (*c* = 1.0, CHCl<sub>3</sub>) for a sample of 95.5:4.5 er.

**HPLC:** Chiralpak 1A-3 (3  $\mu$ m, 4.6 mm X 150 mm). Mobile phase: 100% MeOH with 0.1% Et<sub>2</sub>NH additive, 0.5 mL/min. Detection wavelength: 254 nm. Er = 95.5:4.5.

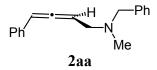





**1-(4-phenylbuta-2,3-dien-1-yl)pyrrolidine (2x):** Prepared by General Method B using **Pd-1** at 22 °C for 3 h. The material was purified by flash silica gel chromatography (80:20 hexanes:EtOAc with 5% Et<sub>3</sub>N) to yield **2x** as a pale yellow oil (28.9 mg, 0.145 mmol, 72.5% yield). **IR** (neat, cm<sup>-1</sup>) 2962 (m), 2783 (m), 1949 (w), 1494 (w), 1458 (m), 1365 (m), 1344 (m), 1140 (m), 870 (m), 773 (s), 691 (s); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.26–7.20 (4H, m), 7.15–7.10 (1H, m), 6.12 (1H, dt, J = 6.4, 2.5 Hz), 5.61 (1H, ddd, J = 6.9, 6.9, 6.9 Hz), 3.37–3.19 (2H, m), 2.73–2.52 (4H, m), 1.92–1.72 (4H, m); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  205.8, 134.3, 128.6, 126.9, 126.7, 94.8, 92.5, 54.6, 53.7, 23.6; **HRMS** (ESI<sup>+</sup>) [M+H]<sup>+</sup> calc'd for C<sub>14</sub>H<sub>17</sub>N: 200.1434, found: 200.1435.



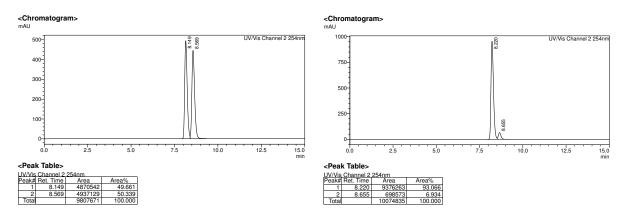

**1-(4-phenylbuta-2,3-dien-1-yl)azepane (2y):** Prepared by General Method B using **Pd-1** at 22 °C for 3 h. The material was purified by flash silica gel chromatography (70:30 hexanes:EtOAc with 5% Et<sub>3</sub>N) to yield **2y** as a pale yellow oil (35.3 mg, 0.155 mmol, 77.6% yield). **IR** (neat, cm<sup>-1</sup>) 2919 (m), 2580 (w), 1945 (m), 1457 (m), 1315 (w), 1123 (w), 1077 (m), 871 (m), 771 (s), 689 (s), 630 (m); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.32–7.25 (4H, m), 7.20–7.15 (1H, m), 6.15 (1H, dt, J = 6.4, 2.4 Hz), 5.62 (1H, ddd, J = 6.9, 6.9, 6.9 Hz), 3.30 (2H, dd, J = 7.0, 2.4 Hz), 2.79–2.64 (4H, m), 1.75–1.48 (8H, m); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  205.9, 134.6, 128.6, 126.8, 126.7, 94.5, 92.1, 57.8, 55.2, 28.3, 26.9; **HRMS** (ESI<sup>+</sup>) [M+H]<sup>+</sup> calc'd for C<sub>16</sub>H<sub>21</sub>N: 228.1747, found: 228.1749.


<u>By General Method E:</u> (*R*)-2y was isolated as a pale yellow oil (54.1 mg, 0.238 mmol, 59.5% yield). HPLC analysis indicated er = 92:8.  $[\alpha]_D^{26} = -219.9$  (*c* = 1.0, CHCl<sub>3</sub>) for a sample of 92:8 er.

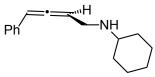
**HPLC:** Column: Chiralpak 1A-3 (3  $\mu$ m, 4.6 mm X 150 mm). Mobile phase: 60:40 MeOH:*i*-PrOH with 0.1% Et<sub>2</sub>NH additive, 0.4 mL/min. Detection wavelength: 254 nm. Er = 92:8.





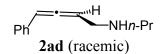

**1-(4-phenylbuta-2,3-dien-1-yl)-1,2,3,4-tetrahydroquinoline (2z):** Prepared by General Method B using **Pd-1** at 22 °C for 20 h. The material was purified by flash silica gel chromatography (99:1 hexanes:EtOAc with 5% Et<sub>3</sub>N) to yield **2z** as a pale yellow oil (31.9 mg, 0.122 mmol, 61.0% yield). **IR** (neat, cm<sup>-1</sup>) 2842 (w), 1942 (w), 1704 (w), 1599 (m), 1494 (m), 1456 (m), 1264 (m), 732 (s), 699 (s); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.30–7.20 (4H, m), 7.20–7.14 (1H, m), 7.06–7.00 (1H, m), 6.96 (1H, d, J = 7.3 Hz), 6.69 (1H, d, J = 8.2 Hz), 6.62 (1H, dd, J = 7.3, 7.3 Hz), 6.17 (1H, dt, J = 5.8, 2.7 Hz), 5.58 (1H, ddd, J = 6.3, 6.3, 6.3 Hz), 4.02 (2H, dd, J = 6.2, 2.7 Hz), 3.34–3.29 (2H, m), 2.73 (2H, t, J = 6.4 Hz), 2.01–1.90 (2H, m); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  205.7, 144.7, 134.3, 129.2, 128.6, 127.1, 126.9, 126.8, 123.0, 116.3, 111.5, 95.7, 90.6, 50.3, 49.3, 28.1, 22.3; **HRMS** (ESI<sup>+</sup>) [M+H]<sup>+</sup> calc'd for C<sub>19</sub>H<sub>19</sub>N: 262.1590, found: 262.1594.



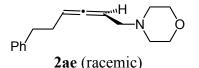

**N-benzyl-N-methyl-4-phenylbuta-2,3-dien-1-amine (2aa):** Prepared by General Method B using **Pd-1** at 22 °C for 3 h. The material was purified by flash silica gel chromatography (hexanes with 5% Et<sub>3</sub>N) to yield **2aa** as a pale yellow oil (44.6 mg, 0.179 mmol, 89.4% yield). **IR** (neat, cm<sup>-1</sup>) 3027(w), 2783 (w), 1946 (m), 1597 (w), 1493 (m), 1452 (s), 1205 (s), 772 (s), 780 (s), 690 (s), 619 (m). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.37–7.23 (9H, m), 7.22–7.16 (1H, m), 6.19 (1H, dt, J = 6.4, 2.4 Hz), 3.62 (1H, AB<sub>q</sub>,  $J_{AB} = 13.1$  Hz), 3.58 (1H, AB<sub>q</sub>,  $J_{AB} = 13.1$  Hz), 3.25–3.20 (2H, m), 2.31 (3H, s); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  206.2, 138.9, 134.5, 129.1, 128.7, 128.3, 127.1, 126.9, 126.8, 94.7, 91.7, 61.2, 56.1, 41.9; **HRMS** (ESI<sup>+</sup>) [M+H]<sup>+</sup> calc'd for C<sub>18</sub>H<sub>19</sub>N: 250.1590, found: 250.1592.

By General Method E: (*R*)-2aa was isolated as a clear oil (53.7 mg, 0.215 mmol, 53.8% yield). HPLC analysis indicated er = 93:7.  $[\alpha]_{D}^{25} = -209.1$  (*c* = 1.0, CHCl<sub>3</sub>) for a sample of 93:7 er.

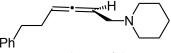
**HPLC:** Column: Cellulose-3 (3  $\mu$ m, 4.6 mm X 250 mm). Mobile phase: 99:1 hexanes:*i*-PrOH, 1 mL/min. Detection wavelength: 254 nm. Er = 93:7.




**N,N-diethyl-4-phenylbuta-2,3-dien-1-amine (2ab):** Prepared by General Method B using **Pd-1** at 22 °C for 3 h. The material was purified by flash silica gel chromatography (90:10 hexanes:EtOAc with 5%Et<sub>3</sub>N) to yield **2ab** as a pale yellow oil (31.1 mg, 0.154 mmol, 77.2% yield). **IR** (neat, cm<sup>-1</sup>) 2967 (m), 1947 (w), 1494 (w), 1457 (m), 1199 (w), 1089 (m), 868 (w), 763 (s), 713 (s), 629 (m); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.46–7.13 (5H, m), 6.08 (1H, dt, J = 6.4, 2.3 Hz), 5.57 (1H, ddd, J = 6.8, 6.8, 6.8 Hz), 3.33 (2H, dd, J = 7.2, 2.0 Hz), 2.61 (4H, q, J = 7.2 Hz), 1.06 (6H, t, J = 7.2 Hz); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  205.9, 134.5, 128.6, 126.8, 126.7, 94.4, 90.6, 51.4, 46.7, 12.1; **HRMS** (ESI<sup>+</sup>) [M+H]<sup>+</sup> calc'd for C<sub>14</sub>H<sub>19</sub>N: 202.1590, found: 202.1591.

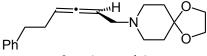



2ac (racemic)


**N-(4-phenylbuta-2,3-dien-1-yl)cyclohexanamine (2ac):** Prepared by General Method B using 10 mol% **Pd-1** at 22 °C for 3 h. The material was purified by flash silica gel chromatography (90:10:5 hexanes:EtOAc:Et<sub>3</sub>N) to yield **2ac** as a colorless oil (26.6 mg, 0.117 mmol, 58.3% yield). **IR** (neat, cm<sup>-1</sup>) 2925 (s), 2852 (m), 1944 (w), 1462 (w), 1450 (m), 1010 (w), 983 (w) 756 (m), 669 (m); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.27–7.21 (4H, m), 7.16–7.10 (1H, m), 6.15 (1H, dt, *J* = 6.1, 2.8 Hz), 5.57 (1H, ddd, *J* = 6.3, 6.3, 6.3 Hz), 3.34 (2H, dd, *J* = 6.3, 2.9 Hz), 2.53–2.44 (1H, m), 1.87–1.73 (2H, m), 1.71–1.58 (2H, m), 1.56–1.50 (1H, m), 1.25–0.92 (6H, m); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  204.8, 134.5, 128.6, 126.9, 126.7, 95.7, 94.6, 55.7, 45.2, 33.6, 33.4, 26.1, 25.1, 25.0 (note: two extra sp<sup>3</sup> carbon was observed, but this has been noted before with related cyclohexyl-substituted compounds<sup>7,29</sup>); **HRMS** (ESI<sup>+</sup>) [M+H]<sup>+</sup> calc'd for C<sub>16</sub>H<sub>21</sub>N: 228.1747, found: 228.1749.

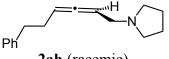


**4-phenyl-N-propylbuta-2,3-dien-1-amine (2ad):** Prepared by General Method B using 10 mol% **Pd-1** at 22 °C for 3 h. The material was purified by flash silica gel chromatography (90:10:5 hexanes:EtOAc:Et<sub>3</sub>N) to yield **2ad** as a colorless oil (22.1 mg, 0.118 mmol, 59.0% yield). **IR** (neat, cm<sup>-1</sup>) 2957 (m), 2930 (m), 1946 (m), 1494 (s), 1458 (m), 1072 (m), 910 (w), 773 (m), 690 (s); <sup>1</sup>H **NMR** (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.24–7.17 (4H, m), 7.14–7.08 (1H, m), 6.09–6.05 (1H, m), 5.52 (1H, ddd, J = 6.9, 6.9, 6.9 Hz), 3.35–3.30 (2H, m), 2.53–2.49 (2H, m), 1.98 (1H, br. s), 1.50–1.41 (2H, m), 0.82 (3H, t, J = 7.9 Hz); <sup>13</sup>C **NMR** (125 MHz, CDCl<sub>3</sub>)  $\delta$  206.1, 134.4, 128.6, 126.8, 126.7, 94.6, 91.2, 54.9, 52.4, 20.4, 11.9; **HRMS** (ESI<sup>+</sup>) [M+H]<sup>+</sup> calc'd for C<sub>13</sub>H<sub>17</sub>N: 188.1434, found: 188.1431.



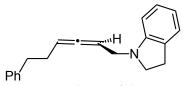

**1-(6-phenylhexa-2,3-dien-1-yl)morpholine (2ae):** Prepared by General Method B using **Pd-1** at 22 °C for 3 h. The material was purified by flash silica gel chromatography (2:1 hexanes:EtOAc with 5% Et<sub>3</sub>N) to yield **2ae** as a pale yellow oil (40.1 mg, 0.165 mmol, 82.4% yield). **IR** (neat, cm<sup>-1</sup>) 2917 (w), 2851 (w), 2799 (w), 1945 (w), 1452 (m), 1295 (w), 1114 (s), 1004 (m), 861 (s), 697 (s); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.33–7.21 (2H, m), 7.20–7.14 (3H, m), 5.18–5.10 (2H, m), 3.03–2.85 (2H, m), 2.70 (2H, t, *J* = 7.8 Hz), 2.52–2.21 (6H, m), 1.69–1.49 (4H, m); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  205.6, 141.5, 128.5, 128.3, 125.9, 90.4, 87.4, 66.9, 58.4, 53.2, 35.5, 30.5; **HRMS** (ESI<sup>+</sup>) [M+H]<sup>+</sup> calc'd for C<sub>16</sub>H<sub>21</sub>NO: 244.1696, found: 244.1696.




2af (racemic)

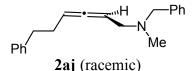
**1-(6-phenylhexa-2,3-dien-1-yl)piperidine (2af):** Prepared by General Method B using **Pd-1** at 22 °C for 3 h. The material was purified by flash silica gel chromatography (80:20 hexanes:EtOAc with 5% Et<sub>3</sub>N) to yield **2af** as a pale yellow oil (36.4 mg, 0.151 mmol, 75.4% yield). **IR** (neat, cm<sup>-1</sup>) 2930 (m), 1949 (w), 1495 (w), 1452 (m), 1440 (w),1336 (w), 1299 (w), 1108 (m), 743 (m), 696 (s); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.23–7.16 (2H, m), 7.14–7.08 (3H, m), 5.17–5.10 (2H, m), 2.94–2.81 (2H, m), 2.64 (2H, app. t, J = 8.4 Hz), 2.34 (4H, br. s), 2..28–2.18 (2H, m), 1.52 (4H, app. p, J = 5.6 Hz); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  205.3, 141.7, 128.5, 128.3, 125.9, 90.2, 88.0, 58.7, 53.9, 35.5, 30.5, 25.9, 24.3; **HRMS** (ESI<sup>+</sup>) [M+H]<sup>+</sup> calc'd for C<sub>17</sub>H<sub>23</sub>N: 242.1903, found: 242.1903.



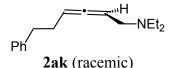

2ag (racemic)

**8-(6-phenylhexa-2,3-dien-1-yl)-1,4-dioxa-8-azaspiro[4.5]decane (2ag):** Prepared by General Method B using **Pd-1** at 22 °C for 3 h. The material was purified by flash silica gel chromatography (90:10 hexanes:EtOAc with 5% Et<sub>3</sub>N) to yield **2ag** as a pale yellow oil (49.7 mg, 0.183 mmol, 91.6% yield). **IR** (neat, cm<sup>-1</sup>) 2930 (w), 2850 (w), 2804 (w), 1947 (w), 1496 (m), 1451 (m), 1354 (m), 1268 (m), 1022 (s), 864 (s), 716 (s), 698 (s); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.25–7.17 (2H, m), 7.14–7.08 (3H, m), 5.14–5.02 (2H, m), 3.88 (4H, s), 2.98–2.87 (2H, m), 2.64 (2H, t, *J* = 7.7 Hz), 2.54–2.42 (4H, m), 2.28–2.20 (2H, m), 1.68 (4H, t, *J* = 5.6 Hz); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  205.3, 141.7, 128.5, 128.3, 125.9, 107.2, 90.4, 88.1, 64.2, 57.7, 50.8, 35.5, 34.9, 30.5; **HRMS** (ESI<sup>+</sup>) [M+H]<sup>+</sup> calc'd for C<sub>19</sub>H<sub>25</sub>NO<sub>2</sub>: 300.1598, found: 300.1594.

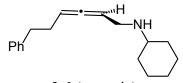



**2ah** (racemic)

**1-(6-phenylhexa-2,3-dien-1-yl)pyrrolidine (2ah):** Prepared by General Method B using **Pd-1** at 22 °C for 3 h. The material was purified by flash silica gel chromatography (2:1 hexanes:EtOAc with 5% Et<sub>3</sub>N) to yield **2ah** as a pale yellow oil (33.9 mg, 0.122 mmol, 61.1% yield). **IR** (neat, cm<sup>-1</sup>) 2925 (w), 2775 (w), 1943 (w), 1495 (w), 1453 (w), 1365 (w), 1123 (w), 866 (w), 743 (m), 697 (s); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.25–7.18 (2H, m), 7.13–7.10 (3H, m), 5.16–5.06 (2H, m), 3.05–2.95 (2H, m), 2.65 (2H, t, *J* = 7.2 Hz), 2.51–2.39 (4H, m) 2.34–2.18 (2H, m), 1.77–1.63 (4H, m); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  204.8, 141.8, 128.5, 128.3, 128.9, 90.5, 89.2, 55.2, 53.6, 35.5, 30.5, 23.6; **HRMS** (ESI<sup>+</sup>) [M+H]<sup>+</sup> calc'd for C<sub>16</sub>H<sub>21</sub>N: 228.1747, found: 228.1747.

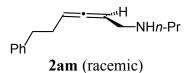



2ai (racemic)

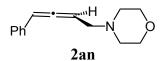

**1-(6-phenylhexa-2,3-dien-1-yl)indoline (2ai):** Prepared by General Method B using **Pd-1** at 22 °C for 3 h. The material was purified by flash silica gel chromatography (hexanes with 5% Et<sub>3</sub>N) to yield **2ai** as a pale red oil (41.6 mg, 0.151 mmol, 75.5% yield).\* **IR** (neat, cm<sup>-1</sup>) 3024 (w), 2918 (w), 2827 (w), 1959 (w), 1605 (m), 1486 (m), 1382 (w), 1331 (w), 906 (s), 695 (s), 648 (w); <sup>1</sup>H **NMR** (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.24–7.19 (2H, m), 7.14–7.09 (3H, m), 7.02–6.96 (2H, m), 6.58 (1H, dd, J = 7.2, 7.2 Hz), 6.41 (1H, d, J = 7.7 Hz), 5.15–5.09 (1H, m), 5.09–5.03 (1H, m), 3.67–3.57 (2H, m), 3.34–3.23 (2H, m), 2.87 (2H, t, J = 8.3 Hz), 2.68–2.58 (2H, m), 2.30–2.17 (2H, m); <sup>13</sup>C **NMR** (125 MHz, CDCl<sub>3</sub>)  $\delta$  205.2, 151.7, 141.7, 130.4, 128.6, 128.3, 127.2, 125.9, 124.5, 117.7, 107.6, 91.2, 86.8, 52.6, 48.0, 35.4, 30.5, 28.5; **HRMS** (ESI<sup>+</sup>) [M+H]<sup>+</sup> calc'd for C<sub>20</sub>H<sub>21</sub>N: 276.1747, found: 276.1753.



**N-benzyl-N-methyl-6-phenylhexa-2,3-dien-1-amine (2aj):** Prepared by General Method B using **Pd-1** at 22 °C for 3 h. The material was purified by flash silica gel chromatography (hexanes with 5% Et<sub>3</sub>N) to yield **2aj** as a pale yellow oil (50.2 mg, 0.181 mmol, 90.4% yield). **IR** (neat, cm<sup>-1</sup>) 3022 (w), 2818 (w), 2703 (w), 1962 (m), 1612 (m), 1440 (m), 1212 (w), 912 (s), 884 (s), 698 (s); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.26–7.07 (10H, m), 5.23–5.17 (2H, m), 3.43 (2H, s), 2.98–2.90 (2H, m), 2.65 (2H, t, *J* = 7.7 Hz), 2.30–2.20 (2H, m), 2.13 (3H, s); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  205.3, 141.7, 139.0, 129.1, 128.5, 128.3, 128.2, 126.9, 125.9, 90.3, 88.2, 61.1, 56.6, 41.8, 35.5, 30.6; **HRMS** (ESI<sup>+</sup>) [M+H]<sup>+</sup> calc'd for C<sub>20</sub>H<sub>23</sub>N: 276.1903, found: 276.1899.

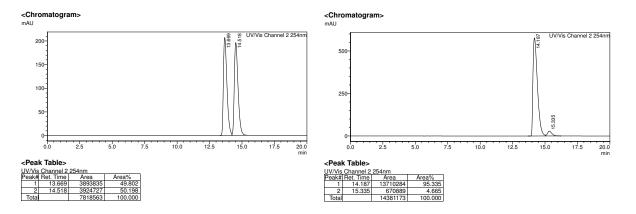


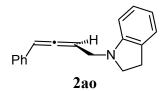

**N,N-diethyl-6-phenylhexa-2,3-dien-1-amine (2ak):** Prepared by General Method B using **Pd-1** at 22 °C for 3 h. The material was purified by flash silica gel chromatography (80:20 hexanes:EtOAc with 5% Et<sub>3</sub>N) to yield **2ak** as a pale yellow oil (34.8 mg, 0.152 mmol, 75.9% yield). **IR** (neat, cm<sup>-1</sup>) 2968 (w), 2932 (w) 2807 (w), 1965 (w), 1453 (w), 1264 (m), 1199 (w), 1065 (w), 733 (s), 697 (s); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.24–7.17 (2H, m), 7.14–7.08 (3H, m), 5.10–5.00 (2H, m), 3.05 (2H, dd, J = 7.1, 2.4 Hz), 2.65 (2H, t, J = 8.2 Hz), 2.47 (4H, q, J = 7.2 Hz), 2.30–2.19 (2H, m), 0.96 (6H, t, J = 7.2 Hz); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  205.1, 141.7, 128.5, 128.3, 125.9, 90.0, 87.1, 51.8, 46.5, 35.5, 30.6, 11.9; **HRMS** (ESI<sup>+</sup>) [M+H]<sup>+</sup> calc'd for C<sub>16</sub>H<sub>23</sub>N: 230.1903, found: 230.1904.




2al (racemic)

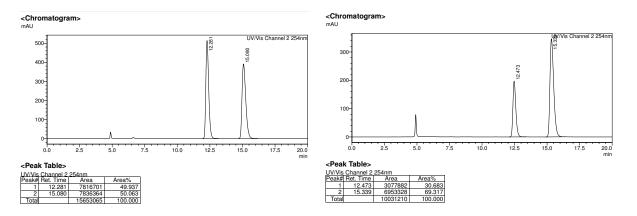
**N-(6-phenylhexa-2,3-dien-1-yl)cyclohexanamine (2al):** Prepared by General Method B using **Pd-1** at 22 °C for 3 h. The material was purified by flash silica gel chromatography (95:5 hexanes:EtOAc with 5% Et<sub>3</sub>N) to yield **2al** as a pale yellow oil (28.2 mg, 0.124 mmol, 62.1% yield). **IR** (neat, cm<sup>-1</sup>) 2998 (w), 2828 (m), 1956 (w), 1435 (m), 1234 (m), 1146 (s), 763 (s), 622 (m); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.24–7.19 (2H, m), 7.14–7.08 (3H, m), 5.18–5.08 (2H, m), 3.13 (2H, dd, J = 6.3, 2.9 Hz), 2.66 (2H, t, J = 7.7 Hz), 2.44–2.37 (1H, m), 2.30–2.23 (2H, m), 1.82–1.50 (4H, m), 1.24–0.90 (6H, m), 0.87 (1H, br. s); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  203.8, 141.7, 128.5, 128.3, 125.9, 91.5, 90.9, 55.7, 45.4, 35.4, 33.6, 33.5, 30.4, 26.2, 25.1 (note: one extra sp<sup>3</sup> carbon was observed, but this has been noted before with related cyclohexyl-substituted compounds<sup>7,29</sup>); **HRMS** (ESI<sup>+</sup>) [M+H]<sup>+</sup> calc'd for C<sub>18</sub>H<sub>25</sub>N: 256.2060, found: 256.2064.

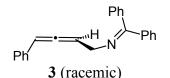




**6-phenyl-N-propylhexa-2,3-dien-1-amine (2am):** Prepared by General Method B using **Pd-1** at 22 °C for 3 h. The material was purified by flash silica gel chromatography (95:5 hexanes:EtOAc with 5% Et<sub>3</sub>N) to yield **2am** as a pale yellow oil (22.0 mg, 0.109 mmol, 54.8% yield). **IR** (neat, cm<sup>-1</sup>) 2956 (m), 1959 (w), 1495 (m), 1453 (s), 1334 (w), 1076 (m), 868 (w), 745 (m), 697 (s); <sup>1</sup>H **NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.25–7.15 (2H, m), 7.13–7.08 (3H, m), 5.13–4.97 (2H, m), 3.09–2.99 (2H, m), 2.65 (2H, t, *J* = 7.7 Hz), 2.39–2.31 (2H, m), 2.29–2.19 (2H, m), 1.47–1.33 (2H, m), 0.80 (3H, t, *J* = 7.4 Hz); <sup>13</sup>C **NMR** (125 MHz, CDCl<sub>3</sub>)  $\delta$  205.2, 141.7, 128.5, 128.3, 125.9, 90.1, 87.8, 54.7, 52.8, 35.5, 30.6, 20.3, 12.0; **HRMS** (ESI<sup>+</sup>) [M+H]<sup>+</sup> calc'd for C<sub>15</sub>H<sub>21</sub>N: 216.1747, found: 216.1741.

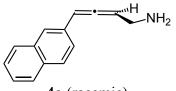


(*R*)-4-(4-phenylbuta-2,3-dien-1-yl)morpholine (2an): Prepared by General Method E. The material was purified by flash silica gel chromatography (70:30 hexanes:EtOAc with an additional 2% Et<sub>3</sub>N additive v/v) to yield (*R*)-2an as a pale yellow oil (56.8 mg, 0.264 mmol, 66.0% yield). HPLC analysis indicated er = 95.5:4.5. IR (neat, cm<sup>-1</sup>) 3030 (w), 2956 (m), 2852 (m), 2801 (m), 1949 (m), 1713 (w), 1596 (w), 1494 (m), 1453 (m), 1344 (m), 1330 (m), 1315 (m), 1287 (m), 1270 (m), 1204 (w), 1114 (s), 1070 (m), 1034 (w), 1004 (s); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.33–7.23 (4H, m), 7.22–7.16 (1H, m), 6.18 (1H, dt, *J* = 6.4, 2.4 Hz), 5.58 (1H, ddd, *J* = 7.0, 7.0, 7.0 Hz), 3.74 (4H, t, *J* = 4.6 Hz), 3.15 (2H, dd, *J* = 7.2, 2.4 Hz), 2.59–2.48 (4H, m); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  206.3, 134.2, 128.6, 127.0, 126.7, 94.8, 91.2, 67.0, 57.8, 53.2; HRMS (ESI<sup>+</sup>) [M+H]<sup>+</sup> calc'd for C<sub>14</sub>H<sub>17</sub>NO: 216.1383, found: 216.1381; [*α*]<sub>D</sub><sup>26</sup> = –185.6 (*c* = 1.0, CHCl<sub>3</sub>) for a sample of 95.5:4.5 er.


**HPLC:** Column: Cellulose-3 (3  $\mu$ m, 4.6 mm X 250 mm). Mobile phase: 99.9:0.1 hexanes:*i*-PrOH, 1 mL/min. Detection wavelength: 254 nm. Er = 95.5:4.5.



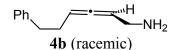




**1-(4-phenylbuta-2,3-dien-1-yl)indoline (2ao):** Prepared by General Method E. The material was purified by flash silica gel chromatography (100% hexanes to 98:2 hexanes:EtOAc) to yield (*R*)-**2ao** as a pale yellow oil (29.5 mg, 0.119 mmol, 59.6% yield).\* HPLC analysis indicated er = 69.5:30.5. **IR** (neat, cm<sup>-1</sup>) 3028 (w), 2920 (w), 2945 (w), 2846 (m), 1940 (m), 1604 (s), 1485 (m), 1469 (m), 1453 (m), 1384 (m), 1334 (m), 1305 (m), 1280 (m), 1261 (m), 1230 (m), 1199 (m), 1171 (m), 1151(m), 1140 (m), 1084 (m), 1068 (m), 1054 (m), 1020 (m), 985 (m); <sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.32–7.23 (4H, m), 7.22–7.17 (1H, m), 7.10–7.03 (2H, m), 6.66 (1H, t, *J* = 7.4 Hz), 6.53 (1H, d, *J* = 7.8 Hz), 6.19 (1H, dt, *J* = 6.4, 2.4 Hz), 5.60 (1H, app. q, *J* = 6.7 Hz), 3.92 (1H, ddd, *J* = 14.7, 6.6, 2.5 Hz), 3.87 (1H, ddd, *J* = 14.8, 6.9, 2.5 Hz), 3.50–3.39 (2H, m), 2.98 (2H, t, *J* = 8.3 Hz); <sup>13</sup>C **NMR** (125 MHz, CDCl<sub>3</sub>)  $\delta$  206.1, 151.5, 134.3, 130.5, 128.7, 127.4, 127.1, 127.0, 124.6, 118.0, 107.8, 95.4, 90.4, 52.8, 47.9, 28.7; **HRMS** (ESI<sup>+</sup>) [M+H]<sup>+</sup> calc'd for C<sub>18</sub>H<sub>17</sub>N: 248.1434, found: 248.1432; **[\alpha]\_p**<sup>27</sup> = -59.3 (*c* = 1.0, CHCl<sub>3</sub>) for a sample of 69.5:30.5 er.

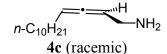
**HPLC:** Column: Cellulose-3 (3  $\mu$ m, 4.6 mm X 250 mm). Mobile phase: 90:10 hexanes:*i*-PrOH, 1 mL/min. Detection wavelength: 254 nm. Er = 69.5:30.5.



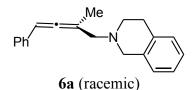



1,1-diphenyl-N-(4-phenylbuta-2,3-dien-1-yl)methanimine (3): To an oven-dried 2-dram vial equipped with a magnetic stirring rod was added Pd-1 (42.9 mg, 0.0500 mmol, 5.00 mol%) and  $CH_2Cl_2$  (1.25 mL). To this suspension was added enyne **1a** (162  $\mu$ L, 1.20 mmol, 1.20 equiv), Et<sub>3</sub>N (0.28 mL, 2.0 mmol, 2.0 equiv), and finally benzophenone imine (168  $\mu$ L, 1.00 mmol, 1.00 equiv). This mixture was allowed to stir at ambient temperature for 24 h. During this time the suspension gradually became a homogenous solution. The reaction mixture was then passed through a short plug of neutral alumina eluting with 1:1 hexanes: EtOAc (ca. 20 mL) and the solution concentrated. The product was purified by flash silica gel chromatography (hexanes with 2% Et<sub>3</sub>N additive v/v to 95:5 hexanes: EtOAc with 2% Et<sub>3</sub>N additive v/v) to afford **3** as a yellow solid (273 mg, 0.882 mmol, 88.2% yield). IR (neat, cm<sup>-1</sup>) 3053 (w), 2902 (w), 1947 (w), 1620 (m), 1596 (w), 1574 (w), 1488 (w), 1459 (w), 1444 (m), 1425 (w), 1315 (m), 1287 (m), 1273 (m), 1258 (m), 1176 (w), 1154 (w), 1073 (w), 1024 (w), 996 (m); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.63–7.57 (2H, m), 7.43–7.24 (10H, m), 7.21–7.12 (3H, m), 6.20 (1H, dt, J = 6.4, 2.9 Hz), 5.85 (1H, ddd, J = 6.4, 6.4, 6.4 Hz), 4.16-4.12 (2H, m); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) δ 205.5, 169.5, 139.8, 136.5, 134.5, 130.1, 128.6, 128.6, 128.5, 128.1, 127.9, 126.9, 126.9, 95.8, 94.4, 52.8 (note: one sp<sup>2</sup> carbon is missing due to overlap); **HRMS** (ESI<sup>+</sup>)  $[M+H]^+$  calc'd for C<sub>23</sub>H<sub>19</sub>N: 310.1590, found: 310.1595; **MP** = 71–74 °C.

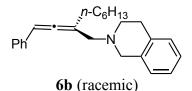



4a (racemic)

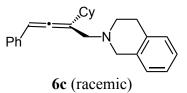
4-(naphthalen-2-yl)buta-2,3-dien-1-amine (4a): To an oven-dried 2-dram vial equipped with a magnetic stirring rod was added Pd-1 (42.9 mg, 0.0500 mmol, 5.00 mol%) and CH<sub>2</sub>Cl<sub>2</sub> (1.25 mL). To this suspension was added envne 11 (206  $\mu$ L, 1.20 mmol, 1.20 equiv), Et<sub>3</sub>N (0.28 mL, 2.0 mmol, 2.0 equiv), and finally benzophenone imine (168  $\mu$ L, 1.00 mmol, 1.00 equiv). This mixture was allowed to stir at ambient temperature for 24 h. During this time the suspension gradually became a homogenous solution. After this time, the reaction mixture was transferred to a 50-mL roundbottom flask, diluted with THF (5 mL), and then treated with 10% ag citric acid (10 mL). The reaction mixture was allowed to stir vigorously for 6 h. TLC analysis revealed that hydrolysis was complete after this time. The reaction mixture was diluted with EtOAc (30 mL) and basified with 2 M aq NaOH (30 mL). The aqueous fraction was separated from the organics and washed with EtOAc (2 X 10 mL). The combined organic fractions were dried over MgSO<sub>4</sub>, filtered, and concentrated. The product was purified by flash silica gel chromatography (95:5 CH<sub>2</sub>Cl<sub>2</sub>:MeOH to 95:5 CH<sub>2</sub>Cl<sub>2</sub>:MeOH with 2% Et<sub>3</sub>N additive v/v) to afford 4a as a yellow solid (136 mg, 0.696 mmol, 69.6% yield). IR (neat, cm<sup>-1</sup>) 3300–2500 (br), 1944 (m), 1595 (m), 1506 (s), 1413 (w), 1364 (m), 1275 (m), 1250 (m), 1212 (m), 1144 (w), 1124 (w), 1006 (m), 949 (m); <sup>1</sup>H NMR (400 MHz, DMSO-*d*6) δ 7.87–7.80 (3H, m), 7.75 (1H, s), 7.53–7.39 (3H, m), 6.53 (1H, dt, *J* = 6.3, 2.8 Hz), 5.80 (1H, ddd, J = 6.1, 6.1, 6.1 Hz), 3.52 (2H, br s), 3.38–3.26 (2H, m); <sup>13</sup>C NMR (125 MHz, DMSO-d6) § 205.4, 133.7, 132.7, 131.8, 128.6, 128.1, 128.1, 126.9, 126.3, 126.0, 125.2, 96.9,


94.6 (note: one sp<sup>3</sup> carbon missing due to overlap with DMSO-*d6*); **HRMS** (ESI<sup>+</sup>) [M+H]<sup>+</sup> calc'd for C<sub>14</sub>H<sub>13</sub>N: 196.1121, found: 196.1123; **MP** = 170–176 °C (decomp.).

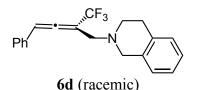



6-phenylhexa-2,3-dien-1-amine (4b): To an oven-dried 2-dram vial equipped with a magnetic stirring rod was added Pd-1 (42.9 mg, 0.0500 mmol, 5.00 mol%) and CH<sub>2</sub>Cl<sub>2</sub> (1.25 mL). To this suspension was added envne 10 (202  $\mu$ L, 1.20 mmol, 1.20 equiv), Et<sub>3</sub>N (0.28 mL, 2.0 mmol, 2.0 equiv), and finally benzophenone imine (168  $\mu$ L, 1.00 mmol, 1.00 equiv). This mixture was allowed to stir at ambient temperature for 24 h. During this time the suspension gradually became a homogenous solution. After this time, the reaction mixture was transferred to a 50-mL roundbottom flask, diluted with THF (5 mL), and then treated with 10% ag citric acid (10 mL). The reaction mixture was allowed to stir vigorously for 6 h. The reaction mixture was diluted with Et<sub>2</sub>O (20 mL) and basified with 2 M aq NaOH (30 mL). The aqueous fraction was separated from the organics and washed with Et<sub>2</sub>O (20 mL). The combined organic fractions were washed with sat aq brine (30 mL), dried over MgSO<sub>4</sub>, filtered, and concentrated. The product was purified by flash silica gel chromatography (100% CH<sub>2</sub>Cl<sub>2</sub> to 90:10 CH<sub>2</sub>Cl<sub>2</sub>:MeOH) to afford 4b as a pale yellow oil (100 mg, 0.579 mmol, 57.9% yield). NOTE: It is important that 4b be purified immediately after work up since this compound is not stable for long in its unpurified form. IR (neat, cm<sup>-1</sup>) 3025 (w), 2918 (m), 2853 (m), 1962 (m), 1602 (m), 1495 (m), 1453 (m), 1333 (w), 1278 (w), 1078 (w), 1029 (w), 863 (m); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.30–7.23 (2H, m), 7.21–7.14 (3H, m), 5.31-5.19 (2H, m), 3.16 (2H, dd, J = 5.3, 3.3 Hz), 2.80-2.65 (2H, m), 2.43-2.25 (2H, m), 2.14(2H, br s); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) δ 203.4, 141.5, 128.6, 128.3, 126.0, 93.3, 92.1, 40.0, 35.2, 30.3; **HRMS** (ESI<sup>+</sup>) [M+H]<sup>+</sup> calc'd for C<sub>12</sub>H<sub>15</sub>N: 174.1277, found: 174.1281.

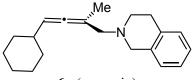



tetradeca-2,3-dien-1-amine (4c): To an oven-dried 2-dram vial equipped with a magnetic stirring rod was added Pd-1 (42.9 mg, 0.0500 mmol, 5.00 mol%) and CH<sub>2</sub>Cl<sub>2</sub> (1.25 mL). To this suspension was added enyne 1p (288  $\mu$ L, 1.20 mmol, 1.20 equiv), Et<sub>3</sub>N (0.28 mL, 2.0 mmol, 2.0 equiv), and finally benzophenone imine (168  $\mu$ L, 1.00 mmol, 1.00 equiv). This mixture was allowed to stir at ambient temperature for 24 h. During this time the suspension gradually became a homogenous solution. After this time, the reaction mixture was transferred to a 50-mL roundbottom flask, diluted with THF (5 mL), and then treated with 10% aq citric acid (10 mL). The reaction mixture was allowed to stir vigorously for 6 h. The reaction mixture was diluted with Et<sub>2</sub>O (20 mL) and basified with 2 M aq NaOH (30 mL). The aqueous fraction was separated from the organics and washed with Et<sub>2</sub>O (20 mL). The combined organic fractions were washed with sat aq brine (20 mL), dried over MgSO<sub>4</sub>, filtered, and concentrated. The product was purified by flash silica gel chromatography (100% CH<sub>2</sub>Cl<sub>2</sub> to 90:10 CH<sub>2</sub>Cl<sub>2</sub>:MeOH) to afford 4c as a pale yellow wax (119 mg, 0.570 mmol, 57.0% yield). NOTE: It is important that 4c be purified *immediately* after work up since this compound is not stable for long in its unpurified form. IR (neat, cm<sup>-1</sup>) 2921 (s), 2852 (s), 1962 (w), 1598 (w), 1516 (w), 1465 (m), 1377 (w), 872 (m); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  5.30–5.20 (2H, m), 3.28 (2H, dd, J = 5.2, 3.4 Hz), 2.87 (2H, dd, J = 5.2, 3.4 Hz), 2.87 (2H, br s), 2.04–1.96 (2H, m), 1.42–1.19 (16 H, m), 0.86 (3H, t, J = 6.6 Hz); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  203.3, 94.0, 91.4, 40.3, 31.9, 29.6, 29.6, 29.5, 29.3, 29.2, 29.1, 28.8, 22.7, 14.1; HRMS (ESI<sup>+</sup>) [M+H]<sup>+</sup> calc'd for C<sub>14</sub>H<sub>27</sub>N: 210.2216, found: 210.2219.




**2-(2-methyl-4-phenylbuta-2,3-dien-1-yl)-1,2,3,4-tetrahydroisoquinolineamine (6a):** Prepared by General Method B using **Pd-1** at 22 °C for 3 h. The material was purified by flash silica gel chromatography (95:5 hexanes:EtOAc) to yield **6a** as a pale yellow oil (33.7 mg, 0.122 mmol, 61.1% yield).\* **IR** (neat, cm<sup>-1</sup>) 3030 (w), 2931 (s), 2808 (m), 1956 (m), 1644 (m), 1451 (m), 1303 (w), 988 (s), 824 (s), 773 (s), 628 (w); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.27–7.19 (4H, m), 7.14–7.09 (1H, m), 7.06–6.99 (3H, m), 6.95–6.89 (1H, m), 6.08–6.02 (1H, m), 3.63 (1H, AB<sub>q</sub>, *J<sub>AB</sub>* = 14.9 Hz), 3.59 (1H, AB<sub>q</sub>, *J<sub>AB</sub>* = 14.9 Hz), 3.16 (1H, ABX<sub>q</sub>, *J<sub>AB</sub>* = 12.8 Hz, *J<sub>BX</sub>* = 2.2 Hz), 3.12 (1H, ABX<sub>q</sub>, *J<sub>AB</sub>* = 12.8 Hz, *J<sub>BX</sub>* = 2.2 Hz), 2.81 (2H, t, *J* = 5.9 Hz), 2.76–2.64 (2H, m), 1.81 (3H, d, *J* = 2.9 Hz); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  204.1, 135.4, 134.9, 134.5, 128.7, 128.6, 126.8, 126.7, 126.6, 126.0, 125.6, 100.9, 93.7, 61.8, 56.2, 50.5, 29.1, 17.1; **HRMS** (ESI<sup>+</sup>) [M+H]<sup>+</sup> calc'd for C<sub>20</sub>H<sub>21</sub>N: 276.1747, found: 276.1748.

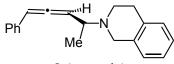



**2-(2-(2-phenylvinylidene)octyl)-1,2,3,4-tetrahydroisoquinoline (6b):** Prepared by General Method B using **Pd-1** at 22 °C for 3 h. The material was purified by flash silica gel chromatography (95:5 hexanes:EtOAc) to yield **6b** as a pale yellow oil (45.8 mg, 0.134 mmol, 67.0% yield). **IR** (neat, cm<sup>-1</sup>) 3042 (m), 2899 (s), 1977 (m), 1503 (m), 1434 (m), 1206 (m), 1188 (m), 969 (s), 845 (m), 712 (s), 680 (w); <sup>1</sup>**H NMR** (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.27–7.21 (4H, m), 7.15–7.10 (1H, m), 7.06–7.02 (3H, m), 6.95–6.90 (1H, m), 6.17–6.08 (1H, m), 3.62 (1H, AB<sub>q</sub>, *J<sub>AB</sub>* = 14.9 Hz), 3.57 (1H, AB<sub>q</sub>, *J<sub>AB</sub>* = 14.9 Hz), 3.17 (1H, ABX<sub>q</sub>, *J<sub>AB</sub>* = 12.8 Hz, *J<sub>BX</sub>* = 1.9 Hz), 3.12 (1H, ABX<sub>q</sub>, *J<sub>AB</sub>* = 12.8 Hz, *J<sub>BX</sub>* = 1.9 Hz), 3.12 (1H, ABX<sub>q</sub>, *J<sub>AB</sub>* = 12.8 Hz, *J<sub>AX</sub>* = 1.9 Hz), 2.86–2.78 (2H, m), 2.77–2.62 (2H, m), 2.19–2.03 (2H, m), 1.50–1.36 (2H, m), 1.32–1.14 (4H, m), 0.86–0.71 (5H, m); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  203.6, 135.6, 135.1, 134.5, 134.4, 128.7, 128.6, 126.8, 126.6, 126.0, 125.5, 105.9, 95.1, 60.9, 56.3, 50.5, 31.7, 30.7, 29.2, 29.1, 27.7, 22.7, 14.1; **HRMS** (ESI<sup>+</sup>) [M+H]<sup>+</sup> calc'd for C<sub>25</sub>H<sub>31</sub>N: 346.2526, found: 346.2529.



**2-(2-cyclohexyl-4-phenylbuta-2,3-dien-1-yl)-1,2,3,4-tetrahydroisoquinoline (6c):** Prepared by General Method B using **Pd-1** at 22 °C for 3 h. The material was purified by flash silica gel chromatography (95:5 hexanes:EtOAc) to yield **6c** as a pale yellow oil (38.0 mg, 0.106 mmol, 53.2% yield). **IR** (neat, cm<sup>-1</sup>) 3027 (w), 2910 (s), 2848 (m), 1944 (w), 1597 (w), 1495 (m), 1446 (m), 1333 (m), 1086 (m), 933 (s), 820 (m), 738 (s), 692 (s), 649 (m), 626 (w); <sup>1</sup>**H NMR** (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.26–7.18 (4H, m), 7.14–7.07 (1H, m), 7.04–6.98 (3H, m), 6.93–6.87 (1H, m), 6.16–6.12 (1H, m), 3.62 (1H, ABq, *J*<sub>AB</sub> = 14.9 Hz), 3.53 (1H, ABq, *J*<sub>AB</sub> = 14.9 Hz), 3.18 (1H, ABXq, *J*<sub>AB</sub> = 13.0 Hz, *J*<sub>BX</sub> = 2.2 Hz), 3.13 (1H, ABXq, *J*<sub>AB</sub> = 13.0 Hz, *J*<sub>BX</sub> = 2.2 Hz), 3.13 (1H, ABXq, *J*<sub>AB</sub> = 13.0 Hz, *J*<sub>BX</sub> = 2.2 Hz), 3.13 (1H, ABXq, *J*<sub>AB</sub> = 13.0 Hz, *J*<sub>BX</sub> = 2.2 Hz), 3.13 (1H, ABXq, *J*<sub>AB</sub> = 13.0 Hz, *J*<sub>BX</sub> = 2.2 Hz), 3.13 (1H, ABXq, *J*<sub>AB</sub> = 13.0 Hz, *J*<sub>BX</sub> = 2.2 Hz), 3.25, 29.2, 26.5, 26.4 (note: one extra sp<sup>3</sup> carbon was observed, but this has been noted before with related cyclohexyl-substituted compounds<sup>7,29</sup>); **HRMS** (ESI<sup>+</sup>) [M+H]<sup>+</sup> calc'd for C<sub>25</sub>H<sub>29</sub>N: 344.2373, found: 344.2377.




**2-(4-phenyl-2-(trifluoromethyl)buta-2,3-dien-1-yl)-1,2,3,4-tetrahydroisoquinoline** (6d): Prepared by General Method B using Pd-1 at 22 °C for 3 h. The material was purified by flash silica gel chromatography (95:5 hexanes:EtOAc) to yield 6d as a pale yellow oil (42.2 mg, 0.123 mmol, 61.4% yield). IR (neat, cm<sup>-1</sup>) 3024 (w), 2922 (w), 2798 (w), 1957 (w), 1497 (m), 1462 (m), 1279 (m), 1174 (s), 1073 (w), 935 (w), 742 (s), 691 (s), 652 (w); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.38–7.27 (5H, m), 7.13–7.01 (3H, m), 6.96–6.91 (1H, m), 6.70–6.63 (1H, m), 3.75 (1H, AB<sub>q</sub>, *J<sub>AB</sub>* = 14.9 Hz), 3.68 (1H, AB<sub>q</sub>, *J<sub>AB</sub>* = 14.9 Hz), 3.46 (1H, ABX<sub>q</sub>, *J<sub>AB</sub>* = 15.2 Hz, *J<sub>BX</sub>* = 3.0 Hz), 3.41 (1H, ABX<sub>q</sub>, *J<sub>AB</sub>* = 15.2 Hz, *J<sub>BX</sub>* = 3.0 Hz), 2.89–2.72 (4H, m); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  205.6 (q, *J<sub>CF</sub>* = 4.3 Hz), 134.5, 134.2, 131.9, 131.5, 129.0, 128.7, 127.5, 126.6, 126.2, 125.7, 125.3 (q, *J<sub>CF</sub>* = 273 Hz), 101.3, 100.0 (q, *J<sub>CF</sub>* = 33.5 Hz), 55.8, 55.1, 50.3, 29.0; <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) -62.46 (3F, d, *J* = 3.2 Hz); HRMS (ESI<sup>+</sup>) [M+H]<sup>+</sup> calc'd for C<sub>20</sub>H<sub>18</sub>F<sub>3</sub>N: 330.1464, found: 330.1470.



**6e** (racemic)

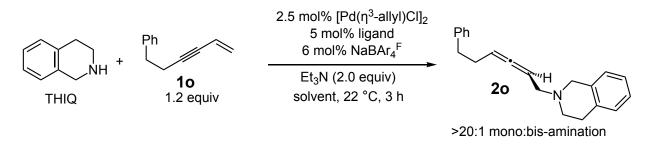
**2-(4-cyclohexyl-2-methylbuta-2,3-dien-1-yl)-1,2,3,4-tetrahydroisoquinoline (6e):** Prepared by General Method B using **Pd-1** at 22 °C for 3 h. The material was purified by flash silica gel chromatography (95:5 hexanes:EtOAc) to yield **6e** as a pale yellow oil (43.9 mg, 0.156 mmol,

77.8% yield). **IR** (neat, cm<sup>-1</sup>) 2902 (s), 2849 (m), 2791 (w), 1938 (w), 1497 (w), 1447 (m), 1367 (w), 1128 (w), 1089 (m), 933 (w), 908 (w), 739 (s); <sup>1</sup>**H NMR** (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.09–6.98 (3H, m), 6.98–6.91 (1H, m), 5.03–4.94 (1H, m), 3.57 (1H, AB<sub>q</sub>, *J*<sub>AB</sub> = 15.5 Hz), 3.53 (1H, AB<sub>q</sub>, *J*<sub>AB</sub> = 15.5 Hz), 3.03–2.96 (2H, m), 2.82 (2H, t, *J* = 5.9 Hz), 2.71–2.59 (1H, m), 1.76–1.60 (7H, m), 1.31–0.97 (6H, m); <sup>13</sup>**C NMR** (125 MHz, CDCl<sub>3</sub>)  $\delta$  201.7, 135.2, 134.6, 128.7, 126.6, 125.9, 125.5, 97.3, 95.9, 62.6, 56.2, 50.3, 37.6, 33.3, 29.2, 26.3, 26.1, 22.7, 17.6 (note: one extra sp<sup>3</sup> carbon was observed, but this has been noted before with related cyclohexyl-substituted compounds<sup>7,29</sup>); **HRMS** (ESI<sup>+</sup>) [M+H]<sup>+</sup> calc'd for C<sub>20</sub>H<sub>27</sub>N: 282.2216, found: 282.2214.



8 (racemic)

**5-phenylpenta-3,4-dien-2-yl)-1,2,3,4-tetrahydroisoquinoline (8):** Prepared by General Method C (0.40 mmol scale) at 22 °C for 20 h. <sup>1</sup>H NMR analysis of the unpurified material revealed a 2:1 mixture of diastereomers. The material was purified by flash silica gel chromatography (85:15 hexanes:EtOAc) to yield **8** as a pale yellow oil (28.2 mg, 0.102 mmol, 25.6% yield). The diastereomers could not be separated and all characterization data is for material with 2:1 dr. **IR** (neat, cm<sup>-1</sup>) 3027 (w), 2970 (w), 2918 (w), 2799 (w), 1944 (m), 1597 (m), 1495 (m), 1455 (m), 1374 (w), 1333 (w), 1279 (w), 1267 (w), 1232 (w), 1210 (w), 1193 (w), 1155 (w), 1134 (m), 1099 (m), 1078 (w), 1027 (w), 934 (m); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.36–7.29 (4H, m), 7.24–7.18 (1H, m), 7.15–7.09 (3H, m), 7.07–7.02 (1H, m), 6.25 (0.33 H, dd, *J* = 6.4, 2.2 Hz), 6.22 (0.66 H, dd, *J* = 6.4, 1.9 Hz), 5.72–5.65 (1H, m), 3.89–3.75 (2H, m), 3.60–3.52 (1H, m), 3.00–2.77 (4H, m), 1.37 (1H, d, *J* = 6.7 Hz), 1.34 (2H, d, *J* = 6.7 Hz); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  205.0, 135.2, 135.1, 134.6, 134.6, 234.5, 134.5, 128.8. 128.7, 128.7, 126.9, 126.9, 126.8, 126.7, 126.7, 126.1, 125.6, 95.9, 95.6, 95.5, 95.3, 59.1, 59.1, 52.0, 51.9, 46.7, 46.7, 29.7, 17.6, 17.2 (note: one sp, two sp<sup>2</sup>, and one sp<sup>3</sup> carbon were not detected due to overlap from complex mixture of diastereomers); **HRMS** (ESI<sup>+</sup>) [M+H]<sup>+</sup> calc'd for C<sub>20</sub>H<sub>21</sub>N: 276.1747, found: 276.1753.

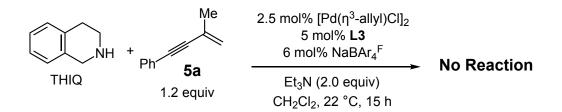

Following the procedure above (0.40 mmol scale) with addition of Et<sub>3</sub>N (112  $\mu$ L, 0.80 mmol, 2.0 equiv) to the reaction mixture, **8** is isolated as a pale yellow oil (65.3 mg, 0.237 mmol, 59.3% yield). <sup>1</sup>H NMR analysis of the unpurified material revealed a 1:1 mixture of diastereomers. These diastereomers were not separated by chromatography.

# VII. Supplemental Substrate Screening

1. Enantioselective Reaction Screening with Alkyl-Substituted Enynes

Efforts to expand the enantioselective reaction scope to alkyl-substituted enynes was met with limited success. Although PHOX ligands, promote the reactions, yields and er are poor (Table S5).

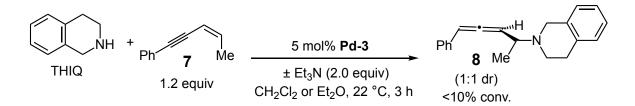
Table S5. Investigation of Alkyl-Substituted Enynes in the Enantioselective Reaction




| entry | ligand | solvent           | yield (%) <sup>b</sup> | er <sup>c</sup> |
|-------|--------|-------------------|------------------------|-----------------|
| 1     | L1     | Et <sub>2</sub> O | 49                     | 52:48           |
| 2     | L2     | $CH_2CI_2$        | 40                     | 61:39           |
| 3     | L3     | $CH_2CI_2$        | 35                     | 59:41           |

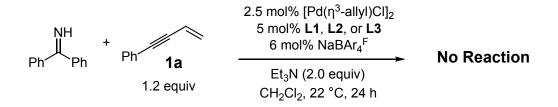
<sup>a</sup>Reactions run with 0.20 mmol THIQ in 0.25 mL solvent. <sup>b</sup>Isolated yield of pure **20**. <sup>c</sup>Determined by HPLC analysis of pure **20** in comparison with an authentic racemic standard.

# 2. Enantioselective Reaction Screening with 1,3-Disubstituted 1,3-Enynes


Efforts to expand the enantioselective reaction scope to 1,3-disubstituted enynes was met without success. Under standard reaction conditions, THIQ failed to add to enynes **5a**. Starting materials were recovered from this experiment and <5 % desired product formation was observed by <sup>1</sup>H NMR of the unpurified material.

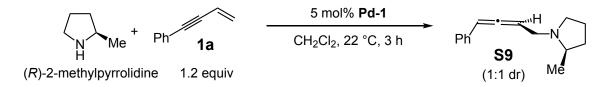


3. Enantioselective Reaction Screening with 1,4-Disubstituted 1,3-Enynes


Efforts to expand the enantioselective reaction scope to 1,4-disubstituted enynes was met with little success. In the presence of a Pd-PHOX catalyst, the addition of THIQ to enyne 7 resulted in

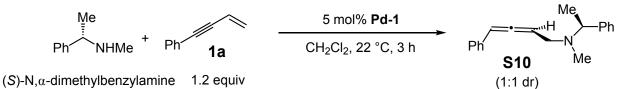
< 10% conversion by <sup>1</sup>H NMR of the unpurified reaction mixture to a 1:1 mixture of diastereomers of **8**. The er of this product was not determined.




4. Enantioselective Reaction Screening with Benzophenone Imine

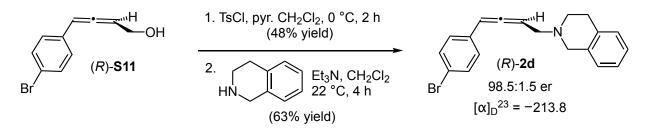
Efforts to expand the enantioselective reaction scope to benzophenone imine was met without success. Under standard reaction conditions with PHOX ligands L1, L2 or L3, benzophenone imine failed to add to enyne 1a. Starting materials were recovered from these experiments and <5% desired product formation was observed by <sup>1</sup>H NMR of the unpurified material.




5. Addition of a Chiral Amine to Enyne 1a Under Racemic Reaction Conditions

Experiments to determine if the chirality of the amine nucleophile can influence the stereochemistry of the allene in the product is presented below. When (*R*)-2-methylpyrrolidine (>99:1 er) or (*S*)-N, $\alpha$ -dimethylbenzylamine (>99:1 er) was added to enyne 1a in the presence of 5 mol % Pd-1, the resulting products S9 and S10 were produced as 1:1 mixtures of diastereomers. Therefore, the chirality of amine nucleophiles has little to no influence on the stereochemistry of the allene.



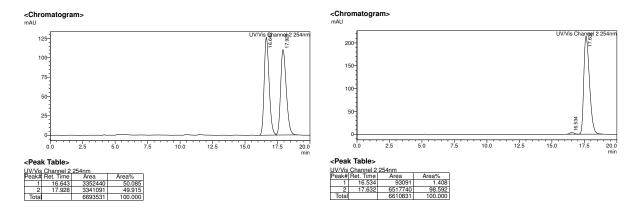

(*R*)-2-methyl-1-(4-phenylbuta-2,3-dien-1-yl)pyrrolidine (S9): Prepared by General Method B using Pd-1 at 22 °C for 3 h. <sup>1</sup>H NMR analysis of the unpurified material revealed a 1:1 mixture of diastereomers. The material was purified by flash silica gel chromatography (60:40 hexanes:EtOAc with 2% v/v Et<sub>3</sub>N additive) to yield S9 as a pale yellow oil (34.7 mg, 0.163 mmol, 81.3% yield). The diastereomers could not be separated and all characterization data is for material

with 1:1 dr. **IR** (neat, cm<sup>-1</sup>) 3030 (w), 2961 (m), 2869 (w), 2790 (m), 1949 (m), 1597 (w), 1495 (m), 1458 (m), 1375 (m), 1353 (w), 1308 (w), 1267 (w), 1220 (w), 1196 (w), 1167 (m), 1139 (m), 1071 (w), 1028 (w), 910 (m); <sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.32–7.25 (4H, m), 7.21–7.15 (1H, m), 6.19–6.11 (1H, m), 5.68–5.60 (1H, m), 3.62–3.52 (1H, m), 3.22 (0.5 H, ddd, *J* = 8.8, 8.8, 2.7 Hz), 3.13 (0.5 H, ddd, *J* = 9.0, 9.0, 2.8 Hz), 3.01 (0.5 H, ddd, *J* = 13.4, 8.0, 2.0 Hz), 2.95 (0.5 H, ddd, *J* = 13.0, 8.4, 1.6 Hz), 2.50–2.37 (1H, m), 2.36–2.25 (1H, m), 1.99–1.88 (1H, m), 1.84–1.62 (2H, m), 1.50–1.38 (1H, m), 1.13 (1.5 H, d, *J* = 6.1 Hz), 1.11 (1.5 H, d, *J* = 6.1 Hz); <sup>13</sup>C **NMR** (125 MHz, CDCl<sub>3</sub>)  $\delta$  205.8, 205.7, 134.6, 134.5, 128.6, 128.6, 126.8, 126.8, 126.7, 94.6, 94.5, 92.0, 91.9, 58.7, 58.4, 53.7, 53.5, 52.2, 51.8, 32.9, 32.9, 21.7, 21.6, 19.0, 18.9; **HRMS** (ESI<sup>+</sup>) [M+H]<sup>+</sup> calc'd for C<sub>15</sub>H<sub>19</sub>N: 214.1590, found: 214.1596.



*N*-methyl-4-phenyl-*N*-((*S*)-1-phenylethyl)buta-2,3-dien-1-amine (S10): Prepared by General Method B using Pd-1 at 22 °C for 3 h. <sup>1</sup>H NMR analysis of the unpurified material revealed a 1:1 mixture of diastereomers. The material was purified by flash silica gel chromatography (85:15 hexanes:EtOAc) to yield S10 as a pale yellow oil (35.5 mg, 0.135 mmol, 67.4% yield). The diastereomers could not be separated and all characterization data is for material with 1:1 dr. **IR** (neat, cm<sup>-1</sup>) 3082 (w), 3061 (w), 3029 (w), 2973 (m), 2936 (w), 2874 (w), 2839 (w), 2782 (m), 1946 (m), 1599 (w), 1495 (m), 1458 (m), 1449 (m), 1418 (w), 1404 (w), 1369 (w), 1346 (w), 1313 (m), 1281 (w), 1200 (m), 1155 (w), 1122 (w), 1071 (m), 1054 (w), 1028 (m), 1013 (w), 999 (w), 954 (w); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.36–7.15 (10H, m), 6.20–6.12 (1H, m), 5.64–5.54 (1H, m), 3.72–3.61 (1H, m), 3.39–3.25 (1H, m), 3.18–3.06 (1H, m), 2.30 (1.5 H, s), 2.30 (1.5 H, s), 1.39 (1.5 H, d, *J* = 6.5 Hz), 1.38 (1.5 H, d, *J* = 6.6 Hz); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) δ 206.0, 206.0, 144.1, 144.0, 134.6, 134.5, 128.6, 128.3, 127.6, 127.6, 127.0, 126.9, 126.8, 126.8, 126.7, 94.5, 91.6, 62.7, 62.6, 53.7, 53.6, 39.0, 38.9, 19.7, 19.6 (note: four sp<sup>2</sup> carbons could not be identified due to complex overlap of diastereomer peaks); **HRMS** (ESI<sup>+</sup>) [M+H]<sup>+</sup> calc'd for C<sub>19</sub>H<sub>21</sub>N: 264.1747, found: 264.1754.

#### VIII. Stereoproof

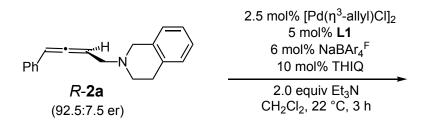


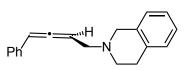

(*R*)-S11 was prepared by a previously described method where the absolute configuration is known.<sup>30</sup>

(*R*)-4-(4-bromophenyl)buta-2,3-dien-1-yl 4-methylbenzenesulfonate (S12): To an oven-dried 2-dram vial equipped with a magnetic stirring rod was added (*R*)-S11 (225 mg, 1.00 mmol, 1.00 equiv) and CH<sub>2</sub>Cl<sub>2</sub> (1.0 mL). The reaction mixture was allowed to cool to 0 °C in an ice water bath, and then pyridine (161  $\mu$ L, 2.00 mmol, 2.00 equiv) was added followed by *p*-TsCl (286 mg, 1.50 mmol, 1.50 equiv). The reaction mixture was allowed to stir at 0 °C for 2 h. The reaction contents were then partitioned between water (10 mL) and EtOAc (5 mL), and the aqueous layer was separated from the organics and washed with EtOAc (5 mL). The combined organic fractions were dried over MgSO<sub>4</sub>, filtered, and concentrated. The product was then purified by flash silica gel chromatography (90:10 to 85:15 hexanes:EtOAc) to yield the tosylate (*R*-S12) as a colorless oil (183 mg, 0.482 mmol, 48.2 % yield). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.83–7.75 (2H, m), 7.44–7.37 (2H, m), 7.31 (2H, d, *J* = 8.2 Hz), 7.11–7.04 (2H, m), 6.19 (1H, dt, *J* = 6.4, 2.1 Hz), 5.64 (1H, app. q, *J* = 6.9 Hz), 4.67–4.58 (2H, m), 2.43 (3H, s). This product was found to be particularly unstable and so was used immediately in the next step.

(R)-2-(4-(4-bromophenyl)buta-2,3-dien-1-yl)-1,2,3,4-tetrahydroisoquinoline (*R*-2d): The tosylate (R)-S12 prepared above (114 mg, 0.300 mmol, 1.00 equiv) was added to an oven-dried 2dram vial equipped with a magnetic stirring rod and dissolved in CH<sub>2</sub>Cl<sub>2</sub> (1.0 mL). To this solution was added Et<sub>3</sub>N (84.0  $\mu$ L, 0.600 mmol, 2.00 equiv) and 1.2,3,4-tetrahydroisoquinoline (THIQ, 57.0  $\mu$ L, 0.450 mmol, 1.50 equiv). The mixture was allowed to stir at ambient temperature for 4 h. The reaction contents were then partitioned between sat aq NaHCO<sub>3</sub> (10 mL) and EtOAc (5 mL). The aqueous layer was separated from the organics and washed with EtOAc (2 X 3 mL). The combined organic fractions were dried over MgSO<sub>4</sub>, filtered, and concentrated. Flash silica gel chromatography (75:25 hexanes: EtOAc) then afforded (R)-2d as a yellow solid (64.0 mg, 0.188 mmol, 62.7% yield). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.46–7.40 (2H, m), 7.20–7.14 (2H, m), 7.14–7.07 (3H, m), 7.04–6.99 (1H, m), 6.16 (1H, dt, J = 6.4, 2.4 Hz), 5.68 (1H, ddd, J 6.9, 6.9, 6.9 Hz), 3.74 (1H, AB<sub>q</sub>,  $J_{AB} = 15.8$  Hz), 3.70 (1H, AB<sub>q</sub>,  $J_{AB} = 15.8$  Hz), 3.38–3.29 (2H, m), 2.97-2.89 (2H, m), 2.85-2.79 (2H, m);  $[\alpha]_{D}^{23} = -213.8$  (c = 1.0, CHCl<sub>3</sub>) for a sample of 98.5:1.5 er. The spectral data match those from (R)-2d as prepared by envne hydroamination. The direction of the specific rotation and comparison of HPLC retention times confirm that the major enantiomer formed by enantioselective hydroamination of the corresponding 1,3-envne with L3 is the (R)-enantiomer. The absolute stereochemistry for all other allene products is based on the stereochemical assignment for (R)-2d.

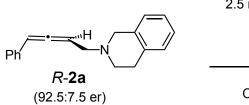
**HPLC:** Column: Cellulose-3 (3  $\mu$ m, 4.6 mm X 250 mm). Mobile phase: 80:20 hexanes:*i*-PrOH, 1 mL/min. Detection wavelength: 254 nm. Er = 98.5:1.5



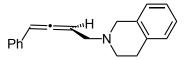


### IX. Transamination/Reaction Reversibility Studies

The following experiments were carried out to elucidate aspects of the mechanism pertaining to reaction reversibility and racemization of allene products, and were conducted based on the below general procedure.

<u>General Procedure F (Reversibility Studies)</u>: In an N<sub>2</sub>-filled glovebox, to a 2-dram vial equipped with a magnetic stirring rod were added successively:  $[Pd(\eta^3-allyl)Cl]_2$  (1.8 mg, 5.0  $\mu$ mol, 2.5 mol %), appropriate ligand (0.010 mmol, 5.0 mol %), and NaBAr<sub>4</sub><sup>F</sup> (10.6 mg, 0.012 mmol, 6.0 mol %). To a separate 2-dram vial was added (*R*)-**2a** (52.3 mg, 0.200 mmol, 1.00 equiv, 92.5:7.5 er) and dissolved in CH<sub>2</sub>Cl<sub>2</sub> (50  $\mu$ L). The solution containing (*R*)-**2a** was added by micro syringe to the solution containing the Pd pre-catalyst (rinsing with an addition 50  $\mu$ L CH<sub>2</sub>Cl<sub>2</sub>). To the resulting solution was added Et<sub>3</sub>N (56  $\mu$ L, 0.40 mmol, 2.0 equiv) followed by appropriate amine nucleophile (THIQ = 2.5  $\mu$ L, 0.020 mmol, 10 mol % *or* morpholine = 17.0  $\mu$ L, 0.200 mmol, 1.00 equiv). The solutions were allowed to stir at ambient temperature for 3 h and then worked up and purified as described for **2a** and **2an** as appropriate (see Substrate Scope section of SI).

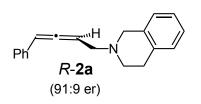

1. Reaction Reversibility Study with L1



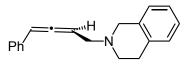



Trial 1: 79% recovery, 51:49 er Trial 2: 82% recovery, 53:47 er **Avg: 81% recovery, 52:48 er** 

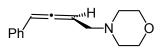
2. Reaction Reversibility Study with L3




2.5 mol%  $[Pd(\eta^{3}-allyl)Cl]_{2}$ 5 mol% L3 6 mol% NaBAr<sub>4</sub><sup>F</sup> 10 mol% THIQ 2.0 equiv Et<sub>3</sub>N CH<sub>2</sub>Cl<sub>2</sub>, 22 °C, 3 h



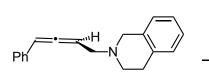

Trial 1: 68% recovery, 70.5:29.5 er Trial 2: 69% recovery, 73.5:26.5 er **Avg: 69% recovery, 72:28 er** 


3. Transamination Study with L1 to Elucidate Mechanism of Racemization



2.5 mol%  $[Pd(\eta^3-allyl)Cl]_2$ 5 mol% L1 6 mol% NaBAr<sub>4</sub><sup>F</sup> 1.0 equiv morpholine 2.0 equiv Et<sub>3</sub>N CH<sub>2</sub>Cl<sub>2</sub>, 22 °C, 3 h



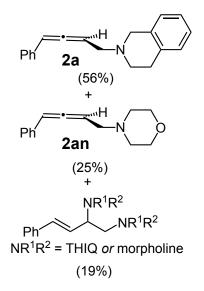

Trial 1: 57% recovery, 57.5:42.5 er Trial 2: 59% recovery, 54.5:45.5 er **Avg: 58% recovery, 56:44 er** 



+

Trial 1: 24% yield, 59:41 Trial 2: 19% yield, 52:48 er **Avg: 22% yield, 55.5:44.5 er** 

4. Prolonged Reaction Times for Transamination Experiments Results in Hydroamination of Allenes to Afford Bis-Amination Products.<sup>*a*</sup>




2a (racemic)

 $\begin{array}{c} \text{2.5 mol\%} \ [\text{Pd}(\eta^3\text{-allyl})\text{Cl}]_2\\ 5 \ \text{mol\%} \ \textbf{L1}\\ 6 \ \text{mol\%} \ \text{NaBAr_4}^\text{F}\\ 1.0 \ \text{equiv} \ \text{morpholine} \end{array}$ 

2.0 equiv Et<sub>3</sub>N CH<sub>2</sub>Cl<sub>2</sub>, 22 °C, 15 h

<sup>a</sup>Yields in parentheses refer to the ratio of products determined by <sup>1</sup>H NMR of unpurified reaction mixture.



5. Transamination with DPEphos Derived Pd Catalyst Reveals Approximately 1:1 Ratio of Morpholine: THIQ Adducts Under a Variety of Conditions (Table S6).

2.5 mol% [Pd( $\eta^3$ -allyl)Cl]<sub>2</sub> ١H Ph 5 mol% DPEphos 1.0 equiv 2an 6 mol% NaBAr<sub>4</sub><sup>F</sup> + base (2.0 equiv) ١H solvent, 22 °C, 3 h Ph Ph 2a 2a (racemic)

Table S6. Solvent and Base Screening of Transamination Reaction with DPEphos Pd Catalyst

| entry | solvent                         | base                         | 2an:2a <sup>a</sup> |
|-------|---------------------------------|------------------------------|---------------------|
| 1     | Et <sub>2</sub> O               | Et₃N                         | 1.5:1               |
| 2     | CH <sub>2</sub> Cl <sub>2</sub> | Et <sub>3</sub> N            | 1.3:1               |
| 3     | THF                             | Et <sub>3</sub> N            | 1.4:1               |
| 4     | hexanes                         | Et <sub>3</sub> N            | 1.2:1               |
| 5     | cyclohexane                     | Et <sub>3</sub> N            | 1.4:1               |
| 6     | dioxane                         | Et <sub>3</sub> N            | 1.3:1               |
| 7     | toluene                         | Et <sub>3</sub> N            | 1.3:1               |
| 8     | MeCN                            | Et <sub>3</sub> N            | 1.3:1               |
| 9     | acetone                         | Et <sub>3</sub> N            | 1.3:1               |
| 10    | Et <sub>2</sub> O               | <i>i</i> Pr <sub>2</sub> NEt | 1.5:1               |
| 11    | Et <sub>2</sub> O               | DABCO                        | 1.3:1               |
| 12    | Et <sub>2</sub> O               | DBU <sup>b</sup>             | >20:1               |
| 13    | Et <sub>2</sub> O               | TMP                          | 1.3:1               |
| 14    | Et <sub>2</sub> O               | DMAP                         | 0.9:1               |
| 15    | Et <sub>2</sub> O               | TMG <sup>b,c</sup>           | >20:1               |

<sup>a</sup>Determined by <sup>1</sup>H NMR of the unpurified reaction mixture. <sup>b</sup>Base additive does not promote the hydroamination of 1,3-enynes.

<sup>c</sup>TMG = 1,1,3,3-tetramethylguanidine

To better understand the kinetics of enantiomerization of our allene products, we performed experiments aimed at monitoring the er over time for several different amine products. We chose to study indoline (pK<sub>a</sub> conjugate acid = 5.6 in H<sub>2</sub>O),<sup>31</sup> morpholine (pK<sub>a</sub> conjugate acid = 9.2 in DMSO and 8.5 in H<sub>2</sub>O),<sup>32</sup> and piperidine (pK<sub>a</sub> conjugate acid = 10.9 in DMSO and 11.1 in H<sub>2</sub>O)<sup>32</sup> adducts **2ao**, **2an**, and **2w**, respectively, because these cover a broad range in terms pK<sub>a</sub> and Lewis basicity.

1. Enantiomerization of Allenes in the Forward Progression of the Reaction

We aimed to discover if the rate and extent of er deterioration over time for the optimized reaction. A general procedure for these experiments is found below:

<u>General Procedure F:</u> In an N<sub>2</sub>-filled glovebox, to a 2-dram vial equipped with a magnetic stirring rod were added successively:  $[Pd(\eta^3-allyl)Cl]_2$  (3.7 mg, 10.0  $\mu$ mol, 1.0 mol %), L3 (13.5 mg, 0.020 mmol, 2.0 mol %), and NaBAr4<sup>F</sup> (22.1 mg, 0.025 mmol, 2.5 mol %). The mixture was dissolved in Et<sub>2</sub>O (1.25 mL) and allowed to stir for ca. 5 min, resulting in a deep orange/red solution, and then envne 1a (162  $\mu$ L, 1.20 mmol, 1.20 equiv) was added. The reaction vials were then capped with a PTFE lined cap, removed from the glovebox, and allowed to cool in an ice water bath at 0-4 °C for ca. 15 minutes before Et<sub>3</sub>N (279 µL, 2.00 mmol, 2.00 equiv) and appropriate amine nucleophile (1.00 mmol, 1.00 equiv) were added. The reactions were allowed to stir at 4 °C for 24 h with aliquots (0.15 mL) taken at: 30 min, 1 h, 2 h, 4 h, 8 h, 16 h, and 24 h. These aliquots were passed through a short plug of silica gel eluting with a solvent system appropriate for each amine (2ao = ca. 20 mL 90:10 hexanes: EtOAc, 2an = ca. 20 mL 60:40 hexanes: EtOAc, and 2w =ca. 20 mL 60:40 hexanes: EtOAc with 2% v/v Et<sub>3</sub>N additive). The aliquots were then concentrated under reduced pressure and dissolved in HPLC grade solvents (2ao and 2an = 10 mL 80:20 hexanes: IPA, 2w = 10 mL MeOH) and analyzed promptly (within 2 h) by HPLC for enantiomeric ratio. For HPLC methods and representative chromatograms for each compound, see the "Substrate Scope" section for 2ao, 2an, and 2w.

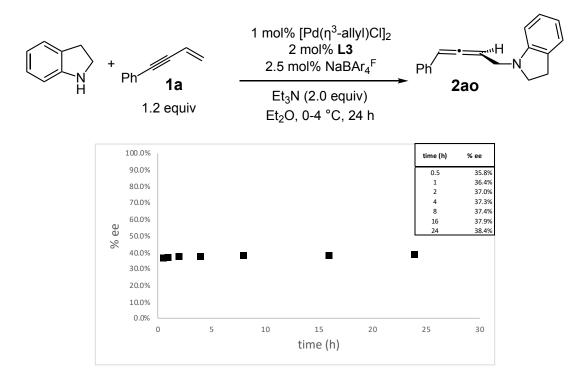
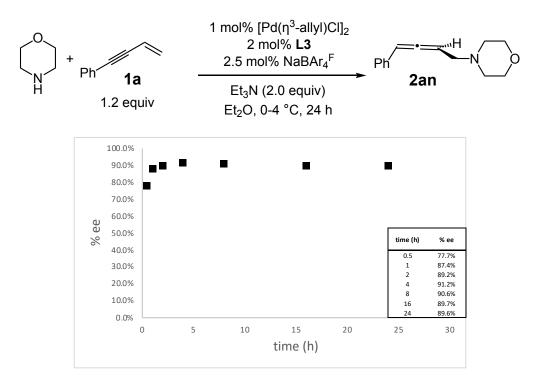




Chart S1. Enantiomeric Ratio of 2ao During Course of Reaction

Chart S2. Enantiomeric Ratio of 2an During Course of Reaction



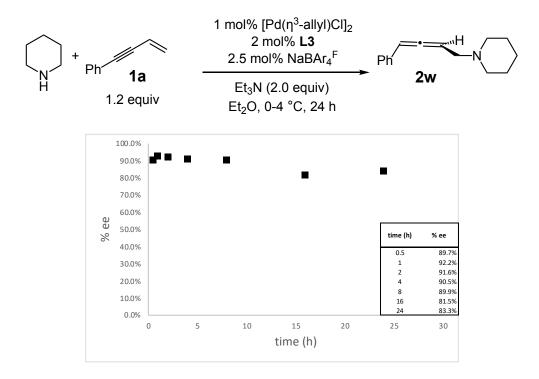
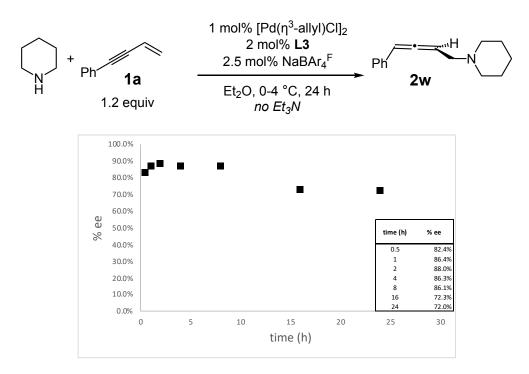
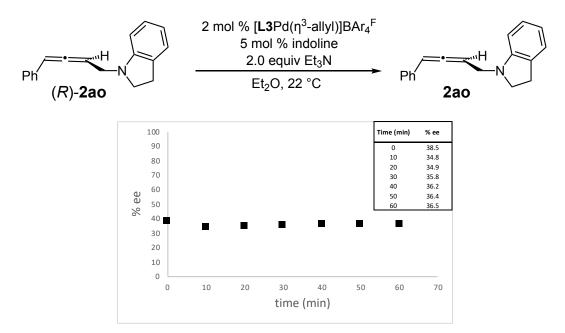




Chart S3. Enantiomeric Ratio of 2w During Course of Reaction

We additionally performed an experiment identical to Chart S3 but without Et<sub>3</sub>N (following General Procedure F but without addition of Et<sub>3</sub>N).

Chart S4. Enantiomeric Ratio of 2w During Course of Reaction without Et<sub>3</sub>N




From the data above, we can conclude that an insignificant amount of enantiomerization occurs for indoline (**2ao**) and morpholine (**2an**) adducts (smaller  $pK_a$  values), whereas piperidine adduct **2w** demonstrates a very slow rate of enantiomerization (higher  $pK_a$ ). It is unclear from the data above if Et<sub>3</sub>N plays a significant role in the rate of enantiomerization, although slightly faster enantiomerization of **2w** occurs in its absence.

2. Isolated 2ao Resubjected to Reaction Conditions

Given the unusually low enantioselectivity of indoline addition, we performed an experiment where (R)-**2ao** (69:31 er) was resubjected to the reaction conditions to measure the rate of enantiomerization.

In an N<sub>2</sub>-filled glovebox, to a 1-dram vial was added [L3Pd( $\eta^3$ -allyl)]BAr<sub>4</sub><sup>F</sup> (3.4 mg, 2.0  $\mu$ mol, 2.0 mol %). This vial was capped with a rubber septum and removed from the glovebox. To this vial was added a solution of (*R*)-**2ao** (24.7 mg, 0.100 mmol, 1.00 equiv), indoline (25 $\mu$ L of a freshly prepared 0.20 M solution in Et<sub>2</sub>O, 5.0  $\mu$ mol, 5.0 mol %), and Et<sub>3</sub>N (28.0  $\mu$ L, 0.200 mmol, 2.00 equiv) in Et<sub>2</sub>O (2 x 0.50 mL) via cannula transfer at ambient temperature. Experiments that indicate they were performed in the absence of Et<sub>3</sub>N did not include this component in above solution. Aliquots (*ca.* 50  $\mu$ L) were taken at 10 min intervals during the reaction. These aliquots were immediately passed through a short plug of silica gel eluting with 80:20 hexanes:EtOAc (*ca.* 5–10 mL) and subsequently concentrated under reduced pressure. The concentrated aliquots were dissolved in HPLC grade 80:20 hexanes:IPA (*ca.* 1–2 mL) and analyzed promptly (within 2 h) by HPLC for enantiomeric ratio. For HPLC methods and representative chromatograms, see the "Substrate Scope" section for **2ao**.

Chart S5. Initial Rate of Enantiomerization of 2ao



An additional aliquot was taken after 46 h, but the er remained unchanged (36.8% ee).

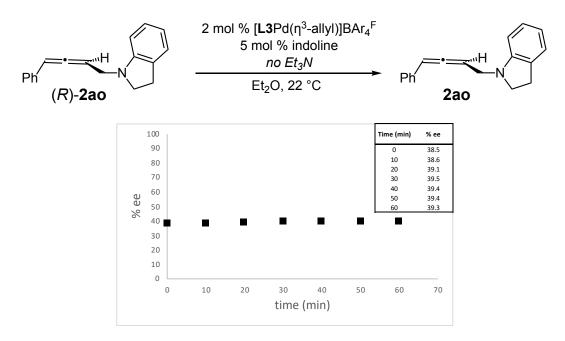
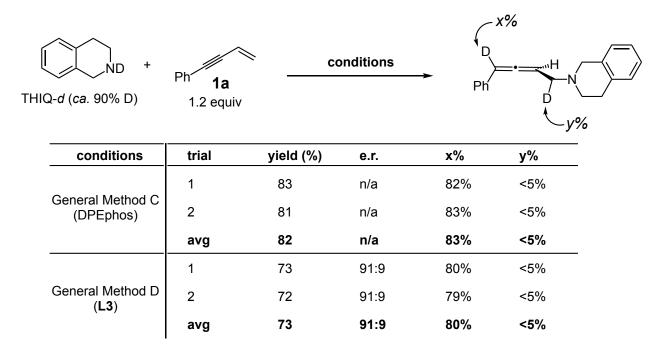



Chart S6. Initial Rate of Enantiomerization of 2ao without Et<sub>3</sub>N


An additional aliquot was taken after 46 h, but the er remained unchanged (38.0% ee).

From the data in Charts S5 and S6 above, we can conclude that indoline adduct **2ao** does not significantly enantiomerize in the presence of a Pd catalyzed derived from L3. Therefore, the low enantioselectivity observed with indoline is likely due to kinetics of nucleophile addition and not post-reaction enantiomerization.

### XI. Deuterium Labeling Studies

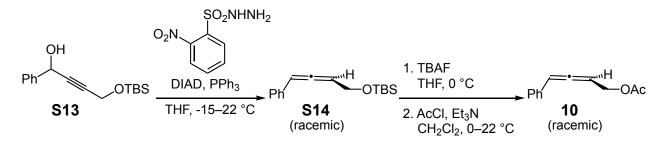
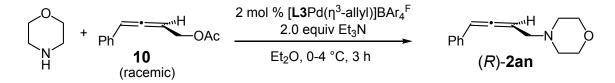

Deuterium labeling studies were carried out under standard non-enantioselective reaction conditions (General Method C) and enantioselective conditions (General Method D). All reactions performed on a 0.20 mmol scale with respect to THIQ-*d* and were otherwise carried out as described in "Substrate Scope" section of the SI (see above for **2a**). THIQ-*d* (*ca*. 90% deuterium incorporation) was prepared as previously described. Deuterium incorporation was measured based on disappearance of peaks in the <sup>1</sup>H NMR spectra of purified products using the AB quartet centered at *ca*.  $\delta$  3.76 (2H) in CDCl<sub>3</sub> as a reference for every measurement. An example <sup>1</sup>H NMR spectrum of *d*-**2a** can be found in the Supplementary Information Part B. Recovered starting material enyne from the reactions indicated <5% deuterium incorporation.

Table S7. Deuterium Labeling Experiments



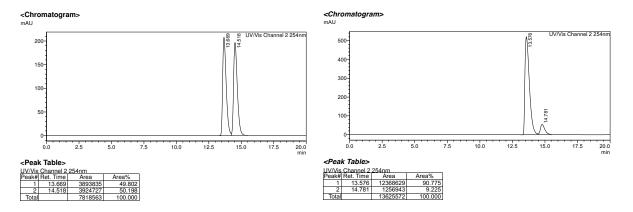
### XII. Allylic Substitution Experiments

The preparation of **S13** has been reported previously.<sup>33</sup>



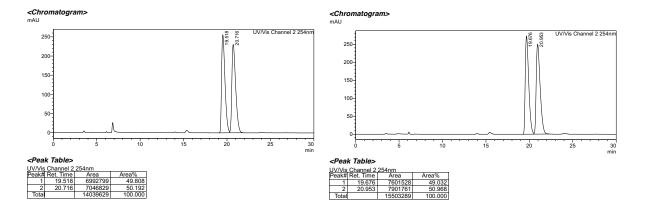

*tert*-butyldimethyl((4-phenylbuta-2,3-dien-1-yl)oxy)silane (S14): Prepared by the method of Myers and co-workers.<sup>34</sup> To a 250-mL round-bottom flask equipped with a magnetic stirring rod was added triphenylphosphine (3.75 g, 14.3 mmol, 1.30 equiv) and dissolved in THF (40 mL). This solution was cooled to -15 °C and diisopropyl azodicarboxylate (2.82 mL, 14.3 mmol, 1.30 equiv) was added dropwise via syringe. After 10 min of stirring at this temperature, S13 (3.04 g, 11.0 mmol, 1.00 equiv) was added as a solution in THF (40 mL) via cannula transfer. After an additional 10 min of stirring, 2-nitrobenzenesulfonohydrazide (3.11 g, 14.3 mmol, 1.30 equiv) was added as a solution in THF (40 mL) via cannula transfer. The resulting yellow solution was allowed to stir at -15 °C for 1 h and then warm to ambient temperature. Stirring was allowed to continue at ambient temperature for 13 h. After this time, the reaction mixture was concentrated under reduced pressure. Purification by flash silica gel chromatrography (99:1 hexanes:Et<sub>2</sub>O) afforded S14 as a yellow oil (1.20 g, 4.59 mmol, 41.7% yield). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.30–7.25 (4H, m), 7.21–7.15 (1H, m), 6.21 (dt, J = 6.4, 2.7 Hz), 5.67 (ddd, J = 6.3, 6.3, 6.3 Hz), 4.31–4.26 (2H, m), 0.89 (9H, s), 0.08 (3H, s), 0.07 (3H, s). Spectral data match those previously reported.<sup>33</sup>

**4-phenylbuta-2,3-dien-1-ol (S15):** To a 100-mL round-bottom flask equipped with a magnetic stirring rod was added **S14** (1.04 g, 4.00 mmol, 1.00 equiv) and dissolved in THF (12 mL) and then cooled to 0 °C. TBAF (1.0 M in THF, 6.0 mL, 1.5 equiv) was added dropwise via syringe and stirring was allowed to continue at 0 °C for 3 h. The reaction mixture was partitioned between sat aq brine (50 mL) and Et<sub>2</sub>O (50 mL). The aqueous layer was separated from organics and washed with Et<sub>2</sub>O (30 mL). The combined organic fractions were dried over Na<sub>2</sub>SO<sub>4</sub>, filtered, and concentrated. Purification by flash silica gel chromatography (80:20 to 70:30 hexanes:Et<sub>2</sub>O) afforded **S15** as a yellow oil (464 mg, 3.17 mmol, 79.3% yield). ). <sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.33–7.26 (4H, m), 7.23–7.17 (1H, m), 6.31 (1H, dt, *J* = 6.4, 2.9 Hz), 5.78 (1H, ddd, *J* = 6.0, 6.0, 6.0 Hz), 4.28–4.20 (2H, m), 1.59–1.54 (1H, m). Spectral data match those previously reported.<sup>35</sup>


**4-phenylbuta-2,3-dien-1-yl acetate (10):** To a 50-mL round-bottom flask equipped with a magnetic stirring rod was added **S15** (421 mg, 2.88 mmol, 1.00 equiv) and dissolved in  $CH_2Cl_2$  (10 mL). This solution was cooled to 0 °C and  $Et_3N$  (0.80 mL, 5.8 mmol, 2.0 equiv) was added followed by acetyl chloride (0.41 mL, 5.8 mmol, 2.0 equiv) dropwise via syringe. The reaction mixture was allowed to warm to ambient temperature and allowed to stir for 30 min. The reaction mixture was then poured into sat aq NaHCO<sub>3</sub> (20 mL). The aqueous layer was separated from organics and washed with  $CH_2Cl_2$  (2 X 5 mL). The combined organic fractions were dried over MgSO<sub>4</sub>, filtered, and concentrated. Purification by flash silica gel chromatography (90:10

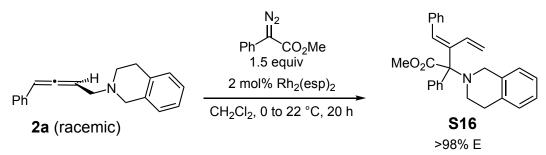
hexanes:Et<sub>2</sub>O) afforded pure **10** as a pale yellow oil (471 mg, 2.50 mmol, 86.9% yield). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.33–7.25 (4H, m), 7.23–7.18 (1H, m), 6.28 (1H, dt, *J* = 6.4, 2.5 Hz), 5.70 (1H, ddd, *J* = 6.5, 6.5, 6.5 Hz), 4.66 (2H, dd, *J* = 6.6, 2.5 Hz), 2.06 (3H, s). Spectral data match those previously reported.<sup>36</sup>



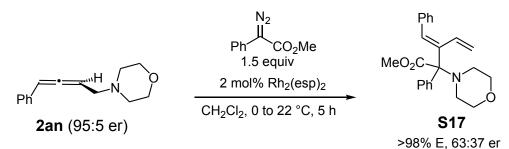

(*R*)-4-(4-phenylbuta-2,3-dien-1-yl)morpholine (2an): In an N<sub>2</sub>-filled glovebox, to a dry 2-dram vial equipped with a magnetic stirring rod was added [(L3)Pd( $\eta^3$ -allyl)]BAr<sub>4</sub><sup>F</sup> (6.7 mg, 4.0  $\mu$ mol, 2.0 mol %) and dissolved in Et<sub>2</sub>O (0.50 mL). To this solution was added 10 (42.5  $\mu$ L, 0.240 mmol, 1.20 equiv). At this point, the vial was capped with a PTFE lined cap and removed from the glovebox. The vial was allowed to cool in an ice bath (0 °C) for *ca*. 10 min before Et<sub>3</sub>N (56  $\mu$ L, 0.40 mmol, 2.0 equiv) was added followed by morpholine (17.5  $\mu$ L, 0.200 mmol, 1.00 equiv). The reaction mixture was allowed to stir at 0–4 °C for 3 h and then passed through a plug of silica gel eluting with 1:1 hexanes:EtOAc with 2 % v/v Et<sub>3</sub>N addition (*ca*. 20 mL) and concentrated under reduced pressure. Purification by flash silica gel chromatography (70:30 hexanes:EtOAc with 2% v/v Et<sub>3</sub>N additive) afforded **2an** as a colorless semi-solid (18.8 mg, 0.0873 mmol, 43.7 %). HPLC analysis revealed this material to be 91:9 er with the same major enantiomer as obtained through hydroamination of **1a**.

**HPLC:** Column: Cellulose-3 (3  $\mu$ m, 4.6 mm X 250 mm). Mobile phase: 99.9:0.1 hexanes:*i*-PrOH, 1 mL/min. Detection wavelength: 254 nm. Er = 91:1.



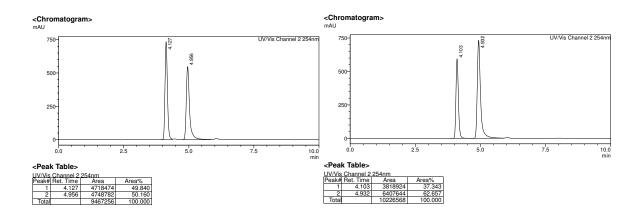

The starting material **10** was recovered from the above experiment (26.6 mg, 58.9% recovery based on 1.20 equiv used). This material was additionally analyzed by HPLC and determined to be racemic.

**HPLC:** Column: Cellulose-3 (3 μm, 4.6 mm X 250 mm). Mobile phase: 99.9:0.1 hexanes:*i*-PrOH, 1 mL/min. Detection wavelength: 254 nm.




HPLC traces above show starting material allenyl acetate **10** (left) and **10** recovered from above allylic substitution reaction with morpholine (right). The recovered **10** is still a racemate indicating that kinetic resolution does not take place.

#### XIII. Derivatization of Allene Products




methyl (E)-3-benzylidene-2-(3,4-dihydroisoquinolin-2(1H)-yl)-2-phenylpent-4-enoate (S16): To an oven-dried 2-dram vial equipped with a magnetic stirring rod were added rac-2a (52.3 mg, 0.200 mmol, 1.00 equiv) and Rh<sub>2</sub>(esp)<sub>2</sub> (3.0 mg, 4.0 µmol, 2.0 mol %). CH<sub>2</sub>Cl<sub>2</sub> (0.50 mL) was added and the resulting solution was allowed to cool to 0 °C. Methyl 2-diazo-2-phenylacetate (53 mg, 0.30 mmol, 1.5 equiv) was added as a solution in  $CH_2Cl_2$  (0.50 mL) dropwise via syringe. The reaction mixture was allowed to warm gradually to ambient temperature and then stir for 20 h. The reaction mixture was then passed through a short plug of neutral alumina, eluting with 1:1 hexanes: EtOAc (ca. 20 mL) and the solution was concentrated. <sup>1</sup>H NMR analysis of the unpurified reaction mixture indicated that the product was >98% E. The product was then purified by flash silica gel chromatography (90:10 hexanes: EtOAc) to afford **S16** as a white solid (68.1 mg, 0.166 mmol, 83.2% yield). IR (neat, cm<sup>-1</sup>) 3021 (w), 2947 (w), 2829 (w), 2246 (w), 1720 (s), 1599 (w), 1492 (m), 1445 (m), 1429 (m), 1382 (w), 1226 (s), 1175 (s), 1077 (m), 1035 (m), 1010 (m), 906 (s); <sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.65–7.58 (2H, m), 7.37–7.08 (12H, m), 6.96 (1H, d, J = 7.3 Hz), 6.41 (1H, dd, J = 18.0, 11.8 Hz), 5.05 (1H, dd, J = 18.0, 1.5 Hz), 5.01 (1H, dd, J = 12.0, 1.5 Hz), 3.83 (3H, s), 3.80 (1H, AB<sub>q</sub>,  $J_{AB} = 15.0$  Hz), 3.73 (1H, AB<sub>q</sub>,  $J_{AB} = 15.0$  Hz), 3.14–2.89 (3H, m), 2.76–2.68 (1H, m); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) δ 169.5, 139.2, 138.6, 137.4, 135.9, 134.8, 133.3, 129.8, 129.7, 129.3, 128.8, 128.1, 127.5, 127.1, 127.0, 126.7, 126.1, 125.6, 119.3, 79.1, 51.3, 51.2, 47.2, 30.3; **HRMS** (ESI<sup>+</sup>) [M+H]<sup>+</sup> calc'd for C<sub>28</sub>H<sub>27</sub>NO<sub>2</sub>: 410.2115, found: 410.2120;  $MP = 40-44 \ ^{\circ}C.$ 



**methyl** (*E*)-3-benzylidene-2-morpholino-2-phenylpent-4-enoate (S17): To an oven-dried 2dram vial equipped with a magnetic stirring rod were added (*R*)-2an (32.3 mg, 0.150 mmol, 1.00 equiv, 95:5 er) and Rh<sub>2</sub>(esp)<sub>2</sub> (2.3 mg, 3.0  $\mu$ mol 1, 2.0 mol %). CH<sub>2</sub>Cl<sub>2</sub> (0.35 mL) was added and the resulting solution was allowed to cool to 0 °C. Methyl 2-diazo-2-phenylacetate (40 mg, 0.23 mmol, 1.5 equiv) was added as a solution in CH<sub>2</sub>Cl<sub>2</sub> (0.40 mL) dropwise via syringe. The reaction mixture was allowed to warm gradually to ambient temperature and then stir for 5 h. The reaction mixture was then passed through a short plug of neutral alumina, eluting with 1:1 hexanes:EtOAc (*ca.* 20 mL) and the solution was concentrate. <sup>1</sup>H NMR analysis of the unpurified reaction mixture indicated that the product was >98% *E*. The product was then purified by flash silica gel chromatography (90:10 hexanes:EtOAc) to afford **S17** as a colorless viscous oil (46.1 mg, 0.127 mmol, 84.5% yield). **IR** (neat, cm<sup>-1</sup>) 3021 (w), 2951 (m), 2889 (w), 2848 (m), 2246 (w), 1721 (s), 1599 (w), 1492 (m), 1445 (m), 1432 (w), 1390 (w), 1291 (w), 1266 (m), 1227 (s), 1193 (s), 1113 (s), 1070 (w), 1008 (m), 908 (s); <sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>) 7.56–7.49 (2H, m), 7.34–7.17 (8H, m), 7.04 (1H, s), 6.36 (1H, dd, J = 18.0, 11.9 Hz), 5.05 (1H, d, J = 17.9 Hz), 4.99 (1H, d, J = 11.8 Hz), 3.80 (3H, s), 3.80–3.73 (4H, m), 2.76–2.60 (2H, m), 2.57–2.42 (2H, m);  $\delta$  <sup>13</sup>**C NMR** (125 MHz, CDCl<sub>3</sub>)  $\delta$  169.5, 138.3, 138.0, 137.2, 133.3, 130.6, 129.6, 129.3, 128.1, 127.5, 127.2, 127.1, 119.1, 78.8, 67.8, 51.2, 49.5; **HRMS** (ESI<sup>+</sup>) [M+H]<sup>+</sup> calc'd for C<sub>23</sub>H<sub>25</sub>NO<sub>3</sub>: 364.1907, found: 364.1914.

**HPLC:** Column: Amylose-1 (3  $\mu$ m, 4.6 mm X 250 mm). Mobile phase: 90:10 hexanes:*i*-PrOH, 1 mL/min. Detection wavelength: 254 nm. Er = 62.5:37.5 er



The olefin stereochemistry of **S17** was confirmed by NOESY analysis. Key nOe signals are depicted below:



Efforts to realize a stereoconvergent reaction starting from racemic **2an** with a chiral catalyst were largely unsuccessful. The relevant data are presented in Table S8.

 $N_2$ 1.5 equiv Ph Ph CO<sub>2</sub>Me 1 mol% [Rh] MeO<sub>2</sub>C Ph Ρh 2an (racemic) solvent, 0-22 °C, 5-9 h S17 solvent time (h) yield 7b (%)<sup>b</sup> entry [Rh] erc 1 Rh<sub>2</sub>(S-PTAD)<sub>4</sub> CH<sub>2</sub>Cl<sub>2</sub> 9 (10)ND 2 Rh<sub>2</sub>(R-BTPCP)<sub>4</sub>  $CH_2CI_2$ 9 <2 \_ 3 Rh<sub>2</sub>(S-tert-PTTL)<sub>4</sub>  $CH_2CI_2$ 9 34 51:49 4 Rh<sub>2</sub>(R-DOSP)<sub>4</sub>  $CH_2CI_2$ 9 72 53:47

pentane

Table S8. Screening of Chiral Rh-Based Catalysts with Racemic 2an<sup>a</sup>

Rh<sub>2</sub>(R-DOSP)<sub>4</sub>

5

<sup>a</sup>Reactions run with 0.20 mmol **2an** in 1.0 mL solvent. <sup>b</sup>Isolated yield of pure **S17**. Yields in parenthesis are conversions based on <sup>1</sup>H NMR of unpurified reaction mixture. <sup>c</sup>Determined by HPLC analysis of pure **S17** in comparison with an authentic racemic standard. ND = not determined.

5

77

65.5:34.5

#### **XIV.** References

- (1) Takahashi, S.; Kuroyama, Y.; Sonogashira, K.; Hagihara, N. A Convenient Synthesis of Ethynylarenes and Diethynylarenes. *Synthesis* **1980**, 627–630.
- (2) Morri, A. K.; Thummala, Y.; Doddi, V. R. The Dual Role of 1,8-Diazabicyclo[5.4.0]Undec-7-Ene (DBU) in the Synthesis of Terminal Aryl- and Styryl-Acetylenes via Umpolung Reactivity. Org. Lett. 2015, 17, 4640–4643.
- (3) Chen, X.; Chen, T.; Xiang, Y.; Zhou, Y.; Han, D.; Han, L.-B.; Yin, S.-F. Metal-Free Regioselective Hydrobromination of Alkynes through CH/CBr Activation. *Tetrahedron Lett.* **2014**, *55*, 4572–4575.
- (4) Mancino, G.; Ferguson, A. J.; Beeby, A.; Long, N. J.; Jones, T. S. Dramatic Increases in the Lifetime of the Er3+ Ion in a Molecular Complex Using a Perfluorinated Imidodiphosphinate Sensitizing Ligand. J. Am. Chem. Soc. 2005, 127, 524–525.
- (5) Keipour, H.; Jalba, A.; Delage-Laurin, L.; Ollevier, T. Copper-Catalyzed Carbenoid Insertion Reactions of α-Diazoesters and α-Diazoketones into Si–H and S–H Bonds. J. Org. Chem. 2017, 82, 3000–3010.
- (6) Brookhart, M.; Grant, B.; Volpe, A. F. [(3,5-(CF3)2C6H3)4B]-[H(OEt2)2]+: A Convenient Reagent for Generation and Stabilization of Cationic, Highly Electrophilic Organometallic Complexes. *Organometallics* **1992**, *11*, 3920–3922.
- (7) Adamson, N. J.; Hull, E.; Malcolmson, S. J. Enantioselective Intermolecular Addition of Aliphatic Amines to Acyclic Dienes with a Pd–PHOX Catalyst. J. Am. Chem. Soc. **2017**, *139*, 7180–7183.
- (8) Adamson, N. J.; Wilbur, K. C. E.; Malcolmson, S. J. Enantioselective Intermolecular Pd-Catalyzed Hydroalkylation of Acyclic 1,3-Dienes with Activated Pronucleophiles. J. Am. Chem. Soc. 2018, 140, 2761–2764.
- (9) Tani, K.; Behenna, D. C.; McFadden, R. M.; Stoltz, B. M. A Facile and Modular Synthesis of Phosphinooxazoline Ligands. *Org. Lett.* 2007, *9*, 2529–2531.
- (10) Richards, C. J.; Mulvaney, A. W. Synthesis of Phosphinoferrocenyloxazolines. New Ligands for Asymmetric Catalysis. *Tetrahedron Asymmetry* **1996**, *7*, 1419–1430.
- (11) Holz, J.; García, M. A.; Frey, W.; Krupp, F.; Peters, R. Diastereoselective Synthesis, Structure and Reactivity Studies of Ferrocenyloxazoline Gold(I) and Gold(II) Complexes. *Dalton Trans.* 2018, 47, 3880–3905.
- (12) Hellmuth, T.; Rieckhoff, S.; Weiss, M.; Dorst, K.; Frey, W.; Peters, R. Cooperative Bimetallic Asymmetric Catalysis: Comparison of a Planar Chiral Ruthenocene Bis-Palladacycle to the Corresponding Ferrocene. *ACS Catal.* **2014**, *4*, 1850–1858.
- (13) Liu, D.; Xie, F.; Zhao, X.; Zhang, W. Enantioselective Transfer Hydrogenation of Ketones with Planar Chiral Ruthenocene-Based Phosphinooxazoline Ligands. *Tetrahedron* **2008**, *64*, 3561–3566.
- (14) Park, S.; Malcolmson, S. J. Development and Mechanistic Investigations of Enantioselective Pd-Catalyzed Intermolecular Hydroaminations of Internal Dienes. *ACS Catal.* **2018**, *8*, 8468–8476.
- (15) Kang, B.; Kim, D.; Do, Y.; Chang, S. Conjugated Enynes as a New Type of Substrates for Olefin Metathesis. *Org. Lett.* **2003**, *5*, 3041–3043.
- (16) Meng, F.; Haeffner, F.; Hoveyda, A. H. Diastereo- and Enantioselective Reactions of Bis(Pinacolato)Diboron, 1,3-Enynes, and Aldehydes Catalyzed by an Easily Accessible Bisphosphine–Cu Complex. J. Am. Chem. Soc. 2014, 136, 11304–11307.
- (17) Cheng, J.-K.; Loh, T.-P. Copper- and Cobalt-Catalyzed Direct Coupling of Sp<sup>3</sup>  $\alpha$ -Carbon of Alcohols with Alkenes and Hydroperoxides. *J. Am. Chem. Soc.* **2015**, *137*, 42–45.
- (18) Isono, N.; Lautens, M. Rhodium(I)-Catalyzed Cyclization Reaction of o-Alkynyl Phenols and Anilines. Domino Approach to 2,3-Disubstituted Benzofurans and Indoles. Org. Lett. 2009, 11, 1329–1331.
- (19) Pünner, F.; Hilt, G. Regioselective Solvent-Dependent Benzannulation of Conjugated Enynes. *Chem. Commun.* **2012**, *48*, 3617–3619.
- (20) Kujawa, S.; Best, D.; Burns, D. J.; Lam, H. W. Synthesis of Spirocyclic Enones by Rhodium-Catalyzed Dearomatizing Oxidative Annulation of 2-Alkenylphenols with Alkynes and Enynes. *Chem. – Eur. J.* 2014, 20, 8599–8602.

- (21) Wang, F.; Wang, D.; Zhou, Y.; Liang, L.; Lu, R.; Chen, P.; Lin, Z.; Liu, G. Divergent Synthesis of CF3-Substituted Allenyl Nitriles by Ligand-Controlled Radical 1,2- and 1,4-Addition to 1,3-Enynes. *Angew. Chem., Int. Ed.* 2018, 57, 7140–7145.
- (22) Robinson, J. M.; Tlais, S. F.; Fong, J.; Danheiser, R. L. A [4+4] Annulation Strategy for the Synthesis of Eight-Membered Carbocycles Based on Intramolecular Cycloadditions of Conjugated Enynes. *Tetrahedron* 2011, 67, 9890–9898.
- (23) Gross, E.; Liu, J. H.-C.; Toste, F. D.; Somorjai, G. A. Control of Selectivity in Heterogeneous Catalysis by Tuning Nanoparticle Properties and Reactor Residence Time. *Nat. Chem.* 2012, *4*, 947– 952.
- (24) Nishimura, T.; Araki, H.; Maeda, Y.; Uemura, S. Palladium-Catalyzed Oxidative Alkynylation of Alkenes via C–C Bond Cleavage under Oxygen Atmosphere. *Org. Lett.* **2003**, *5*, 2997–2999.
- (25) Akita, M.; Yasuda, H.; Nakamura, A. Regioselective Homo- and Codimerization of 1-Alkynes Leading to 2,4-Disubstituted 1-Buten-3-Ynes by Catalysis of a (H<sub>5</sub>-C<sub>5</sub>Me<sub>5</sub>)<sub>2</sub>TiCl<sub>2</sub>/RMgX System. *Bull. Chem. Soc. Jpn.* **1984**, *57*, 480–487.
- (26) Hu, C.-M.; Hong, F.; Xu, Y.-Y. Synthesis of Trifluoromethyl-Substituted Conjugated Enynes Including a Fluorinated Siccayne. J. Fluor. Chem. **1993**, 64, 1–4.
- (27) Barday, M.; Ho, K. Y. T.; Halsall, C. T.; Aïssa, C. Regioselective Synthesis of 3-Hydroxy-4,5-Alkyl-Substituted Pyridines Using 1,3-Enynes as Alkynes Surrogates. Org. Lett. 2016, 18, 1756– 1759.
- (28) Zhou, H.; Moberg, C. Tunable Cross Coupling of Silanols: Selective Synthesis of Heavily Substituted Allenes and Butadienes. J. Am. Chem. Soc. 2012, 134, 15992–15999.
- (29) Goldfogel, M. J.; Roberts, C. C.; Meek, S. J. Intermolecular Hydroamination of 1,3-Dienes Catalyzed by Bis(Phosphine)Carbodicarbene–Rhodium Complexes. J. Am. Chem. Soc. 2014, 136, 6227–6230.
- (30) Huang, X.; Cao, T.; Han, Y.; Jiang, X.; Lin, W.; Zhang, J.; Ma, S. General CuBr<sub>2</sub>-Catalyzed Highly Enantioselective Approach for Optically Active Allenols from Terminal Alkynols. *Chem. Commun.* 2015, *51*, 6956–6959.
- (31) Yang, D.; Zuccarello, G.; Mattes, B. R. Physical Stabilization or Chemical Degradation of Concentrated Solutions of Polyaniline Emeraldine Base Containing Secondary Amine Additives. *Macromolecules* 2002, 35, 5304–5313.
- (32) Crampton, M. R.; Robotham, I. A. Acidities of Some Substituted Ammonium Ions in DimethylSulfoxide. J. Chem. Res. Synop. 1997, 22–23.
- (33) Rigby, J. H.; Laurent, S. B.; Kamal, Z.; Heeg, M. J. Chromium(0)-Promoted  $[6\pi + 2\pi]$ Cycloadditions of Allenes with Cycloheptatriene. *Org. Lett.* **2008**, *10*, 5609–5612.
- (34) Myers, A. G.; Zheng, B. New and Stereospecific Synthesis of Allenes in a Single Step from Propargylic Alcohols. J. Am. Chem. Soc. **1996**, 118, 4492–4493.
- (35) Mundal, D. A.; Lutz, K. E.; Thomson, R. J. A Direct Synthesis of Allenes by a Traceless Petasis Reaction. J. Am. Chem. Soc. 2012, 134, 5782–5785.
- (36) Alcaide, B.; Almendros, P.; Alonso, J. M.; Fernández, I. Palladium-Catalyzed Carbocyclization– Cross-Coupling Reactions of Two Different Allenic Moieties: Synthesis of 3-(Buta-1,3-Dienyl) Carbazoles and Mechanistic Insights. *Chem. Commun.* 2012, 48, 6604–6606.