S1 File

Supplemental Materials for:

Identification of Germination-Active Genes in Bacillus subtilis using TnSeq

Cameron Sayer, Bidisha Barat, and David L. Popham

Strain	Genotype	Source/Construction
DPVB724	$\Delta ger B \ Cm^R$	FB72 [1]→PS832
DPVB726	$\Delta gerA$ Sp ^R $\Delta gerB$ Cm ^R	FB72 [1]→PS832
DPVB747	$\Delta skfE$ MLS ^R	BKE01950 ^a →PS832
DPVB748	$\Delta pcrB$ MLS ^R	BKE06600 ^a →PS832
DPVB749	$\Delta ygaC MLS^{R}$	BKE08680 ^a →PS832
DPVB750	$\Delta sipT MLS^{R}$	BKE14410 ^a →PS832
DPVB751	$\Delta v l b C MLS^{R}$	BKE14960 ^a →PS832
DPVB752	$\Delta h f q MLS^{R}$	BKE17340 ^a →PS832
DPVB753	$\Delta v q h L M L S^R$	BKE24540 ^a →PS832
DPVB754	$\Delta dnaJ \mathrm{MLS^R}$	BKE25460 ^a →PS832
DPVB755	$\Delta y q e F MLS^{R}$	BKE25700 ^a →PS832
DPVB756	$\Delta phoR MLS^{R}$	BKE29100 ^a →PS832
DPVB757	$\Delta phoP MLS^{R}$	BKE29110 ^a →PS832
DPVB758	$\Delta y t x G MLS^{R}$	BKE29780 ^a →PS832
DPVB759	$\Delta y t p A MLS^{R}$	BKE30510 ^a →PS832
DPVB760	$\Delta yybT$ MLS ^R	BKE40510 ^a →PS832
DPVB761	gerA-lacZ MLS ^R	PS767 [2, 3]→PS832
DPVB763	$\Delta skfE MLS^{R} \Delta gerB Cm^{R}$	DPVB724→DPVB747
DPVB764	$\Delta pcrB$ MLS ^R $\Delta gerB$ Cm ^R	DPVB724→DPVB748
DPVB765	$\Delta ygaC MLS^{R} \Delta gerB Cm^{R}$	DPVB724→DPVB749
DPVB766	$\Delta sipT MLS^{R} \Delta gerB Cm^{R}$	DPVB724→DPVB750
DPVB767	$\Delta y l b C MLS^{R} \Delta g er B Cm^{R}$	DPVB724→DPVB751
DPVB768	$\Delta h fq MLS^{R} \Delta gerB Cm^{R}$	DPVB724→DPVB752
DPVB769	$\Delta yqhL MLS^{R} \Delta gerB Cm^{R}$	DPVB724→DPVB753
DPVB770	$\Delta dnaJ \mathrm{MLS^R} \Delta gerB \mathrm{Cm^R}$	DPVB724→DPVB754
DPVB771	$\Delta yqeF MLS^{R} \Delta gerB Cm^{R}$	DPVB724→DPVB755
DPVB772	$\Delta phoR MLS^{R} \Delta gerB Cm^{R}$	DPVB724→DPVB756
DPVB773	$\Delta phoP MLS^{R} \Delta gerB Cm^{R}$	DPVB724→DPVB757
DPVB774	$\Delta y t x G MLS^{R} \Delta g er B Cm^{R}$	DPVB724→DPVB758
DPVB775	$\Delta y t p A MLS^{R} \Delta g er B Cm^{R}$	DPVB724→DPVB759
DPVB776	$\Delta yybT MLS^{R} \Delta gerB Cm^{R}$	DPVB724→DPVB760
DPVB805	$\Delta skfE$	Cre expression for deletion of MLSR
DPVB806	ΔpcrB	Cre expression for deletion of MLSR
DPVB807	ΔygaC	Cre expression for deletion of MLSR
DPVB808	$\Delta sipT$	Cre expression for deletion of MLSR
DPVB809	$\Delta y l b C$	Cre expression for deletion of MLSR
DPVB810	$\Delta h f q$	Cre expression for deletion of MLSR
DPVB811	$\Delta yqhL$	Cre expression for deletion of MLSR
DPVB812	∆dnaJ	Cre expression for deletion of MLSR
DPVB813	$\Delta y q e F$	Cre expression for deletion of MLSR
DPVB814	$\Delta phoR$	Cre expression for deletion of MLSR
DPVB815	$\Delta phoP$	Cre expression for deletion of MLSR
DPVB816	$\Delta y t x G$	Cre expression for deletion of MLSR
DPVB817	ΔytpA	Cre expression for deletion of MLSR
DPVB818	$\Delta yybT$	Cre expression for deletion of MLSR
DPVB819	$\Delta skfE gerA-lacZ MLS^{\kappa}$	$DPVB/61 \rightarrow DPVB805$
DPVB820	$\Delta pcrB \ gerA-lacZ \ MLS^{\kappa}$	$DPVB/61 \rightarrow DPVB806$
DPVB821	$\Delta ygaC gerA-lacZ MLS^{\kappa}$	
DPVB822	$\Delta sipT gerA-lacZ MLS^{\kappa}$	
DPVB823	$\Delta ylbC gerA-lacZ MLS^{\kappa}$	DFAR\01→DFAR808

Table A. B. subtilis strains used in this study.

DPVB824	$\Delta h fq \ ger A$ -lac Z MLS ^R	DPVB761→DPVB810
DPVB825	$\Delta yqhL$ gerA-lacZ MLS ^R	DPVB761→DPVB811
DPVB826	$\Delta dnaJ gerA-lacZ MLS^{R}$	DPVB761→DPVB812
DPVB827	$\Delta yqeF$ gerA-lacZ MLS ^R	DPVB761→DPVB813
DPVB828	$\Delta phoR \ gerA-lacZ \ MLS^{R}$	DPVB761→DPVB814
DPVB829	$\Delta phoP \ gerA-lacZ \ MLS^{R}$	DPVB761→DPVB815
DPVB830	$\Delta ytxG$ gerA-lacZ MLS ^R	DPVB761→DPVB816
DPVB831	$\Delta y t p A ger A-lac Z MLS^{R}$	DPVB761→DPVB817
DPVB832	$\Delta yybT$ gerA-lacZ MLS ^R	DPVB761→DPVB818
DPVB833	<i>PsspD::gerA</i> MLSR	PS3476 [4]
DPVB834	$\Delta skfE PsspD::gerA MLS^{R}$	DPVB833→DPVB805
DPVB835	Δ <i>pcrB</i> PsspD::gerA MLS ^R	DPVB833→DPVB806
DPVB836	$\Delta y gaC PsspD::gerA MLS^{R}$	DPVB833→DPVB807
DPVB837	$\Delta sipT PsspD::gerA MLS^{R}$	DPVB833→DPVB808
DPVB838	$\Delta y lbC$ PsspD::gerA MLS ^R	DPVB833→DPVB809
DPVB839	$\Delta h f q$ PsspD::gerA MLS ^R	DPVB833→DPVB810
DPVB840	$\Delta yqhL$ PsspD::gerA MLS ^R	DPVB833→DPVB811
DPVB841	$\Delta dnaJ$ PsspD::gerA MLS ^R	DPVB833→DPVB812
DPVB842	$\Delta y q e F P s s p D:: g e r A MLS^{R}$	DPVB833→DPVB813
DPVB843	ΔphoR PsspD::gerA MLS ^R	DPVB833→DPVB814
DPVB844	Δ <i>phoP</i> PsspD::gerA MLS ^R	DPVB833→DPVB815
DPVB845	$\Delta ytxG$ PsspD::gerA MLS ^R	DPVB833→DPVB816
DPVB846	$\Delta y t p A P s s p D :: g e r A M L S^{R}$	DPVB833→DPVB817
DPVB847	$\Delta yybT$ PsspD::gerA MLS ^R	DPVB833→DPVB818

^a Strain obtained from the Bacillus Genetic Stock Center

Strain	Colonies after 24 hr (cfu/mL/OD)	New colonies after 48 hr (cfu/mL/OD)	
Wild type	3.5x10 ⁸	0	
dnaJ	9.6x10 ⁸	0	
hfq	3.2x10 ⁸	0	
pcrB	1.7x10 ⁸	6.0x10 ⁶	
phoP	3.7x10 ⁸	0	
phoR	3.5x10 ⁸	0	
sipT	1.4x10 ⁸	4.0x10 ⁶	
skfE	9.2x10 ⁷	1.0x10 ⁶	
ygaC	4.0x10 ⁸	1.0x10 ⁷	
ylbC	1.4x10 ⁸	7.0x10 ⁶	
yqeF	1.7x10 ⁸	0	
yqhL	2.5x10 ⁸	0	
ytpA	1.8x10 ⁸	0	
ytxG	1.2x10 ⁸	0	
yybT	2.8x10 ⁸	1.0x10 ⁷	

Table B. Long-term germination efficiency of *B. subtilis* mutant strains^a

^a Values are from a single determination for each strain. Purified spores were serially diluted, plated on 2xSG medium, and incubated at 37°C.

Genotype	% OD Loss at 6	0 mins with 1X AGFK	% OD Loss at 40 mins with 2xYT	
	without <i>sspDp-</i> <i>gerA</i>	with sspDp-gerA	without sspDp-gerA	with sspDp-gerA
Wild type	13 ± 4	$4 \pm 1.3*$	34 ± 2	34 ± 1
dnaJ	6 ± 3*	$1 \pm 2^*$	$23 \pm 0*$	29 ± 2
hfq	9 ± 5	5 ± 1*	33 ± 1	33 ± 2
pcrB	5 ± 1*	$0 \pm 1^{*}$	31 ± 0	36 ± 3
phoP	8 ± 3	1 ± 1*	33 ± 0	30 ± 1
phoR	5 ± 4*	1 ± 1*	32 ± 3	36 ± 4
sipT	$6 \pm 6^{*}$	$0 \pm 1^{*}$	30 ± 6	33 ± 1
skfE	4 ± 5*	3 ± 1*	32 ± 4	35 ± 0
ygaC	10 ± 1*	1 ± 4*	31 ± 3	32 ± 5
ylbC	5 ± 4*	$0 \pm 1^{*}$	16 ± 2*	31 ± 0
yqeF	5 ± 2*	$4 \pm 2^{*}$	33 ± 5	28 ± 3
yqhL	16 ± 5	$0 \pm 1^{*}$	34 ± 4	30 ± 1
ytpA	18 ± 2	13 ± 1	30 ± 1	33 ± 1
ytxG	7 ± 5	$0 \pm 2^{*}$	$26 \pm 2*$	29 ± 8
yybT	17 ± 2	$0 \pm 0^*$	29 ± 1	36 ± 4

Table C. Spore germination in response to diverse germinants following overexpression of gerA.

^a Values are averages and standard deviations of assays on three replicate spore preparations. OD_{600} of purified spore suspension monitored at the indicated time after addition of 1X AGFK or 2xYT while shaking at 37°. * indicates a significant difference from the wild type without PsspD-gerA (p<0.05).

Purified spores of *B. subtilis* wild type and mutant strains were heat activated, stimulated to germinate by addition of 10 mM L-Val, and shaken at 37°C, during which the OD_{600} was monitored. Values are averages of three assays and error bars are standard deviations. Each assay was performed on three replicate spore preparations. A) Wild type \diamond , *ytxG* X, *yqhL* \blacktriangle , *ygaC* +, *dnaJ* \blacksquare B) Wild type \diamond , *phoR* X, *hfq* +, *sipT* \blacksquare , *yybT* \bullet C) Wild type \diamond , *sfkE* X, *pcrB* \bigstar , *yqeF* +, *ytpA* \blacksquare .

Purified spores were heat activated, stimulated to germinate by addition of 10 mM L-Val, and shaken at 37°C. Samples were taken at designated intervals, centrifuged, and the supernatant was saved for later analysis. Values are averages of three assays for DPA (panels A-C) and NAM (panels D-F), and error bars are standard deviations. Each assay was performed on three replicate spore preparations. Panels A and D: Wild type \blacklozenge , *ytxG* **X**, *yqhL* \blacktriangle , *ygaC* +, *dnaJ* \blacksquare , *ylbC* \blacklozenge . Panels B and E: Wild type \blacklozenge , *phoR* **X**, *phoP* \bigstar , *hfq* +, *sipT* \blacksquare , *yybT* \bullet . Panels C and F: Wild type \blacklozenge , *sfkE* **X**, *pcrB* \bigstar , *yqeF* +, *ytpA* \blacksquare . For DPA release: *dnaJ*, *ylbC*, *yqeF*, *and ytpA* strains are significantly different from the wild type at all time points; *hfq*, *phoP*, *sipT*, *ygaC*, and *yqhL* strains are significantly different from 10 min onwards; and *pcrB*, *phoR*, *yybT*, and *ytxG*, strains are not significantly different from the wild type. For NAM release: *sipT*, *ylbC*, and *ytpA* strains exhibited reduced NAM release, but this was not found to be significant due to high variability between replicates.

Figure C. Phase contrast microscopy image pixel intensities during spore germination.

Spores were subjected to germination conditions, 10 mM L-Valine at 37°C, for 1 hour. For each strain, pixel intensities were averaged for each spore detected in three images, including a range of 127-509 spores (Each dot represents one spore). Blue dots indicate spores classified as phase bright, which had similar intensities as spores in the initial dormant population, and orange dots indicate spores classified as phase-dark, in order to determine population percentages in Table 3. Phase bright and phase dark spores are plotted independently on the X-axes.

Figure D. Expression of σ^{G} -dependent genes in *B. subtilis* mutant strains.

Purified spores carrying *lacZ* transcriptional fusions were decoated and lysed, and extracts were assayed for β -galactosidase. Values are expressed as a percentage of that detected in the wild type strain containing the same *lacZ* fusion. Values are averages of assays on three (A, *pbpF-lacZ*) or two (B, *sspB-lacZ*) replicate spore preparations and error bars are standard deviations.

Mutant strain	<i>gerA</i> 1.0	Wild type 1.0	Mutant 1.0	Wild type 0.5	Mutant 0.5
dnaJ		-		-	
hfq		-			sec.
pcrB					-
phoP			_	-	
phoR		-		-	-
sipT				-	-
ygaC	-	_	-	-	-
ylbC	-	-		-	Service of
yqeF	-	-		-	
yqhL		-	-	-	-
ytpA	-	-	_	-	
ytxG	-	-	_		
yybT		-			-

Figure E. GerAC is reduced in the spores of several B. subtilis mutant strains. Equal quantities of spore suspensions were decoated and broken, and proteins were extracted, serially diluted, run on SDS-PAGE, and transferred to PVDF membrane as described previously [5]. The membrane was probed with anti-GerAC antibodies [6]. Strain genotype (All strains were also $\Delta gerB$) and sample dilution is indicated above each lane or on the left of each panel.

Figure F. GerD is not reduced in the spores of *B. subtilis* germination mutants.

Equal quantities of spore suspensions were decoated and broken, and proteins were extracted, serially diluted, run on SDS-PAGE, and transferred to PVDF membrane as described previously [5]. The membrane was probed with anti-GerD antibodies [6] (Panel A). Strain genotype (All strains were also $\Delta gerB$.) and sample dilution is indicated above each lane or on the left of each panel. Protein load and transfer to membrane in each lane was normalized as described in Materials and Methods, and the amount of GerD detected in each strain was compared to that found in the wild type (Panel B). Error bars indicate standard deviations. * indicates a significant difference from the wild type ($p \le 0.05$).

References

1. Paidhungat M, Setlow B, Driks A, Setlow P. Characterization of spores of *Bacillus subtilis* which lack dipicolinic acid. J Bacteriol. 2000;182(19):5505-12. PubMed PMID: 10986255.

2. Feavers IM, Foulkes J, Setlow B, Sun D, Nicholson W, Setlow P, et al. The regulation of transcription of the *gerA* spore germination operon of *Bacillus subtilis*. Molec Microbiol. 1990;4:275-82.

3. Zuberi AR, Moir A, Feavers IM. The nucleotide sequence and gene organization of the *gerA* spore germination operon of *Bacillus subtilis* 168. Gene. 1987;51(1):1-11. Epub 1987/01/01. PubMed PMID: 3110007.

4. Cabrera-Martinez RM, Tovar-Rojo F, Vepachedu VR, Setlow P. Effects of overexpression of nutrient receptors on germination of spores of *Bacillus subtilis*. J Bacteriol. 2003;185(8):2457-64. PubMed PMID: 12670969.

5. Stewart KA, Setlow P. Numbers of individual nutrient germinant receptors and other germination proteins in spores of *Bacillus subtilis*. J Bacteriol. 2013;195(16):3575-82. doi: 10.1128/JB.00377-13. PubMed PMID: 23749970; PubMed Central PMCID: PMC3754565.

6. Ramirez-Peralta A, Zhang P, Li YQ, Setlow P. Effects of sporulation conditions on the germination and germination protein levels of *Bacillus subtilis* spores. Appl Environ Microbiol. 2012;78(8):2689-97. Epub 2012/02/14. doi: 10.1128/AEM.07908-11. PubMed PMID: 22327596; PubMed Central PMCID: PMCPMC3318806.